11 Rotary Axis Tangent

Rotary Axis Tangent to $x-y$ Trajectory

This application requires the motion of a rotary axis to remain tangent to the path created by x and y axes. The $\mathrm{x}-\mathrm{y}$ trajectory in this example is circular. Assuming 1000 encoder lines/mech. rev. (i.e. 4000 counts/rev), one radian move of rotary axis generates 637 encoder counts. Thus, in conjunction with α in radians, this conversion factor must be used.

\#define	del_x	var1
\#define	del_y	var2
\#define	a	var3
\#define	alpha	var4
\#define	flag	var5
\#define	rotary	var6

plc_program:
run_m_program(tangential_path)
end
tangential_path:

Rotary Axis Tangent

```
    flag = 1
    pos_preset (0x7,1000,1000,0)
    ;preset to point A
; start AB line
linear_move_s (3,1000,0,3000,0.8,5000,0.0003,1000,0,2500,0.6,5000,0.00023)
    circle(3,1500,-2000,2500,1,0,0) ; continue with x-y circle
        ;compute position for rotary
        ;axis
    while (flag == 1)
        del_x = cvel1 ;obtain rate of change of position in
        del_y = cvel2
        ; x direction
        ;obtain rate of change of position in
        ; y direction
        a = del_y/del_x
        ;calculate tangent of alpha
        alpha = arctan(a) ;find alpha in radians
        rotary = 637 * alpha ;use conversion factor 637 to find
        ;use conversion
        axmove(0x8, 0.5, rotary, 10)
        ;move rotary axis(3) to the computed
        ; position
    wend
end
```

