

��������

�����������	��.. 1-1

C vs. Visual Basic.. 1-1
Syntax .. 1-2
Data Types ... 1-2

Installation.. 1-3
Other Documentation... 1-3

��
���
��

��������	���	�������������� 2-1

A Very Simple Motion Control Application 2-1
Setup .. 2-2
Creating the User Interface .. 2-6
Supplying Code.. 2-10
Make An Executable File... 2-12

A Two Axis Jog Control.. 2-13
Introduction.. 2-13
Getting Started With 3D Panel Controls........................ 2-14
Jog Speed Control .. 2-16
The Jog Control ... 2-18
Position Display... 2-23
Initialization ... 2-24

����	������	����������������	��������	�....... 3-1

Obtaining Access To The DLL Functions 3-1
Real Time Commands ... 3-2
State Variables ... 3-2
DSPL Variables ... 3-3

Contents

ii

DSPL Program Functionality... 3-3
User-Defined Units .. 3-4
Inputs / Outputs.. 3-5
Data Table Downloading ... 3-5
Mx4 Dual Port RAM Access ... 3-6
Bus Communication .. 3-6
Serial Communication ... 3-7
Visual Basic Examples .. 3-7

	������	����� ������ ... 4-1

Reference ... 4-1
Function Summary... 4-5

Control Law & Initialization.. 4-6
Simple Motion ... 4-6
Input / Output Control.. 4-7
State Variables, DP RAM.. 4-7
DSPL Variables ... 4-8
System Diagnostic ... 4-8
Multi-Axis RTCs ... 4-8
DLL Synchronization... 4-9
DSPL & Tables .. 4-9
Contouring ... 4-10
Bus Communication .. 4-10
Motor, Power, Sensors and Drive 4-11
Coordinated Motion - Gearing....................................... 4-11
Coordinated Motion - Cam.. 4-12
Serial Communication ... 4-12
Interrupt Control .. 4-13
Filtering (optional) ... 4-13

Function Listing ... 4-14

���������	
���
���

�����	���
���
������������

������������������	�

This documentation may not be copied, photocopied, reproduced, translated,
modified, or reduced to any electronic medium or machine-readable form, in
whole or in part, without the prior written consent of DSP Control Group, Inc.

 Copyright 2010-2019 DSP Control Group, Inc.
M4445 W 77th Street
Minneapolis MN 55435
Tel: (952) 831-9556

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for
any accident resulting from misuse of its products.

DSPL, Mx4, Acc4, Vx4++, and Vx8++ are trademarks of DSP Control Group,
Inc.

Other brand names and product names are trademarks of their respective holders.

DSPCG makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a
particular purpose, regarding the licensed materials.

Mx4 & Windows v5.0 1-1

���������	�
��

The VB & C Mx4 DLL (Dynamic Link Library) allows Mx4 to be programmed
directly from both Visual Basic and C development platforms on the Windows
operating system (both Windows 7, 10, and Windows NT/2000 DLLs are
available). The DLL contains functions and subroutines which permit the Visual
Basic or C programmer to configure Mx4, send commands, read the value of
state variables such as position and velocity, and much more.

����������	
��	���

Windows applications can be developed with both C and Visual Basic
development tools. The C examples included with the installation were
developed using Microsoft Visual C++ v4.0, and the Visual Basic examples
were developed using Microsoft Visual Basic v5.0.

Visual Basic is a programming system designed to permit a rapid development
of Windows applications. It allows the programmer to interactively create a
graphical user interface. Command buttons, labels, scroll bars, and other
components of the user interface can be positioned graphically. Each of these
objects has a large number of easily modifiable properties which control its
appearance and behavior. The programmer must supply Visual Basic code to be
exectued in response to user interface events. Such an event might be the user
clicking on a command button or selecting a command from a menu.

This manual is written as a Visual Basic Mx4 Programmer’s Guide,
however, the information herein can be easily adapted for the C
programmer as well. Chapters 2 and 3 are intended for the Visual Basic
programmer, but the Chapter 4 function reference information, although
written from the Visual Basic perspective, is also useful for the C
programmer as is described below.

cymes
Highlight

Introduction

1-2

The same DLL supports both Visual Basic and C application development. The
difference lies within the syntax and data types which differ between Visual
Basic and C.

������

Chapter 4 of this manual, Function Reference, presents the Visual Basic syntax
and data types for all of the commands. Of course, the programmer can retrieve
this information from the “header” files which are required by both Visual Basic
and C. These files, .bas modules for Visual Basic, and .h header files for C,
serve as function definitions and prototypes for the Visual Basic / C
development tools. The C programmer can use the supplied .h file for obtaining
the C function syntax for the command set.

An important distinction between the syntax for Visual Basic and C is the use of
both subroutines and functions within Visual Basic. That is, the majority of the
command set may be used as either subroutines (no return argument) or
functions (return argument). For example, the following lines will illustrate the
use of POS_PRESET as both a subroutine and a function,

POS_PRESET 1, 1000 ‘Visual Basic subroutine
Temp = POS_PRESET (1, 1000) ‘Visual Basic function

In C, the function call would be,

POS_PRESET (1, 1000); /* C function */

�����	�
��

The Visual Basic (.bas module) and C (.h) header files include information
regarding the data types of function arguments and return values. Again, the
function listings in Chapter 4 use Visual Basic data types. The C programmer
can simply use the .h header file supplied with the DLL for C function data type
information.

cymes
Highlight

Introduction

Mx4 & Windows v5.0 1-3

���	

	����

The VB & C DLL distribution media contains an automatic setup program which
will install the DLL, associated support files, as well as both Visual Basic and C
example applications on the user's system. To install the DLL, simply type
a:\setup.exe at the Windows File Run prompt and follow the instructions. The
installation will prompt the user for bus communication / serial communication
parameters for registry initialization.

��������������	����

In conjunction with this manual you may find the following items of assistance:

��� ������� �������
��� �������� ������

�����

This manual includes comprehensive information on Mx4's hardware, software,
system tuning, memory organization, trouble shooting and more. The Mx4 User's
Guide is the focal point in learning the technical details of Mx4. All other Mx4
manuals assume that users have already read the Mx4 User’s Guide.

��������
���	��������
���

This manual describes Mx4Pro - a testing and tuning software used with Mx4.
Mx4Pro includes features such as a signal generator oscilloscope and live block
diagram which make this software useful for testing and performance
optimization.

��� �������!!����������

This manual will assist you with DSPL, DSPCG’s high level programming
language for the Mx4. DSPL has its own compiler and downloader, which are
included in the Mx4pro Development Tools.

Introduction

1-4

"��##�������������

This manual includes information on the add-on drive control option. Vx4++ is
DSPCG's multi-DSP based drive controller that provides complete drive signal
processing for all industrial DC and AC machines. The capabilities of Vx4++
include that normally offered by servo control amplifiers.

$����������������

This manual includes information on the Mx4 Serial Adapter and Mx4 ADC
options. The Acc4 daughterboard allows the use of RS-232/485 serial
communication to facilitate host-serial-Mx4 based communication.

Mx4 & Windows v5.0 2-1

���������������	��
��
����

����
������

The purpose of this chapter is to explain how to use Visual Basic and the VB &
C DLL to create Windows motor control applications. The intended audience for
this section is a control engineer who has some familiarity with Mx4 but knows
little about Visual Basic. More experienced Visual Basic programmers may skip
ahead to Chapter 3, Using Mx4 In The Visual Basic Environment; however, this
chapter may serve well as a reference for building an application from the
ground up in Visual Basic.

The following text is based upon developing Visual Basic applications using
Microsoft Visual Basic v5.0 in the Windows 7 operating system.

���������	
����
��
���
���
���

������
�

The example application illustrated in Figure 2-1 displays the position, following
error, and velocity of a servo motor connected to Mx4 in real-time. It also allows
the user to start and stop the motor by clicking on command buttons.

Step-by-Step Application Development

2-2

Figure 2-1 : Simple Motion Control Application

The following describes the steps involved in the development of the application
program illustrated in Figure 2-1. These steps have been categorized under
Setup, Creating The User Interface, Supplying Code, and finally, Making An
Executable File.

�����

Several steps are required to create a new Visual Basic program. A Visual Basic
program (or project) consists of a number of different files. The best way to
organize these files is to create a seperate folder for them.

������� Create a project directory

Invoke the Window's File Manager. Create a folder for your project by selecting
"New" “Folder” from the File menu and enter the name of the new folder.

������� Start Visual Basic.

Once the Visual Basic environment has been opened, select “New Project” from
the File menu. Select “Standard EXE” from the New Project window (see
Figure 2-2).

Step-by-Step Application Development

Mx4 & Windows v5.0 2-3

Figure 2-2 : Visual Basic Environment, New Project

�����	� Save the project and form

After opening a new standard EXE project, the Visual Basic environment
displays a blank form, titled Form1 (see Figure 2-3). Use the "Save Project
As…" and “Save Form1 As…” File menu commands to save the default form,
FORM1.FRM, in the project folder which was created in Step 1.

Step-by-Step Application Development

2-4

Figure 2-3 : Default form Form1

In order to use the functions contained in the VB & C Mx4 DLL, a module must
be incorporated into the the project (the module provides function declarations
and constant definitions from the DLL to the current Visual Basic project). The
code for this module is provided with the DLL installation (see the
MX495_VB.TXT file in the installation root directory).

�����
� Create declaration module

To keep projects organized and self-contained, it is advisable to keep a copy of
the declaration module in each project folder. Copy the MX495_VB.TXT file
from the DLL installation directory to the current project folder. Declaration
modules must have a .BAS extension, so rename the file in the project folder to
MX4.BAS. Select “Add Module” from the Visual Basic Project menu (see
Figure 2-4), and then select “Existing” since the declaration module desired is in
the project folder. Select the MX4.BAS module. The module is now part of the
project and is displayed in the Project Explorer window (Figure 2-5).

Step-by-Step Application Development

Mx4 & Windows v5.0 2-5

Figure 2-4 : Adding a module to the project

Figure 2-5 : Project explorer window

Step-by-Step Application Development

2-6

�����	
���
��������
�������

We are now ready to start creating the user interface. A Visual Basic application
consists of a number of forms (or Windows). Our project will have only one
form, the default form. This form is automatically loaded when the application is
started. We create the user interface by adding controls to this form. A control is
an object on a form such as a command button. Controls are used to display
information and to allow the user to input data and make selections. The
Toolbox (Figure 2-6) is used to add controls to the form. We will use a label
control to display the current position of axis-1.

Figure 2-6 : Visual Basic Toolbox

Step-by-Step Application Development

Mx4 & Windows v5.0 2-7

������� Create a label control

Click on the label tool. Position the cursor over the location on the form where
you want to place the label. The cursor should now be a cross hair. Click and
drag the cross hair to create a label control with the appropriate dimensions.

Controls have properties which effect their appearance and behavior. The
properties of a control are modified using the properties window (Figure 2-7).

Figure 2-7 : Properties Window

������� Bring up the Properties window

Click on the label control you just created to select it. If you have been following
this procedure exactly, it will be selected already. Press the F4 function key to
bring up the properties window. If necessary, reposition the properties window
so that the label control is visible.

Step-by-Step Application Development

2-8

�����
� Select border style

Use the scroll-bar at the right of the properties list to scroll through the
properties of the label control. Find the BorderStyle property and click on it to
select it.

������� Choose border style

The default value of the BorderStyle property, "0", is shown in the Settings Box.
Click on the arrow to the right of the Settings Box to see a list of all valid border
styles. Select "Fixed-Single". Note how this property affects the appearance of
the label control.

All controls have a "name" property which is assigned by default when the
control is created. This name is used to access the control and its properties from
Visual Basic code. It is a good programming practice to assign a more
meaningful name to important controls.

������� Select a name for label

Set the name property of the label control created in Step 7 to "PositionLabel".

���������Create two more labels

To display the following error and velocity two more label controls are required.
Create these in just the same manner that you created the label control for
displaying position. Set their name properties to "ErrorLabel" and
"VelocityLabel".

The "Caption" property of a label control specifies the text of the label. The
initial value for this property can be specified by the programmer at design-time.
The property can also be modfied from Visual Basic code while the program is
running to create a real-time display. This is how the "PositionLabel",
"ErrorLabel", and "VelocityLablel" controls will be used. Additional controls
are needed to label the position, error, and velocity displays (i.e. place the text
"position" below the "PositionLabel" control).

����������Set caption properties

Create a label control below the "PositionLabel" control and
set its Caption property to "Position". Provide labels for the
"ErrorLabel" and "VelocityLabel" controls in the same way.

Step-by-Step Application Development

Mx4 & Windows v5.0 2-9

Several more controls are necessary to complete the user interface: a start
command button, a stop command button, and a timer. Timers are a special type
of control which we will discuss later.

������� Add Start command button

Add a command button control to the form. This will be the
start button. Set its Caption property to "Start" and its name
property to "StartButton".

�����	� Add Stop command button

Add a second command button to the form. This will be the stop button. Set its
Caption property to "Stop" and its Name property to "StopButton".

�����
� Add a timer control to the form

The timer control won't be visible when the program is running. It can be placed
anywhere on the form. Set its Interval property to 100. (This property specifies
the timer's timeout interval in milliseconds.)

The graphical portion of the user interface is now complete. Figure 2-8 shows
what it should look like.

Figure 2-8 : Completed Form

Step-by-Step Application Development

2-10

������	
������

The next set of steps is to supply code to give the application the desired
functionality. Each object in the user interface has a number of events associated
with it. Event procedures are used to respond to these events. "Load" is an
important event associated with a form. This event occurs when the form is first
displayed. Our application has only one form, the default form. This form is
displayed automatically when the application is invoked. The event procedure
for responding to the "Load" event is a good place to put code for initializing
Mx4.

�������� Bring up the Code window

Double click on the background (dotted) area of the form to bring up the code
window. A template for the Form_Load event procedure is displayed (Figure 2-
9).

������� Supply initialization code

Add the following Mx4 intitialization code to the Form-Load form.

Dim sBuffer As String ‘ String for the signature

‘ The buffer must be initialized to a length of at least 11
sBuffer = Space (11)

‘ This code will use the DLLs signature function to make sure
‘ the Mx4 card is present at the address specified in the
‘ Registry, default address is 0xD0000
If (Left$(signature(sBuffer), 3) <> “Mx4”) Then

MsgBox “Mx4 Card NOT found”, vbOK, “Mx4 Error”
End

End If

‘ The next two functions will set the time and position units
‘ of the DLL into 200 usec, position will be in units of encoder
‘ counts, velocity will be in units of encoder counts/200usec,
‘ and so on.
time_unit 1# / 5000#
position_unit 1

‘ The next 2 function calls will set up the control gains and
‘ maximum acceleration for axis 1. Notice the error checking,
‘ a common error that could occur is a parameter may be out of
‘ range.
If (ctrl (1, 100, 5208, 5796, 1432) <> ERR_OK) Then

Step-by-Step Application Development

Mx4 & Windows v5.0 2-11

MsgBox “Error occurred”, vbOK, “CTRL Error”
End If
If (maxacc (1,1#) <> ERR_OK) Then

MsgBox “Error occurred”, vbOK, “MAXACC Error”
End If

Figure 2-9 : Code Window

The timer control will generate a timeout event every 100ms.
These events can be used to update the real-time position,
following error, and velocity display. For example, to update
the position display, the program must periodically read the
position of axis-1 and update the Caption property of the label
control for position.

�����
� Supply timeout code

Double click on the timer control. Add the statements shown below to the
Timer1_Timer event procedure.

Sub Timer1_Timer
 PositionLabel.Caption = pos(1)
 ErrorLabel.Caption = ferr(1)
 VelocityLabel.Caption = format(vel(1),"####0.000")
End Sub

When the user clicks on the start command button the program must issue a
"velocity mode" command to Mx4. When the user clicks on the stop button the
program must issue a "stop" command. This functionality is easily implemented
by supplying code for the start and stop button's "Click" event procedure.

�������� Supply Start button code

Step-by-Step Application Development

2-12

Double click on the start command button. Add the statement shown below to
theStartButton_Click event procedure

Sub StartButton_Click()
 velmode 1, 1
End Sub

�������� Supply Stop button code

Double click on the stop command button. Add the statement show below to the
StopButton_Click event procedure.

Sub StopButton_Click()
 stop_axis 1
End Sub

The application is now complete. It’s time to see how it works.

�������� Run the program

Start the program by selecting "Start" from the Run Menu. Check it out. If an
encoder is hooked up, you should be able to see the position display change as
the shaft of the motor is spun. When done experimenting, select "End" from the
Run Menu to terminate the application.

������
�������������	��

The final step in the creation of a Windows applicaiton using Visual Basic is to
generate an executable. The executable can be invoked just like any other
windows application, and is independent of the Visual Basic development
environment.

�������� Create executable

Select "Make filename.exe…" from the File menu. By default this command
will create an executable in the project directory with the same name as the
project. Your application is now complete.

Step-by-Step Application Development

Mx4 & Windows v5.0 2-13

����
�������
���
���
�

�
�������	�

This section describes a virtual jog control implemented using Visual Basic and
Mx4. This Windows application allows the user to control the position of a two
axis servo system by depressing up, down, left, and right buttons. The intended
audience for this section is a control engineer who has some familiarity with
Mx4 but knows little about Visual Basic.

Figure 2-10. Jog Control Application

The application's display is shown in Figure 2-10. The shaft positions of the two
servo motors are displayed to the right of the jog control. The horizontal scroll
bar below the jog control is used to select a jog speed. To rotate the shaft of the
axis-1 servo-motor clockwise the user positions the mouse over the "right"
button and presses the mouse button. While the button is held down the shaft
rotates at the specified jog speed. When the user releases the mouse button, the
motion stops. When the user clicks on the central octagon, the system returns to
its home position. To exit the application, the user clicks on the close button.

Step-by-Step Application Development

2-14

The VB & C Mx4 DLL is used to program Mx4 in Visual Basic. This section
assumes the reader is familiar with accessing the routines in this DLL from
Visual Basic.

����	
�����������	�
� !�"�
�����
�����

The jog control application achieves its realistic "look" through the extensive use
of 3D panel controls. We assume the reader is unfamiliar with these controls and
we will provide a brief introduction to them here. Readers already familiar with
3D panel controls may skip this section.

The 3D panel control is one of a number of controls that are made available by
incorporating Sheridian Software System's 3D Widgets VBX (THREED.VBX)
into a project. This VBX is distributed with the professional edition of Visual
Basic. Figure 2-11 shows the additional controls that this VBX adds to the
toolbar.

Figure 2-11. Controls provided by THREED.VBX

Step-by-Step Application Development

Mx4 & Windows v5.0 2-15

Figure 2-12 Features of a 3D panel control

A 3D panel control can be used to group other controls on a raised background
or to lend a three dimensional appearance to a standard control such as a label. A
3D panel has an outer bevel, a border, and an inner bevel. These features are
shown in Figure 2-12. The properties BevelInner, BevelOuter, BevelWidth,
and BorderWidth control the appearance of these features. For example, by
setting the BevelInner property to 0 (none) the inner bevel can be eliminated.

A 3D panel control is similar to a frame control in that other controls can be
placed on it. When the panel control is moved, these controls move with it.
When the panel control is deleted, these child controls are deleted as well. In our
jog control application, a 3D panel control is used to provide the overall
background for the display. 3D panel controls are also used to construct the x-
position, y-position, and jog speed displays. A label control is used to provide
the numeric display. This label control is placed on a 3D panel control which
provides the border for the display. The border panel is itself placed on the
background panel. These relationships are illustrated in Figure 2-13.

Step-by-Step Application Development

2-16

Figure 2-13. 3D panel controls used to provide an application background and a
display border.

#�����������
����

The user selects a jog speed using a horizontal scroll bar. The jog speed is
displayed numerically in a label control to the left of the scroll bar. The
components of the jog speed control are shown in Figure 2-14. Horizontal scroll
bar controls (Figure 2-15) have a Value property which gives the current
position of the scroll box on the scroll bar. The scroll bar's scale can be specified
using the Min and Max properties. Min specifies the value of the Value property
when the scroll box is at the left side of the scroll bar. Max specifies the value of
the Value property when the scroll box is at the right side of the scroll bar. We
have set the JogSpeedScroll control's Min property to zero and its Max property
to 32767. Because the Value property is an integer, we can't use it directly to
obtain the jog speed. Some scaling is required. The constant MaxJogSpeed is
used to specify the maximum jog speed the user can select. Jog speeds must be
between 0 and MaxJogSpeed. The equation below is used to convert the scroll
bar's Value property into a jog speed.

Step-by-Step Application Development

Mx4 & Windows v5.0 2-17

<speed> = JogSpeedScroll.Value * MaxJogSpeed / 32768.

Figure 2-14. Components of the jog speed control

Figure 2-15. Elements of a horizontal scroll bar

There are two events associated with the scroll bar: Scroll and Change. While
the user drags the scroll box, the scroll event is generated repeatedly and the
JogSpeedScroll_Scroll() event procedure is exectued. The user can also
change the position of the scroll box by clicking on the left or right arrows or by
clicking on the scroll bar itself. The Change event is generated whenever the
position of the scroll box is changed. The JogSpeedScroll_Change() event
procedure handles this event. The code for these two event procedures is given
in Listing 2-1. Both procedures update the Caption property of the label control
JogSpeedLabel1. This label control is used to display the selected jog speed.

Step-by-Step Application Development

2-18

Sub JogSpeedScroll_Change ()

 JogSpeedLabel1.Caption = Format(MaxJogSpeed *

JogSpeedScroll.Value / 32768, "####0.0000")

End Sub

Sub JogSpeedScroll_Scroll ()

 JogSpeedLabel1.Caption = Format(MaxJogSpeed *

JogSpeedScroll.Value / 32768, "####0.0000")

End Sub

Listing 2-1: Event procdures for JogSpeedScroll
horizontal scroll bar control

$
��#�����
����

The components of the jog control are shown in Figure 2-16. The operation of
the up, down, left, and right buttons is straight forwared. The event procedures
associated with the four buttons are all very similar. We will describe only the
event procedures for the RightButton control (Listing 2-2). When the user
positions the mouse over the control and presses the mouse button, a MouseDown
event is generated and the RightButton_MouseDown() event procedure is
executed. This event procedure issues a VELMODE command for axis-1 to Mx4.
This command causes the shaft of the axis-1 servo-motor to begin rotating in the
clockwise direction. The rotation speed is obtained from the JogSpeedScroll
horizontal scroll bar discussed earlier. When the user releases the mouse button,
a MouseUp event is generated and the RightButton_MouseUp() event procedure
is exectued. This procedure issues a stop_axis command to Mx4 for axis-1
causing the shaft of the axis-1 servo-motor to stop rotating.

Step-by-Step Application Development

Mx4 & Windows v5.0 2-19

Sub RightButton_MouseDown (Button As Integer, Shift As Integer, X

As Single, Y As Single)

 'Issue velmode command to Mx4 to make axis-1 spin in the

positive

 'direction at the speed specified by the the current value

 'of the Horizontal scroll bar.

 velmode 1, MaxJogSpeed * JogSpeedScroll.Value / 32768

End Sub

Sub RightButton_MouseUp (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'Issue a stop command to Mx4

 stop_axis 1

End Sub

Listing 2-2: Event procedures for the RightButton control.

Step-by-Step Application Development

2-20

Figure 2-16. Components of the jog control

The operation of the HomeButton control is a little more complicated. This is
because Visual Basic does not provide an "Octagonal Button" control. We had
to use a picture control and emulate some of the behavior of a standard
command button using Visual Basic code. The appearance of a command button
control changes when it is depressed. To emulate this behavior, we needed two
bitmap images: one showing the octagonal button in the up position and the
other showing it in the down position. (We created these images using Corel
Draw, although any other drawing program could have been used.) The idea is
to change the bitmap displayed by the HomeButton picture box control while the
program is running. To do this, two additional picture box controls (OctagonIn
and OctagonOut) are necessary. The Visible property of these controls is set to
False to prevent them from being displayed while the program is running.
OctagonIn holds the bitmap image of the button in the down position.
OctagonOut holds the image of the button in the up position. These bitmaps are
setup at design time by assigning the appropriate .BMP file to their Picture
property. To change the image displayed, we assign the Picture property of
either OctagonIn or OctagonOut to the Picture property of the HomeButton
control. The statement below, for example, will cause the HomeButton control to
display the image of the button in the down position.

Step-by-Step Application Development

Mx4 & Windows v5.0 2-21

HomeButton.Picture = OctagonIn.Picture

The event procedures for the HomeButton control are shown in Listings 3 and 4.
When the user positions the mouse over the home button and presses the mouse
button, a MouseDown event is generated and the HomeButton_MouseDown() event
procedure is executed. This procedure selects the button-down image. When the
user releases the mouse button, a MouseUp event is generated and the
HomeButton_MouseUp() event procedure is executed. This procedure selects the
button-up image. When the user presses and releases the mouse button over a
control, a Click event is generated. When the HomeButton_Click() event
procedure is exectued, an AXMOVE command is issued to Mx4 causing the servo-
motors to return to their home positions. The procedure must determine whether
to use a positive or a negative velocity to return each axis to its home position.
The procedure selects a positive axis-1 velocity, for example, only if the shaft
must rotate in the positive direction to get to the home position. Low level Mx4
motion commands permit the desired motion for several axes to be specified at
once. All of the motion control procedures in the DLL are single axis. The
BEGIN_RTC() and END_RTC() procedures permit a multi-axis command to be
built up from multiple calls to a single axis motion control porcedure. We did
this with AXMOVE() in HomeButton_Click() to illustrate the technique.

Step-by-Step Application Development

2-22

Sub HomeButton_Click ()

 Dim x_velocity, y_velocity

 'Determine whether a positive or a negative

 'velocity is required to return axis-1 to the

 'home position

 If pos(1) < 0 Then

 x_velocity = MaxJogSpeed

 Else

 x_velocity = -MaxJogSpeed

 End If

 'Determine whether a positive or a negative

 'velocity is required to return axis-2 to the

 'home position

 If pos(2) < 0 Then

 y_velocity = MaxJogSpeed

 Else

 y_velocity = -MaxJogSpeed

 End If

 'Issue an axmove command to Mx4 to get both

 'axes back to the home position

 begin_RTC

 axmove 1, 1.9999, 0, x_velocity

 axmove 2, 1.9999, 0, y_velocity

 end_RTC

End Sub

Listing 2-3: HomeButton_Click() event procedure

Step-by-Step Application Development

Mx4 & Windows v5.0 2-23

Sub HomeButton_MouseDown (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'While mouse button is down display the "Octagon In" picture

 HomeButton.Picture = OctagonIn.Picture

End Sub

Sub HomeButton_MouseUp (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'The user has release the mouse button. Display the "Octagon

Out"

 'picture

 HomeButton.Picture = OctagonOut.Picture

End Sub

Listing 2-4: HomeButton_MouseDown() and HomeButton_MouseUp()
event procedures.

"��	�	�
�!	�����

The shaft positions of the x and y servo-motors are displayed in real-time using
label controls. The controls making up the position display are illustrated in
Figure 2-17. The timer control is configured to generate a Timer event every
100ms. When this event occurs, the Timer1_Timer() event procedure (Listing
2-5) is executed. This procedure updates the Caption properties of the label
controls (Axis1PositionLabel1 and Axis2PositionLabel2) used to display the
shaft positions of the two motors.

Step-by-Step Application Development

2-24

Figure 2-17 Components of the shaft position display

Sub Timer1_Timer ()

 'The timer has expired. Update the axis-1 and axis-2

 'position display

 Axis1PositionLabel1.Caption = pos(1)

 Axis2PositionLabel1.Caption = pos(2)

End Sub

Listing 2-5: The Timer1_Timer() event procedure

�
	�	��	%��	�

This application has only one form. This form is loaded automatically at startup.
When the form is loaded, a Load event is generated and the Form_Load() event
procedure (Listing 2-6) is executed. This procedure is used to initialize Mx4 and
set up the application. The listing is self-explanatory. A number of properties

Step-by-Step Application Development

Mx4 & Windows v5.0 2-25

of the JogSpeedScroll horizontal scroll bar control are initialized using the
MaxJogSpeed constant. The location of the background panel on the form is
computed here as well. This is done to allow the background panel to be in the
center of the screen regardless of the screen's resolution or size.

Sub Form_Load ()

 Screen.MousePointer = 11 'Turn mouse pointer into hourglass

 'Make sure Mx4 is present
 If Left$(signature(), 3) <> "MX4" Then
 MsgBox "Mx4 Not Found"
 End
 End If

 reset_MX4 'reset Mx4

 time_unit 1 'Let time unit be one Mx4 tick (200us)

 'Setup Control Law for Axis-1
 ctrl 1, 100, 5208, 5796, 1432 'Ki,Kp,Kf,Kd
 maxacc 1, 1.9999
 estop_acc 1, 1.9999
 outgain 1, 0
 KiLimit 1, 0

 'Setup Control Law for Axis-2
 ctrl 2, 100, 5208, 5796, 1432 'Ki,Kp,Kf,Kd
 maxacc 2, 1.9999
 estop_acc 2, 1.9999
 outgain 2, 0
 KiLimit 2, 0

 'make sure axis 1 and 2 are stopped
 begin_RTC
 stop_axis 1
 stop_axis 2
 end_RTC

 'Initialize the Jog Speed Control
 JogSpeedScroll.Value = 1 / MaxJogSpeed * 32768
 JogSpeedLabel1.Caption = Format(1, "####0.000")
 JogSpeedScroll.SmallChange = .1 / MaxJogSpeed * 32768
 JogSpeedScroll.LargeChange = 1 / MaxJogSpeed * 32768

Listing 2-6: Form_Load() event procedure

Step-by-Step Application Development

2-26

 'Position the background panel in the

 'center of the window

 Jog.Width = Screen.Width

 Jog.Height = Screen.Height

 Jog.Top = 0

 Jog.Left = 0

 BackgroundPanel.Top = (Jog.ScaleHeight -

BackgroundPanel.Height) / 2

 BackgroundPanel.Left = (Jog.ScaleWidth - BackgroundPanel.Width)

/ 2

 Screen.MousePointer = 0 'Return the mouse pointer to its normal

shape

Listing 2-6 (continued): Form_Load() event procedure.

Mx4 & Windows v5.0 3-1

����������	����
�����
�

���������������

This chapter provides a reference to the most commonly asked questions on how
to use the Mx4 DLL commands in Visual Basic. Detailed information on all of
the functions and commands are located in chapter 4 of this manual, Function
Reference.

����������	

����
��
����������
�����

Before beginning any programming in Visual Basic which utilizes the functions
of the DLL (MX4NT.DLL), the Visual Basic project must have
access to the DLL. This access comes in the way of a special module that must
be incorporated in the user’s project. This module contains a Visual Basic
declaration for each function in the DLL. It also defines a number of useful
constants.

After installing the Mx4 DLL, the root directory of the installation will contain a
file (MX495_VB.TXT or MX4NT_VB.TXT). This file contains the code for
the required Visual Basic module.

To create the module in a Visual Basic project, the .txt file should be copied to
the project directory with the .bas extension. For example, copy
MX495_VB.TXT to the project directory as MX4.BAS. In the Visual Basic
environment, select Add Module from the Project menu. Select Existing, then
select the MX4.BAS module, and Open. The module has been added to the
project and should be visible in the Project Explorer window. Any of the
functions discussed in this manual (see chapter 4, Function Reference) are now
available to the project.

Using Motion Commands In Visual Basic

3-2

�����
������������

One of the primary purposes of the DLL is to allow the Visual Basic
programmer to conveniently issue real time commands to Mx4. One category of
Mx4 commands requires special consideration: mutli-axis commands. Many
motion control commands permit the desired motion for several axes to be
specified at once. Such commands are useful for synchronizing the motion of
two or more axes. All of the motion control functions in the DLL are, however,
single axis. The BEGIN_RTC and END_RTC functions permit a multi-axis command
to be built up from multiple calls to a single axis DLL function. The AXMOVE
function illustrates this. A call to AXMOVE by itself will generate an AXMOVE RTC
for the specified axis. To generate a two-axis AXMOVE RTC two calls to AXMOVE
would be bracketed between calls to BEGIN_RTC and END_RTC as shown below.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

While a multi-axis command is being built up, no commands are issued to Mx4.
An RTC is issued only after the call to the END_RTC function. Keep in mind that
the purpose of the BEGIN_RTC and END_RTC functions is to allow specific
commands to be generated. Their generality is limited. All of the function calls
bracketed by BEGIN_RTC and END_RTC must be of the same type. Not all
commands are multi-axis.

���������������

The state variables actual position [POS], actual velocity [VEL], and following
error [FERR] are available to the programmer for all [Mx4 : 4][Mx4 Octavia : 8]
axes. For example, to display the position, velocity, and following error of axis
6 to label controls lblPos, lblVel, and lblEr,

lblPos.Caption = POS (6)
lblVel.Caption = Format(VEL (6), “####0.000”)
lblErr.Caption = FERR (6)

Note that the velocity display is formatted to include fractional numbers.

 Using Motion Commands In Visual Basic

Mx4 & Windows v5.0 3-3

��������������

The DLL allows DSPL variables to be easily monitored as well as written to
through the functions CHANGE_VAR, MONITOR_VAR, and VAR.

To change the value of DSPL variable VAR82 to 10000.5,

CHANGE_VAR 82, 10000.5

DSPL variables are monitored through a window in the Dual Port RAM which
allows up to 4 variables to be “viewed” at the same time. Reading or monitoring
a variable involves associating the DSPL variable with the specific DPR window
(MONITOR_VAR), and then reading the DPR window (VAR). For example, set
monitor window number 1 to VAR44, set monitor window number 2 to VAR71.
Then read the variable values into temp storage Temp1 and Temp2.

MONITOR_VAR 1, 44
MONITOR_VAR 2, 71
Temp1 = VAR (1)
Temp2 = VAR (2)

After the above code is executed, Temp1 contains the value of VAR44, and
Temp2 contains the value of VAR71.

����������������
���������

With regards to DSPL programming applications, the Visual Basic programmer
may require any or all of the following functionality,

clearing a DSPL program [CLEAR_DSPL]
downloading a DSPL program [DOWNLOAD_DSPL]
setting a DSPL program for autostart execution [AUTOSTART_DSPL]
initiating execution of a DSPL program [START_DSPL]
signaling to a DSPL program from the host [SIGNAL_DSPL]
terminating DSPL program execution [STOP_DSPL]

As an example, download a compiled DSPL program, test (remember, compiling
a DSPL .hll file will create a .lod download file), which is located in the c:\work
directory. Prior to downloading, clear the DSPL storage area. After the
program has been downloaded, enable autostart execution.

Using Motion Commands In Visual Basic

3-4

Dim sFileName As String
sFileName = “c:\work\test.lod”
CLEAR_DSPL
DOWNLOAD_DSPL sFileName
AUTOSTART_DSPL 1

To initiate execution of a downloaded DSPL program,

START_DSPL

Similarly, to signal to a DSPL program waiting at a WAIT_UNTIL_RTC line, or to
terminate execution of a DSPL program,

SIGNAL_DSPL
STOP_DSPL

������� ����������

Not every motion application lends itself to pre-defined position and/or time
units, and for that reason, the DLL allows the Visual Basic programmer to define
both position [POSITION_UNIT] and time [TIME_UNIT] units. The default DLL
position unit is counts, and the default DLL time unit is seconds.

Consider the case of an engraving application which lends itself to units of
inches (where 1 inch is equal to 7390 counts) and milliseconds (msec); that is
position in units of inches, velocity in units of inches/msec, and acceleration in
units of inches/msec2. The following code sets these units for all subsequent
accesses through the DLL,

POSITION_UNIT 7390
TIME_UNIT 1#/1000#

 Using Motion Commands In Visual Basic

Mx4 & Windows v5.0 3-5

!�"����#����"���

The DLL includes functions which allow the user to manipulate Mx4’s digital
I/O. Inputs may be read via the MX4_INPUT function while outputs can be
controlled with the OUTP_ON and OUTP_OFF functions.

For example, if IN19 is on, then turn on OUT4, otherwise turn off OUT20 and
OUT21.

If MX4_INPUT (19) Then
OUTP_ON 4

Else
BEGIN_RTC

OUTP_OFF 20
OUTP_OFF 21

END_RTC
End If

�����
�������$��������

Downloading data tables to Mx4 is an important feature of the DLL for many
applications. Data tables include cam tables [DOWN_CAM], cubic spline tables
[DOWN_CUBIC], position and velocity compensation tables [DOWN_POS and
DOWN_VEL], and DSPL table_p / table_v tables [DOWN_POINTS]. Downloading a
table is fundamentally the same, regardless of the type.

For example, download to Mx4 a cam table consisting of 10 master position,
slave position pairs to the cam table starting at cam index 100. The cam table
camex.dat is located in the c:\work directory.

Dim mdata(10) As Single
Dim sdata(10) As Single
Dim I As Integer
Open “c:\work\camex.dat” For Input As #1
For I = 0 To 9

Input #1, mdata(I)
Input #1, sdata(I)

Next I
DOWN_CAM mdata(0), sdata(0), 10, 100

Using Motion Commands In Visual Basic

3-6

%&'������������	%�	

���

Even with all of the functionality provided by the DLL, the Visual Basic
programmer may want to read from and write directly to the Dual Port RAM.
The R_1BYTE, R_2BYTE, and R_4BYTE functions provide the read access while the
W_1BYTE, W_2BYTE, and W_4BYTE functions provide the write access to the DPR.

As an example of the DPR access functions, consider the application which
requires reading the ADC1 value from the Mx4 (see Acc4, and Mx4 User’s
Guide for information regarding ADC1-4 analog feedback values updated to the
DPR). The application will need to monitor the Mx4 access byte until it is
cleared, set the host DPR access byte for the ADC DPR window, as well as read
the ADC1 value from DPR addresses 502h, 503h.

While (R_1BYTE (&H500) <> 0)
Wend
W_1BYTE &H501, 1
Temp = R_2BYTE (&H502)
W_1BYTE &H501, 0

(����������
�����

When the ISA bus Mx4 controller is used in a system, it (the Dual Port RAM)
resides at a specified bus address, such as 0xD0000. If multiple Mx4 controllers
are used in the same bus address space, it is necessary for the host application to
address each of the Mx4’s at their unique bus address. The DLL functions
CURRENTCARDADDRESS and CHANGECARDADDRESS allow the Visual Basic
programmer to accomplish these tasks.

For example, read back the current card address which the DLL is set to, then
change the address to 0xD8000.

MsgBox “communicating at 0x” & Hex(CURRENTCARDADDRESS)
CHANGECARDADDRESS &HD8000

 Using Motion Commands In Visual Basic

Mx4 & Windows v5.0 3-7

��������������
�����

Rather than across a bus, serial communication to RS-232/RS-485 equipped
Mx4 controllers takes place across a comm port. The comm port setting is made
when the DLL (or Mx4pro) is first installed. To change the comm port setting,
the CHANGECOMMPORTSETTING function is used. For example, to change the comm
port used to communicate with a serial Mx4 to comm port 3,

CHANGECOMMPORTSETTING 3

RS-485 serial communication allows multiple Mx4 controllers to be connected
to the line as different nodes (up to a maximum of 16 nodes per line). If the host
program must communicate with more than one Mx4 per line, the node address
must be changed. To change the serial communication node address to node 10,

CHANGESLAVENODEADDRESS 10

The complete set of serial communication-related functions are listed in chapter
4, Function Reference.

�������(���
�)&��"���

Included with the DLL installation are three complete Visual Basic example
applictions. The examples are located in the VB_Exam folder in the installation
root directory.

��������	

This example demonstrates the operation of two motors in a velocity controlled
mode (VELMODE). The operation is initiated and ended by a Start and a Stop
button. The operating speed for both motors is 5 encoder counts per 200 µs. By
means of this program you will learn how to:

1) Setup servo loops by specifying their gains and maximum
acceleration
2) Specify the time and distance units for speed and other motion
dynamics

Using Motion Commands In Visual Basic

3-8

3) Check for out-of-range parameter errors
4) Operate motors in velocity mode
5) Display the positions, velocities and errors for both motors
6) Use Multi-axis motion commands in Visual Basic.

��������

This example demonstrates the operation of two motors in Jog mode. The speed
for both motors is adjusted by a horizontal slide bar. Motion in each direction is
initiated by depressing an arrow key in a proper direction. Depressing the
middle key brings both motors to their starting positions. Finally, positions of
both axes are numerically displayed. By means of this program, you will learn
how to:

1) Use the slide bar in conjunction with real time change of motion
parameters (e.g. speed)
2) Use the mouse in conjunction with the real time commands.

���������

The third example application allows the user to download a DSPL program, and
start and stop the execution of the program. The application also demonstrates
changing the Mx4 card address for multi-card applications. Axis 1 and axis 2
state variables position, velocity, and error are also displayed to the screen.

Mx4 & Windows v5.0 4-1

�����������	
�
�
��

���������

ALLPOS ...4-15
ALLVEL ...4-16
ALLERR ...4-17
ALLVAR ...4-18
AUTOSTART_DSPL ..4-19
AXMOVE ...4-20
AXMOVE_S ..4-23
AXMOVE_T ..4-25
BEGIN_RTC..4-27
BEGINDLLCRITICALSECTION ..4-28
BTRATE ...4-29
CAM ..4-31
CAM_OFF...4-34
CAM_OFF_ACC ...4-35
CAM_POINT..4-36
CAM_POS...4-38
CAM_PROBE..4-40
CHANGECARDADDRESS...4-43
CHANGECOMMPORTSETTING ...4-44
CHANGESLAVENODEADDRESS...4-45
CHANGE_VAR ...4-46
CLEAR_CUBIC ...4-47
CLEAR_DSPL ...4-48
CLEAR_POINTS...4-49
CLEAR_POS_TABLE ...4-50
CLEAR_VEL_TABLE ...4-51
COMMUNICATIONSLOST ..4-52
CTRL..4-53
CTRL_KA...4-56
CUBIC_INT..4-57

Function Reference

4-2

CUBIC_RATE ...4-59
CUBIC_SCALE ...4-63
CURRENTCARDADDRESS ..4-65
CURR_LIMIT ...4-66
CURR_OFFSET ...4-68
CURR_PID ..4-69
DDAC..4-70
DISABL_INT ...4-72
DISABL2_INT ...4-74
DOWNLOAD_DSPL ..4-76
DOWN_CAM ..4-77
DOWN_CUBIC ...4-78
DOWN_POINTS ...4-79
DOWN_POS ..4-80
DOWN_VEL ..4-81
ENCOD_MAG..4-82
END_RTC...4-84
ENDDLLCRITICALSECTION ...4-85
EN_BUFBRK..4-86
EN_ENCFLT..4-88
EN_ERR ...4-90
EN_ERRHLT..4-92
EN_INDEX ..4-94
EN_MOTCP ..4-96
EN_POSBRK..4-98
EN_PROBE ..4-100
ESTOP_ACC..4-102
FERR..4-104
FLUX_CURRENT...4-105
GEAR..4-107
GEAR_OFF ..4-108
GEAR_OFF_ACC...4-109
GEAR_POS ..4-110
GEAR_PROBE ...4-112
GETCOMMINSTCOUNT ...4-114
GETCOMMTYPE ...4-115
GETCURRENTNODEADDRESS ...4-116
GETNUMBEROFAXES ...4-117
INP_STATE..4-118
INT5MS ...4-119
KILIMIT...4-120

 Function Reference

Mx4 & Windows v5.0 4-3

LOW_PASS (option)...4-122
MAXACC ...4-125
MONITOR_VAR ...4-127
MOTOR_PAR..4-128
MOTOR_TECH ...4-129
MX4_CLEAR..4-130
MX4_INPUT..4-132
MX4_ISTAT..4-133
NOTCH (option) ..4-135
OFFSET ...4-138
OUTGAIN...4-140
OUTP_OFF ..4-142
OUTP_ON...4-143
OVERRIDE ..4-144
PARREAD...4-145
POS ..4-148
POSBRK_OUT ...4-149
POSITION_UNIT ..4-153
POS_PRESET ...4-154
POS_SHIFT..4-155
PWM_FREQ ..4-156
REL_AXMOVE ...4-157
REL_AXMOVE_S...4-158
REL_AXMOVE_T...4-160
REL_AXMOVE_SLAVE ...4-162
RESET_MX4..4-164
RESETCOMMUNICATIONS ..4-165
R_1BYTE...4-166
R_2BYTE...4-167
R_4BYTE...4-168
R_NBYTE...4-169
SIGNAL_DSPL ...4-170
SIGNATURE..4-171
START ...4-172
START_DSPL ...4-174
STEPPER_ON ...4-175
STOP_AXIS..4-176
STOP_DSPL..4-178
SYNC..4-179
TABLE_SEL..4-181

Function Reference

4-4

TIME_UNIT..4-182
TRQ_LIMIT..4-183
VAR ..4-184
VEC ..4-185
VECCHG ...4-186
VEL ..4-188
VELMODE...4-189
VIEWVEC...4-191
VX4_BLOCK..4-192
W_1BYTE...4-193
W_2BYTE...4-194
W_4BYTE...4-195
W_NBYTE...4-196

 Function Reference

Mx4 & Windows v5.0 4-5

����	
���
������

The Mx4 Visual Basic programming function set includes many commands and
programming tools. The functions consist of sixteen major command categories.
Each category extends the power and flexibility of Mx4 in general areas of
motion control.

Contouring Simple Motion

Interrupt
ControlDP RAM

State Variables,

Input/Output

Motor, Power
Sensors & Drive

Control Law &
Initialization

Variables
DSPL

Coordinated

Coordinated
Motion - Gearing

Motion - Cam

Filtering
Optional

Control

Serial
Communication

System
Diagnostic DSPL &

Tables
Multi-Axis

RTCs

Bus
Communication

Fig. 4-1: Function Categories

Function Reference

4-6

���������	
�����
�
	�
�	�
��

Control gains, system parameters, time, position, and velocity units all fall in this
category.

COMMAND DESCRIPTION
CTRL Position, velocity loop control law parameters
CTRL_KA Program an acceleration feed-forward gain
ESTOP_ACC Specify emergency stop maximum acceleration
KILIMIT Integral gain limit
MAXACC Specify maximum acceleration
OFFSET Amplifier offset cancellation
OUTGAIN Position loop output gain
POS_PRESET Preset position counters
POS_SHIFT Position counter reference shift
POSITION_UNIT Specify user-position units
RESET_MX4 Reset Mx4 controller card
SIGNATURE Check Mx4 controller signature
STEPPER_ON Select stepper / servo axes
SYNC Define Mx4 master/slave status
TIME_UNIT Specify user-time units
TRQ_LIMIT Specify a torque limit

�
��������
��

The instructions within this category control the torque, velocity, and position of
one or multiple axes with a trapezoidal profile. The commands in this category
may be classified as open and closed loop.

COMMAND DESCRIPTION
AXMOVE Trapezoidal axis move
AXMOVE_S s-curve axis move
AXMOVE_T Time based axis move
DDAC Direct DAC command (open loop)
REL_AXMOVE Relative position axis move
REL_AXMOVE_S Relative s-curve axis move
REL_AXMOVE_T Time based relative axis move
STOP Stops the motion
VELMODE Velocity mode

 Function Reference

Mx4 & Windows v5.0 4-7

����������������������

These functions are used to control and query the status of the Mx4 discrete
inputs and outputs.

COMMAND DESCRIPTION
INP_STATE Configure logic state of inputs
MX4_INPUT Read status of Mx4 inputs
OUTP_OFF Set status of outputs to low logic level
OUTP_ON Set status of outputs to high logic level
POSBRK_OUT Set outputs after position breakpoint interrupt

��	����	�
	������������

These functions provide Dual Port RAM utilities for reading from and writing to
the Mx4 controller.

COMMAND DESCRIPTION
ALLPOS Read 4 actual position state variables
ALLVEL Read 4 actual velocity state variables
ALLERR Read 4 following error state variables
ALLVAR Read 4 DSPL variables
FERR Read Mx4 following error state variables
POS Read Mx4 actual position state variables
R_1BYTE Read single byte from specified DPR address offset
R_2BYTE Read single word from specified DPR address offset
R_4BYTE Read long word from specified DPR address offset
R_NBYTE Read n bytes from specified DPR address offset
VEL Read Mx4 actual velocity state variable
W_1BYTE Write single byte to specified DPR address offset
W_2BYTE Write single word to specified DPR address offset
W_4BYTE Write long word to specified DPR address offset
W_NBYTE Write n bytes to specified DPR address offset

Function Reference

4-8

������	�
	����

The following functions allow read/write functionality to DSPL variables (VAR1-
VAR128).

COMMAND DESCRIPTION
CHANGE_VAR Write value to specified DSPL variable
MONITOR_VAR Select DSPL variable to be read
VAR Read DSPL variable

��������
	 ����
!

In addition to Mx4’s full diagnostic reporting via the DPR, the host may examine
internal Mx4 parameters and provide debug support with the PARREAD RTC.

COMMAND DESCRIPTION
PARREAD Mx4 system parameter readback

����
"�#
���$��

These functions make it possible for multi-axis commands to be executed
simultaneously from Visual Basic.

COMMAND DESCRIPTION
BEGIN_RTC Begin multi-axis command
END_RTC End multi-axis command

 Function Reference

Mx4 & Windows v5.0 4-9

�������!%���
�	�
��

These functions make it possible to synchronize access to the DLL in a multi-
threaded program.

COMMAND DESCRIPTION
BEGINDLLCRITICALSECTION Acquire mutex lock for DLL
ENDDLLCRITICALSECTION Release mutex lock for DLL

�������$	����

These functions are used to set up and control the execution of a DSPL program
on the Mx4.

COMMAND DESCRIPTION
AUTOSTART_DSPL Start DSPL execution at power-up/reset
CLEAR_DSPL Clear DSPL program from Mx4 memory
CLEAR_POINTS Clear points table
CLEAR_POS_TABLE Clear position compensation table
CLEAR_VEL_TABLE Clear velocity compensation table
DOWNLOAD_DSPL Download compiled DSPL program to Mx4
DOWN_POINTS Download points table
DOWN_POS Download position compensation table
DOWN_VEL Download velocity compensation table
SIGNAL_DSPL Signal the DSPL program
START_DSPL Begin execution of DSPL program
STOP_DSPL Halt DSPL program execution
TABLE_SEL Select compensation table

Function Reference

4-10

�������
�

The Mx4 includes contouring commands for users who need to generate
arbitrary motion profiles. In these applications, a host computer generates
position and velocity data points for a complex contouring path in a periodic
basis. In CNC and robotics applications, motion trajectories may be computed in
real time. These trajectories are transmitted to Mx4 in blocks of
position(/velocity) points. The ring buffer area of Mx4's dual port RAM is the
 storage area for these motion blocks. Mx4 performs high order interpolation on
all these points and executes the trajectory path on a point to point basis.

COMMAND DESCRIPTION
BTRATE Block transfer rate for 2nd order contour
CLEAR_CUBIC Clear cubic data table
CUBIC_INT Start the internal cubic spline table
CUBIC_RATE Set cubic spline point transfer rate
CUBIC_SCALE Scales, shifts position points
DOWN_CUBIC Download cubic data table
OVERRIDE Set feedrate override for LINEAR / CIRCLE
START Start contouring motion
VECCHG Contouring vector change

&���������
!	�
��

These functions allow bus (ISA) communication parameters to be modified.

COMMAND DESCRIPTION
CHANGECARDADDRESS Sets the Mx4 bus address pointer
CURRENTCARDADDRESS Returns the current Mx4 bus address pointer

 Function Reference

Mx4 & Windows v5.0 4-11

���������
������������	�'���
(�
(available with Vx4++ option only)

Mx4 allows the option of an add-on multi-DSP drive control card called Vx4++.
The drive control option performs all of the signal processing functions of servo
amplifier control boards. Vx4++ controls include commutation, current loops,
field current, torque current, current limiting, pulse-width modulation frequency,
etc. This board makes the Mx4 control unit compatible with all power devices,
industrial motors, and a majority of sensors on the market.

COMMAND DESCRIPTION
CURR_LIMIT Current limit setting
CURR_OFFSET Current loop offset adjustment
CURR_PID Program current loop control law parameters
ENCOD_MAG Specify encoder lines, motor poles, comm. option
FLUX_CURRENT Bipolar field flux value
MOTOR_PAR Set the motor parameter
MOTOR_TECH Define the motor technology
PWM_FREQ Set output PWM signal frequency
VEC read Vx4++ VIEWVEC parameter
Vx4_BLOCK Block further instructions to Vx4++
VIEWVEC Specify Vx4++ parameters to view

����'
�	��'����
���"�)�	�
�

Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. In addition to the electronic gearing master-slaving
technique, compensation tables also help users specify their own application
specific "slaving function".

COMMAND DESCRIPTION
GEAR Unconditional 'electronic' gearing
GEAR_OFF Disengage 'electronic' gearing
GEAR_OFF_ACC Turns electronic gearing off and halt slave(s)
GEAR_POS 'electronic' gearing based on position value
GEAR_PROBE 'electronic' gearing based on external interrupt
REL_AXMOVE_SLAVE Superimposes a relative axis move onto a slave engaged in gearing

Function Reference

4-12

����'
�	��'����
���"��	�

Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. A subset of table oriented master/slaving is what is
known as "electronic cam".

COMMAND DESCRIPTION
CAM Turns electronic cam on
CAM_OFF Turns only electronic cam off
CAM_OFF_ACC Turns electronic cam off and halts slave(s)
CAM_POINT Place cam point into cam table
CAM_POS Turns electronic cam on at a specified position
CAM_PROBE Turns electronic cam on after EN_PROBE is set
DOWN_CAM Download cam data points

���
	��������
!	�
��

These functions allow serial (RS-232, RS-485) communication parameters to be
modified.

COMMAND DESCRIPTION
CHANGECOMMPORTSETTING Change comm port setting
CHANGESLAVENODEADDRESS Change Mx4 slave node address
COMMUNICATIONSLOST Check for communication lost
GETCOMMINSTCOUNT Return number of DLL instances connected
GETCOMMTYPE Return comm type
GETCURRENTNODEADDRESS Return current Mx4 slave node address
RESETCOMMUNICATIONS Reset serial communications

 Function Reference

Mx4 & Windows v5.0 4-13

�����������������

The Mx4 DSPL includes a comprehensive set of instructions to handle
interrupts. There are many system conditions that require the host's and/or DSPL
program's immediate attention for an executive (or system-level) decision. Some
interrupts will be issued concurrently requiring immediate action by the Mx4.
The complete set of interrupts provided by Mx4 facilitates data reporting to the
host for issues of system-level significance.

COMMAND DESCRIPTION
DISABL_INT Disable the interrupts
DISABL2_INT Disable the interrupts
EN_BUFBRK Contouring buffer breakpoint interrupt enable
EN_ENCFLT Encoder fault interrupt
EN_ERR Following error interrupt enable
EN_ERRHLT Following error / halt interrupt enable
EN_INDEX Index pulse interrupt enable
EN_MOTCP Motion complete interrupt enable
EN_POSBRK Position breakpoint interrupt enable
EN_PROBE General purpose ext probe interrupt enable
INT5MS 5msec sampling interrupt
MX4_CLEAR Clear interrupt conditions
MX4_ISTAT Test for interrupt conditions

*
����
� �+���
��	�,

COMMAND DESCRIPTION
LOW_PASS Implement low pass filter at controller output
NOTCH Implement notch filter at controller output

Function Reference

4-14

����	
����
�	
��
The function reference is listed with syntax and data types specific to Visual
Basic. The command listing follows this format:

FUNCTION indicates the command function

SYNTAX proper command syntax

ARGUMENTS command arguments (if any) are defined

DESCRIPTION explanation of command operation, functionality

SEE ALSO listing of related commands

APPLICATION some helpful suggestions as to for which applications a
command may be useful

EXAMPLE an example illustrating the command in use

 Function Reference

Mx4 & Windows v5.0 4-15

ALLPOS

FUNCTION Read four state variables at one time

SYNTAX ALLPOS flag, pos1, pos2, pos3, pos4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

flag int value selecting which set of axis will be read

flag = 1 reads axis 1-4
flag = 2 reads axis 5-8

state1 double return values of positions for axis set
state2
state3
state4

DESCRIPTION

The function reads a set of four positions at a time. The first argument
selects the set to be read. The remaining arguments are passed by
reference, and the position values are returned in ascending order.

SEE ALSO ALLVEL, ALLERR, ALLVAR

EXAMPLE

Read axis 1-4.

ALLPOS 0, Axis1, Axis2, Axis3, Axis4

Function Reference

4-16

ALLVEL

FUNCTION Read four state variables at one time

SYNTAX ALLVEL flag, vel1, vel2, vel3, vel4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

flag int value selecting which set of axis will be read

flag = 1 reads axis 1-4
flag = 2 reads axis 5-8

state1 double return values of velocity for axis set
state2
state3
state4

DESCRIPTION

The function reads a set of four velocities at a time. The first argument
selects the set to be read. The remaining arguments are passed by
reference, and the position values are returned in ascending order.

SEE ALSO ALLPOS, ALLERR, ALLVAR

EXAMPLE

Read axis 1-4.

ALLVEL 0, Axis1, Axis2, Axis3, Axis4

 Function Reference

Mx4 & Windows v5.0 4-17

ALLERR

FUNCTION Read four state variables at one time

SYNTAX ALLERR flag, pos1, pos2, pos3, pos4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

flag int value selecting which set of axis will be read

flag = 1 reads axis 1-4
flag = 2 reads axis 5-8

state1 double return values of errors for axis set
state2
state3
state4

DESCRIPTION

The function reads a set of four errors at a time. The first argument
selects the set to be read. The remaining arguments are passed by
reference, and the position values are returned in ascending order.

SEE ALSO ALLPOS, ALLVEL, ALLVAR

EXAMPLE

Read axis 1-4.

ALLPOS 0, Axis1, Axis2, Axis3, Axis4

Function Reference

4-18

ALLVAR

FUNCTION Read four state variables at one time

SYNTAX ALLVAR var1, var2, var3, var4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

var1 double return values of variables
var2
var3
var4

DESCRIPTION

The function reads the set of four DSPL variables at the same time. The
DSPL variables to be read are selected by the monitor_var function.

SEE ALSO ALLPOS, ALLVEL, ALLERR, MONITOR_VAR

EXAMPLE

Read monitored variables

ALLVAR VAR1, VAR2, VAR3, VAR4

 Function Reference

Mx4 & Windows v5.0 4-19

AUTOSTART_DSPL

FUNCTION Start DSPL Execution at Power-Up/Reset

SYNTAX AUTOSTART_DSPL flag

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Flag long value flag enabling or disabling the autostart option

Flag = 0 autostart is disabled
Flag = 1 autostart is enabled

DESCRIPTION

The DSPL autostart feature requires an Mx4 controller with the
optional battery-backup memory. The autostart feature allows Mx4 to
begin DSPL program execution immediately after power-up. A DSPL
program must have previously been loaded into Mx4’s battery-backup
memory before the AUTOSTART_DSPL command is used. Once an
AUTOSTART_DSPL command has been executed by Mx4, Mx4 will
remain in the specified (enable / disable) autostart state until it executes
another AUTOSTART_DSPL command; even after power-down. The Mx4
(with the battery-backup memory option) is shipped from the factory
with the autostart feature disabled.

SEE ALSO CLEAR_DSPL, DOWNLOAD_DSPL, SIGNAL_DSPL, START_DSPL,
STOP_DSPL

EXAMPLE

Enable the DSPL autostart option.

AUTOSTART_DSPL (1)

Function Reference

4-20

 AXMOVE

FUNCTION Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE axis, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

vel positive double precision target velocity

0 ≤ velx ≤ 255.99998 counts/200µs

DESCRIPTION

The AXMOVE command allows for trapezoidal command generation with
specified endpoint position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves.

SEE ALSO AXMOVE_S, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

 Function Reference

Mx4 & Windows v5.0 4-21

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time
there is a need for a linear move from point A to point B in a multi-
dimensional space. To name a few applications: pick and place robots
(e.g., in component insertion), rapid traverse (e.g., in machining), and
master/slaving (e.g., in paper processing and packaging) applications.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gain values
KILIMIT ()

AXMOVE () ;run system in axis move (linear trapezoidal) mode
:
EN_MOTCP () ;enable motion complete

;upon the completion of this (command) trajectory
;Mx4 generates motion complete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567 and axis 2 to the target position
of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200µs for axis 1
and 3.50 counts/200µs for axis 2, and an acceleration of 0.005
counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.0
AXMOVE 2, 0.005, -3000, 3.5

END_RTC

Function Reference

4-22

AXMOVE cont.

EXAMPLE 2

The user can issue a new axis move command before the motion of the
previous AXMOVE command is completed. For example, assume the
AXMOVE command of Example 1 is executed. Now, the DSPL Motion
program 'decides' to stop axis two at a new target position of -50000
counts with a new slew rate of 8.0 counts/200µs and a new acceleration
of 0.035 counts/(200µs)2. While the AXMOVE of Example 1 is in
progress, the DSPL Motion program issues the new command.

AXMOVE 2, 0.035, -50000, 8.0

 Function Reference

Mx4 & Windows v5.0 4-23

AXMOVE_S

FUNCTION S-Curve Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE_S axis, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

vel positive double precision target velocity

0 ≤ velx ≤ 255.99998 counts/200µs

DESCRIPTION

The AXMOVE_S command allows for s-curve command generation with
specified endpoint position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves where s-curve
acceleration is desired.

Function Reference

4-24

AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the AXMOVE_S
along with the linear velocity ramp of the AXMOVE command. With
AXMOVE_S, the acceleration will reach a value of 2*accx for a
maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 200000 counts and axis 2 to the target
position of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200 µs for axis 1
and 2.0 counts/200 µs for axis 2. Use an acceleration reference of 0.05
counts/(200 µs)2 for both axes.

BEGIN_DSPL
AXMOVE_S 1, 0.05, 200000, 4.0
AXMOVE_S 2, 0.05, -3000, 2.0

END_RTC

 Function Reference

Mx4 & Windows v5.0 4-25

AXMOVE_T

FUNCTION Time-Based Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE_T axis, acc, pos, tm

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

tm positive double precision motion time

0 ≤ tmx ≤ 5000000 (200µs)

DESCRIPTION

The AXMOVE_T commands allow for trapezoidal command generation
with specified endpoint position, acceleration, and time to complete the
move for each axis. This command is suitable for linear moves where
endpoint position and motion time are the specifying parameters.

Function Reference

4-26

AXMOVE_T cont.

The AXMOVE_T command is similar to AXMOVE, with the exception
that the velocity argument is replaced with a time argument.
AXMOVE_T will automatically calculate a suitable slew rate velocity to
achieve the programmed endpoint position in the programmed amount
of time, following a trapezoidal velocity profile (similar to AXMOVE).

SEE ALSO AXMOVE, AXMOVE_S, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE

Move axis 1 to the target position of 10000 counts and axis 3 to the
target position of 3599 counts. Let's assume that we want this move to
be accomplished with the acceleration reference of 0.56 counts/(200
µs)2 and a time of 50msec (250*200µsec) for both axes.

BEGIN_RTC
AXMOVE_T 1, 0.56, 10000, 250
AXMOVE_T 3, 0.56, 3599, 250

END_RTC

 Function Reference

Mx4 & Windows v5.0 4-27

BEGIN_RTC

FUNCTION Begin Multi-Axis Command

SYNTAX BEGIN_RTC

ARGUMENTS

None

DESCRIPTION

A number of RTCs have a large and variable number of arguments.
These are mostly motion control RTCs which permit the desired motion
for several axes to be specified at once. All of the motion control
functions in the DLL are single axis. The BEGIN_RTC and END_RTC
functions permit a multi-axis RTC to be built-up from multiple calls to
a the single axis RTC function. The AXMOVE function illustrates this. A
call to AXMOVE by itself will generate an AXMOVE RTC for the specified
axis. To generate a two-axis AXMOVE RTC, two calls to AXMOVE would be
bracketed between calls to BEGIN_RTC and END_RTC.

SEE ALSO END_RTC

APPLICATION

Multi-axis commands are needed when the trajectories of two or more
axes must be synchronized.

EXAMPLE

This example illustrates how BEGIN_RTC and END_RTC can be used to
issue a two axis AXMOVE command to Mx4. Assuming current positions
of zero for axes 1 and 2, we want to move axis 1 to the target position
of 234567 and axis 2 to the target position of -3000 counts. Let's also
assume that we want this move to be accomplished with the slew rate
velocity of 4.0 counts/200µs for axis 1 and -3.50 counts/200µs for axis
2, and an acceleration of 0.005 counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

Function Reference

4-28

BEGINDLLCRITICALSECTION

FUNCTION Begin critical section

SYNTAX long timeout

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

timeout long value that specifies the time in milliseconds to wait
for access to the DLL

DESCRIPTION

This command gets a mutex lock for exclusive access to the DLL. The
command should be used when multiple threads are accessing the
DLL, and it should be used before every function call to the DLL. The
function ENDDLLCRITICAL SECTION releases the mutex lock.

SEE ALSO ENDDLLCTIRCALSECTION

APPLICATION

The function is used in multithreaded applications to provide
synchronization for DLL access and maintain a consistent state in the
DLL. The return value will indicate if it has successfully acquired the
mutex lock.

EXAMPLE

var1 = BEGINDLLCRITICALSECTION(100)
if var1 == ERR_OK then
BEGIN_RTC

AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC
ENDDLLCRITICALSECTION
Endif

 Function Reference

Mx4 & Windows v5.0 4-29

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate

SYNTAX BTRATE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value selects the block transfer rate for all of the
axes.

m=0 block transfer rate is 5 ms per point
m=1 block transfer rate is 10 ms per point
m=2 block transfer rate is 15 ms per point
m=3 block transfer rate is 20 ms per point

DESCRIPTION

This command sets the 2nd order contouring block transfer rate for the
system. For example, if the block transfer rate is set at 10 ms, the time
interval between each point in the ring buffer is '10 ms' (e.g., the DSP
will interpolate each point for 10 ms).

Note 1: The host should not adjust the block transfer rate when
contouring is in process.

Note 2: The default block transfer rate is set at 5 ms per point.

SEE ALSO CUBIC_RATE

Function Reference

4-30

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly,
slower CPUs are capable of breaking down geometries to position and
velocity points that are widely spaced in time. This instruction makes
the time interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15, or 20 ms), Mx4 will
internally perform a high-order interpolation of the points breaking
them down to 200 µs.

Command Sequence Example
See EN_BUFBRK

EXAMPLE

Set a contouring interpolation interval of 10 ms.

BTRATE 1

 Function Reference

Mx4 & Windows v5.0 4-31

CAM

FUNCTION Engage Electronic Cam

SYNTAX CAM n, m, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
tablestart long value specifies cam table start index

0 <= tablestart <= 1600

tablesize long value specifies cam table size

3 <= tablesize <= 1600

DESCRIPTION

The commands which make up the electronic cam feature are CAM, CAM_OFF,
CAM_OFF_ACC, CAM_POINT, CAM_POS, and CAM_PROBE. DSPL keywords
[CAMCOUNT1-8, Mx4 Octavia] [CAMCOUNT1-4, Mx4].

The Mx4 controller is capable of storing up to 1600 cam points. Each cam point
consists of a master relative position, and an associated slave relative position.
A cam table can be between 3 and 1600 cam points long, and the user may
define any number of cam tables in the 1600-point cam table capacity. Cam
commands utilize tablestart and tablesize arguments to specify which ‘portion’ of
the 1600-point cam table region to ‘run’ on.

Cam table points may be downloaded in file format from within Mx4pro or built
from within DSPL using the CAM_POINT command. The CAM_POINT command
may also be used to modify cam points ‘on the fly.’ The

Function Reference

4-32

CAM cont.

DSPL identifiers CAMCOUNT1,2,3,etc. indicate at which cam table indices the
slave axes(es) are ‘at’ (CAMCOUNT1 is for axis 1, etc.).

The cam points consist of relative position values for master and slave. The first
cam point in a table must be 0, 0. The last point in a cam table is the cycle
length for master and slave. For example, if the full cam cycle for a master axis
is 5000 counts and the slave would travel -1024 counts in that cycle, the last cam
point in that cam table would be 5000, -1024. Note that the master/slave
position ratios can not exceed the range [-256 to 255,999]. Also, the minimum
ratio is +/- 1/128. For example, for 1000 counts of the master axis, the slave
axis(es) can not have more than -256000 counts in the negative direction or
255999 counts in the positive direction.

The slave axes utilize the MAXACC acceleration value as the maximum
acceleration the slave axis can reach while following the electronic cam
trajectory, and therefore must be programmed before cam operation. This
command turns on the mechanical cam function for the selected master and
slave(s). The slave(s) follow the master according to the master/slave position
pairs stored in the cam table. The slave axes(es) utilize MAXACC as the maximum
acceleration they can achieve in following the master trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,
MAXACC, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

 Function Reference

Mx4 & Windows v5.0 4-33

CAM cont.

EXAMPLE

Set axis 1 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25 point cam table beginning at index 100.

BEGIN_RTC
CAM 1, 2, 0, 10
CAM 1, 3, 100, 25

END_RTC

Function Reference

4-34

CAM_OFF

FUNCTION Turns Off, Disengages Cam Slave Axis(es)

SYNTAX CAM_OFF n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to be disengaged

DESCRIPTION

This command disengages the system that was under master slave
control.

SEE ALSO CAM, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,
SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Immediately disengage slave axes 3 and 4 from the master axis.

BEGIN_RTC
CAM_OFF 3
CAM_OFF 4

END_RTC

 Function Reference

Mx4 & Windows v5.0 4-35

CAM_OFF_ACC

FUNCTION Turns Off, Disengages Cam Slave Axis(es) With Acceleration

SYNTAX CAM_OFF_ACC n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to be disengaged

DESCRIPTION

This command disengages the system that was under master/slave
control. The slave axis(es) will come to a stop at the maximum
acceleration rate programmed by MAXACC.

SEE ALSO CAM, CAM_OFF, CAM_POINT, CAM_POS, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Disengage with acceleration profile slave axes 3 and 4 from the master
axis.

BEGIN_RTC
CAM_OFF_ACC 3
CAM_OFF_ACC 4

END_RTC

Function Reference

4-36

CAM_POINT

FUNCTION Place Cam Point Into Cam Table

SYNTAX CAM_POINT tablestart, tablesize, index, masterpos,
slavepos

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

tablestart long value specifies cam table start index

0 <= tablestart <= 1600

tablesize long value specifies cam table size

3 <= tablesize <= 1600

index long value specifies index at which to place the cam point

0 <= index <= (tablesize-1)

masterpos long value cam point master axis relative position
slavepos long value cam point slave axis relative position

DESCRIPTION

The CAM_POINT allows the user to either build entire cam tables from
within the DSPL environment or alternatively, edit cam table points
(i.e.: change cam points ‘on the fly’). Cam table points consist of
master, slave position pairs, and cam tables can be anywhere from 3 to
1600 cam points long. The first point of a cam table (index = 0) must
be 0,0. The last point of a cam table (index = tablesize-1) is
mastercyclelength, slavecyclelength; where the cycle lengths for the
master and slave are the relative cam cycle lengths (i.e.: master cycle
length is 4096 counts, the slave cycle length is 1024 counts, for a full
cycle ratio of 4:1). Cam master/slave position ratios can not exceed the
range [-256 to 255,999]. Also, the minimum ratio is +/- 1/128.

 Function Reference

Mx4 & Windows v5.0 4-37

CAM_POINT cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, SYNC

APPLICATION

See Application Notes.

EXAMPLE

A 10-point cam table exists at table start index 500. Replace the 3rd
point of the table with the master, slave point 1000, 3000.

CAM_POINT 500, 10, 2, 1000, 3000

Function Reference

4-38

CAM_POS

FUNCTION Turns Electronic Cam On at a Specified Position

SYNTAX CAM_POS n, m, masterpos, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
masterpos double precision value specifying the master position

value for slave axis x that the electronics cam engages
tablestart long value specifies cam table start index for slave

0 <= tablestart <= 1600

tablesize long value specifies cam table size for slave

3 <= tablesize <= 1600

DESCRIPTION

This command engages at the specified master position the mechanical
cam function for the selected master and slave(s). The slave(s) follows
the master according to the master/slave position pairs stored in the cam
table. The slave axis(es) utilizes MAXACC as the maximum acceleration it
can achieve in following the master trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

 Function Reference

Mx4 & Windows v5.0 4-39

CAM_POS cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Set axis 4 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25-point cam table beginning at index 100. Axis 2
slave should engage when the master axis is at position 1000, and axis 3
slave should engage when the master axis is at position 4096.

BEGIN_DSPL
CAM_POS 8, 2, 1000, 0, 10
CAM_POS 8, 3 ,4096, 100, 25

END_RTC

Function Reference

4-40

CAM_PROBE

FUNCTION Turns Electronic Cam On After Probe Input

SYNTAX CAM_PROBE n, m, q, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
q long value specifies the *EXTx probe interrupt to be used

[Mx4]
q=1 : *EXT1
q=2 : *EXT2

[Mx4 Octavia]
q=1 : *EXT1
q=2 : *EXT2
q=4 : *EXT3
q=8 : *EXT4

tablestart long value specifies cam table start index for slave

0 <= tablestart <= 1600

tablesize long value specifies cam table size for slave

3 <= tablesize <= 1600

 Function Reference

Mx4 & Windows v5.0 4-41

CAM_PROBE cont.

DESCRIPTION

This command engages at the occurrence of the specified external
interrupt (*EXT1,2,3,4) the mechanical cam function for the
selected master and slave(s). The slave(s) follow the master according
to the master/slave position pairs stored in the cam table. The slave
axis(es) utilizes MAXACC as the maximum acceleration they can achieve
in following the master trajectory.

Note: Execution of the CAM_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe input (*EXT1,
*EXT2, *EXT3, or *EXT4) activation does not generate an
interrupt with the CAM_PROBE command.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

Function Reference

4-42

CAM_PROBE cont.

EXAMPLE

Set axis 2 as the master axis, axes 1 and 3 as slaves. The axis 1 slave
will use the 100-point cam table beginning at index 0, while the axis 3
slave will use the 250-point cam table beginning at index 220. Engage
slave axes in cam at occurrence of *EXT2 interrupt.

BEGIN_RTC
CAM_PROBE 2, 1, 2, 0, 100
CAM_PROBE 2, 3, 2, 220, 250

END_RTC

 Function Reference

Mx4 & Windows v5.0 4-43

CHANGECARDADDRESS

FUNCTION Change Mx4 Bus Address

SYNTAX CHANGECARDADDRESS address

If used as a function, the function will return (long) the previous
address if successful, zero if error.

ARGUMENTS

address long value specifying new card address

DESCRIPTION

This function is used to change the pointer to the Mx4 card residing on
the ISA bus.

SEE ALSO CURRENTCARDADDRESS

EXAMPLE

The Mx4 card has jumper settings placing it at address 0xd0000 on the
ISA bus. Set the Visual Basic programming pointer to this address.

CHANGECARDADDRESS &HD0000

Function Reference

4-44

CHANGECOMMPORTSETTING

FUNCTION Change Serial Communication Comm Port Setting

SYNTAX CHANGECOMMPORTSETTING port

If used as a function, the function will return (byte) the previous comm
port setting.

ARGUMENTS

port byte value specifying new comm port

DESCRIPTION

This function is used to change the comm port which is used to
communicate serially to the Mx4 card.

SEE ALSO CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Set the comm port to communicate to Mx4 through the comm2 port.

CHANGECOMMPORTSETTING 2

 Function Reference

Mx4 & Windows v5.0 4-45

CHANGESLAVENODEADDRESS

FUNCTION Change Serial Communication Node Address

SYNTAX CHANGESLAVENODEADDRESS node

If used as a function, the function will return (byte) the previous slave
node address.

ARGUMENTS

node byte value specifying new node address

DESCRIPTION

This function is used to change the serial communication slave node
address of the Mx4 card desired.

SEE ALSO CHANGECOMMPORTSETTING, COMMUNICATIONSLOST,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Set the serial communication slave node address to 4.

CHANGESLAVENODEADDRESS 4

Function Reference

4-46

CHANGE_VAR

FUNCTION Change DSPL variable Value

SYNTAX CHANGE_VAR var, value

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Var long value specifying DSPL variable (1-128) to modify
Value double precision value for specified variable

DESCRIPTION

DSPL variable values may be changed in real time via the CHANGE_VAR
function.

SEE ALSO MONITOR_VAR, VAR

EXAMPLE

Set DSPL VAR67 equal to 1000.123.

CHANGE_VAR 67, 1000.123

Function Reference

Mx4 & Windows v5.0 4-47

CLEAR_CUBIC

FUNCTION Clear Internal Cubic Spline Data Table

SYNTAX CLEAR_CUBIC

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function issues a CLEAR_CUBIC RTC. This command clears the
Mx4 internal cubic spline data storage area.

SEE ALSO CUBIC_INT, DOWN_CUBIC

EXAMPLE

Clear the Mx4 cubic spline data table storage area.

CLEAR_CUBIC

Function Reference

4-48

CLEAR_DSPL

FUNCTION Clear DSPL Program

SYNTAX CLEAR_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function clears the Mx4 DSPL program storage area.

SEE ALSO DOWNLOAD_DSPL

EXAMPLE

Clear the Mx4 DSPL program storage area.

CLEAR_DSPL

Function Reference

Mx4 & Windows v5.0 4-49

CLEAR_POINTS

FUNCTION Clear DSPL Table_p / Table_v data storage area

SYNTAX CLEAR_POINTS

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function clears the Mx4 DSPL table_p / table_v data storage area.

SEE ALSO DOWN_POINTS

EXAMPLE

Clear the Mx4 DSPL table_p / table_v storage area.

CLEAR_POINTS

Function Reference

4-50

CLEAR_POS_TABLE

FUNCTION Clear Specified Position Compensation Table

SYNTAX CLEAR_POS_TABLE table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Table long value specifying position compensation table to clear
(1-4, Mx4; 1-8, Mx4 Octavia)

DESCRIPTION

This function clears the position compensation table for the specified
axis.

SEE ALSO DOWN_POS

EXAMPLE

Clear the axis 3 position compensation table.

CLEAR_POS 3

Function Reference

Mx4 & Windows v5.0 4-51

CLEAR_VEL_TABLE

FUNCTION Clear Specified Velocity Compensation Table

SYNTAX CLEAR_VEL_TABLE table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Table long value specifying velocity compensation table to clear
(1-4, Mx4; 1-8, Mx4 Octavia)

DESCRIPTION

This function clears the velocity compensation table for the specified
axis.

SEE ALSO DOWN_VEL

EXAMPLE

Clear the axis 4 velocity compensation table.

CLEAR_VEL 4

Function Reference

4-52

COMMUNICATIONSLOST

FUNCTION Check For Lost Serial Communication

SYNTAX COMMUNICATIONSLOST ()

ARGUMENTS

none

DESCRIPTION

This function checks if the serial communication between host and
Mx4 has been lost. The function returns long value 1 if
communication is lost, 0 otherwise.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Check for lost serial communication.

IF (COMMUNICATIONSLOST () = 1) THEN

Function Reference

Mx4 & Windows v5.0 4-53

CTRL

FUNCTION Control Law Parameters

SYNTAX CTRL n, par1, par2, par3, par4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
par1 long unsigned value for Ki gain
par2 long unsigned value for Kp gain
par3 long unsigned value for Kf gain
par4 long unsigned value for Kd gain

0 ≤ parx ≤ 32767

DESCRIPTION

This command performs a state feedback control algorithm combined
with a modified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide a robust control, which is smooth and stable over a wide range
of servo operation. In addition, this algorithm performs a modified PID
with the saturation threshold set for integral action. A common PID
includes two zeros and one pole, which may not be suitable for systems
with noisy feedback. Also, the integral part of a common PID
algorithm may saturate the registers creating overshoots or other forms
of instability. A modified PID includes a second pole to solve the latter
problem and a programmable integral limit to solve the former one.

In the modified PID algorithm; par1, par2, par3, and par4 are values
representing the integral, proportional, velocity state feed forward, and
differential gains, respectively.

Function Reference

4-54

CTRL cont.

Scaling Factors
The DSP uses an internal scaling factor for each gain. These factors
have been optimally selected for worst case numerical conditions.
These factors are:

GAIN SCALING FACTOR VALUE
Kf 1.525E-08 v/(c/s)

Kp 0.595E-06 v/c

Ki 3.308E-05 (v/s)/c

Kd 1.9875E-08 v/(c/s)

Output Loop Gain integer NA

v = volts, c = encoder edge counts, s = seconds

For example,

100 counts of position error and Kp of 1000 (other gains are zero) will
result in an output voltage of 59.5 millivolts.

 i.e. 100 × 1000 × 0.595E-06 = 59.5

V

K
K

P

n

d
i

n
_

+ +

+

+ +

_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

to DAC

K Limiti

Output
Loop Gain

Block Diagram of Control Law

SEE ALSO CTRL_KA, KILIMIT, OFFSET, OUTGAIN

Function Reference

Mx4 & Windows v5.0 4-55

CTRL cont.

APPLICATION

This command is used in all position/velocity control tuning
applications. For more information on the effectiveness of each gain on
system dynamic response, please refer to the Mx4Pro: Tuning Expert
manual. This manual will help you understand the significance of gains
in tuning. Please read this even if you cannot run Mx4Pro on your
machine because it lacks the DOS operating system.

Command Sequence Example
See AXMOVE and VELMODE

EXAMPLE

Set the following modified PID gain values for axes 2 and 4:

Ki = 100
Kp = 4000
Kf = 3000
Kd = 2500

Ki = 20
Kp = 8000
Kf = 5500
Kd = 7000

BEGIN_RTC
CTRL 2, 100, 4000, 3000, 2500
CTRL 4, 20, 8000, 5500, 7000

END_RTC

Function Reference

4-56

CTRL_KA

FUNCTION Acceleration Feedforward Control Law Parameter

SYNTAX CTRL_KA n, ka

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
ka long unsigned value for Ka gain

0 <= ka <= 32767

DESCRIPTION

The CTRL_KA command allows the user to program an acceleration
feedforward gain for the specified axis.

SEE ALSO CTRL, KILIMIT, OFFSET, OUTGAIN

EXAMPLE

Program a Ka of 5000 for both axes 1 and 3.

BEGIN_RTC
CTRL_KA 1, 5000
CTRL_KA 3, 5000

END_RTC

Function Reference

Mx4 & Windows v5.0 4-57

CUBIC_INT

FUNCTION Start the Internal Cubic Spline Contouring Execution

SYNTAX CUBIC_INT m, si, n, ax

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifies the number of points in the cubic
spline table to run. Each point is characterized by the
position for only one motor. The maximum number of
points is 4,096.

si long value specifies the starting index in the table

n long value specifies the number of times m points of a
spline table will be looped over

n ≤ 32767

ax long value bit codes the axes involved

Note: n = 0 means run the specified number of points infinite
number of times.

Function Reference

4-58

CUBIC_INT cont.

DESCRIPTION

This command starts execution of the points stored in the cubic spline
table immediately. The command sequence for this instruction is as
follows:

1) CUBIC_RATE
2) CUBIC_SCALE ;if necessary
3) CUBIC_INT

We assume that user has already downloaded the table points to the
cubic spline table location.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not a
CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL program
flow will proceed to that command immediately after the CUBIC_INT
command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_RATE, CUBIC_SCALE, DOWN_CUBIC

APPLICATION

Refer to Cubic Spline

EXAMPLE

Execute internal cubic spline contouring starting at index 100, 50
points, axes 2 and 3, repeating 5 times.

CUBIC_INT 50, 100, 5, &H6

Function Reference

Mx4 & Windows v5.0 4-59

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate

SYNTAX CUBIC_RATE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS
m long value parameter coding the value for cubic spline

transfer rate. "m" codes the time interval between the
adjacent position points. Its value ranges between 5 and
511 and when divided by 5, it represents the interval in
ms. For example, m=5 represents the time interval of 1
ms and m=25 is a 5 ms interval.

DESCRIPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent position points in
the cubic spline table. The two adjacent points can be spaced
anywhere between 1.0 to 102.4 ms. Mx4's cubic spline interpolates
between the two adjacent points at 200 µs increments. This means for
example, Mx4 inter-polates 500 points between two adjacent points
100 ms apart.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not a
CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL program
flow will proceed to that command immediately after the CUBIC_INT
command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_SCALE, DOWN_CUBIC

Function Reference

4-60

CUBIC_RATE cont.

APPLICATION

Refer to Cubic Spline Application Notes.

EXAMPLE

Using cubic spline interpolation creates 16, 32, 64, and 128-point
circles.

The following shows the position values for 16 uniformly spaced
points on a circle.

16-point Circle

Point pos_x
x1 2500

x2 2310

: :

x16 2310

Point pos_y
x1 0

x2 957

: :

x16 -957

To generate a circle, these points must be written to the Mx4's memory
and CUBIC_RATE must be executed. The CUBIC_RATE argument
determines the interval between two points in the memory. For
comparison, the following figures illustrate the circles created by 16,
32, 64, and 128 points in a cubic spline interpolation. It takes 1.28
seconds to complete these circles.

Function Reference

Mx4 & Windows v5.0 4-61

CUBIC_RATE cont.

16 points; CUBIC_RATE 400; 80ms time space between adjustment points

32 points; CUBIC_RATE 200; 40ms time space between adjustment points

Function Reference

4-62

CUBIC_RATE cont.

64 points; CUBIC_RATE 100; 20ms time space between adjustment points

128 points; CUBIC_RATE 50; 10ms time space between adjustment points

Function Reference

Mx4 & Windows v5.0 4-63

CUBIC_SCALE

FUNCTION Scales/Shift Position Points

SYNTAX CUBIC_SCALE n, pos_mult, pos_shift

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

pos_mult single precision value position scaling multiplier

-2 ≤ pos_mult < 2

pos_shift double precision value position shift. This value transfers
the position to a new origin.

DESCRIPTION

This command scales those table points involved in a cubic spline
operation. This command also shifts the positions involved by a user-
defined position shift value.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not a
CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBIC_INT command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, DOWN_CUBIC

APPLICATION

See Cubic Spline Application Notes

Function Reference

4-64

CUBIC_SCALE cont.

EXAMPLE

Scale the cubic spline data for axis 5 by a factor of x0.5.

CUBIC_SCALE 5, 0.5, 0

Function Reference

Mx4 & Windows v5.0 4-65

CURRENTCARDADDRESS

FUNCTION Get Current Mx4 Bus Address

SYNTAX CURRENTCARDADDRESS ()

ARGUMENTS

none

DESCRIPTION

This function returns the long value of the pointer to the Mx4 card
residing on the ISA bus.

SEE ALSO CHANGECARDADDRESS

EXAMPLE

Read the current Mx4 card address into the Visual Basic variable
“ADDR”.

ADDR = CURRENTCARDADDRESS ()

Function Reference

4-66

CURR_LIMIT Vx4++ option command

FUNCTION Set Output Drive Current Limit

SYNTAX CURR_LIMIT n, clmt

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
clmt single precision value specifying the current limit

percentage

0 ≤ clmt ≤ 100(%)

DESCRIPTION

This command sets the current limit for the axes specified. The current
limit is defined as a percentage of the maximum desired current (which
in turn is defined by the current feedback mechanism). In the case that
the current in any phase of a specified axis exceeds the set value, the
PWM signals for that axis will turn off for at least one full period and
turn on only if the sensed current is reduced below the current limit.

Note: Mx4 with Vx4++ will not execute the CURR_LIMIT command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

Function Reference

Mx4 & Windows v5.0 4-67

CURR_LIMIT cont. Vx4++ option command

EXAMPLE

For current feedback designed for full scale at 10 amps, set current
limits of 3 and 4 amps for axes one and two, respectively.

(3/10) * 100% = 30% (4/10) * 100% = 40%

BEGIN_RTC
CURR_LIMIT 1, 30.0
CURR_LIMIT 2, 40.0

END_RTC

Function Reference

4-68

CURR_OFFSET Vx4++ option command

FUNCTION Compensate Current Feedback Offset

SYNTAX CURR_OFFSET n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val long value, offset

-32768 ≤ val ≤ 32767

DESCRIPTION

The CURR_OFFSET command allows the user to compensate for any
offset generated by the current feedback path.

Note: Mx4 with Vx4++ will not execute the CURR_OFFSET command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Program an offset compensation value of 2500 for axis one

CURR_OFFSET 1, 2500

Function Reference

Mx4 & Windows v5.0 4-69

CURR_PID Vx4++ option command

FUNCTION Current Loop Control Law Parameters

SYNTAX CURR_PID n, par1, par2, par3

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
par1 long unsigned value for Kp gain
par2 long unsigned value for Ki gain
par3 long unsigned value for Kd gain

0 ≤ par1,2,3 ≤ 32767

DESCRIPTION

This command performs a vector control algorithm combined with a
modified PID.

SEE ALSO CTRL

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set the following modified current loop PID gain values for axis three.

Kp = 10000
Ki = 20
Kd = 9500

CURR_PID 3, 10000, 20, 9500

Function Reference

4-70

DDAC

FUNCTION Direct DAC Output

SYNTAX DDAC n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val single precision DAC output voltage

-10.0 ≤ val ≤ 9.9997 volts
DESCRIPTION

The DDAC command places the axis(es) in open loop, with DAC(x)
output voltage determined by the valx command argument. DDAC
specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of approximately 0.3 millivolts.

After execution of a DDAC command, in order to return the axis(es) to
closed loop operation, a closed-loop command such as AXMOVE or
VELMODE must be executed. The following procedure serves as an
example:

1. slow or halt the axis(es) motion:
-execute DDAC with 0v specified

2. minimize built-up following error:
-execute POS_PRESET command

3. return axis(es) to closed loop:
-execute AXMOVE command with target position
specified as that used in the preceding
POS_PRESET command.

SEE ALSO none

Function Reference

Mx4 & Windows v5.0 4-71

DDAC cont.

APPLICATION

This command can be used in applications where the voltage command
provides adequate control. Voltage commands can be applied to a
torque loop (for torque control applications in robotics) or a velocity
loop (to a spindle axis in machine tool applications).

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Output +3.75 volts to the axis 4 and axis 5 DACs.

BEGIN_RTC
DDAC 4, 3.75
DDAC 5, 3.75

END_RTC

Function Reference

4-72

DISABL_INT

FUNCTION Disable Interrupts

SYNTAX DISABL_INT n, mask

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mask long value, interrupt disable mask

The mask is created by ‘OR’ing together any of the
desired interrupt’s defined constants:

IC_MOTION_COMPLETE (EN_MOTCP)
IC_INDEX_PULSE (EN_INDEX)
IC_PROBE_SIGNAL (EN_PROBE)
IC_POSITION_BREAKPOINT (EN_POSBRK)
IC_FOLLOWING_ERROR (EN_ERR)
IC_FOLLOWING_ERROR_AND_HALT (EN_ERRHLT)
IC_BUFFER_BREAKPOINT (EN_BUFBRK)

DESCRIPTION

This command disables some or all of the servo control card interrupts.

SEE ALSO DISABL2_INT, EN_BUFBRK, EN_PROBE, EN_ERR, EN_ERRHLT,
EN_INDEX, EN_MOTCP, EN_POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

Function Reference

Mx4 & Windows v5.0 4-73

DISABL_INT cont.

EXAMPLE

Disable the previously enabled axis 1 following error and index pulse
interrupts.

TEMP = IC_FOLLOWING_ERROR | IC_INDEX_PULSE
DISABL_INT 1, TEMP

Function Reference

4-74

DISABL2_INT

FUNCTION Disable Interrupts

SYNTAX DISABL2_INT n, mask

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mask long value, interrupt disable mask

The mask is created by ‘OR’ing together any of the
desired interrupt’s defined constants:

IC_ENCODER_FAULT (EN_ENCFLT)

DESCRIPTION

This command disables some or all of the servo control card interrupts.

SEE ALSO DISABL_INT, EN_ENCFLT

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

Function Reference

Mx4 & Windows v5.0 4-75

DISABL2_INT cont.

EXAMPLE

Disable the previously enabled axis 1 and axis 7 encoder fault
interrupts.

TEMP = IC_ENCODER_FAULT
BEGIN_RTC

DISABL2_INT 1, TEMP
DISABL2_INT 7, TEMP

END_RTC

Function Reference

4-76

DOWNLOAD_DSPL

FUNCTION Download Compiled DSPL Program To Mx4

SYNTAX DOWNLOAD_DSPL filename

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

filename string, name of file to download

DESCRIPTION

This function performs the task of downloading a compiled DSPL
program to the Mx4 controller. The DSPL file must have been
previously compiled (DSPLCxxx.EXE) so that a .LOD file extension
file exists.

SEE ALSO CLEAR_DSPL, START_DSPL, STOP_DSPL

EXAMPLE

Download the compiled DSPL file MYTEST.LOD to Mx4.

Dim sFileName As String
SFileName = “c:\work\mytest.lod”
DOWNLOAD_DSPL sFileName

Function Reference

Mx4 & Windows v5.0 4-77

DOWN_CAM

FUNCTION Download Cam Data Points To Mx4 Cam Table

SYNTAX DOWN_CAM madata, sldata, npts, index

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

madata master position array, single precision
sldata slave position array, single precision
npts long value, number of cam points to download
index long value, starting cam table index to download points

DESCRIPTION

This function performs the task of downloading cam table points to the
Mx4 cam table storage area, beginning at the specified index.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS,
CAM_PROBE

EXAMPLE

Assume that the master / slave position points are stored in the file
CAM_TUT5.DAT. Download this file to the Mx4 cam table beginning
at cam index 100. The file consists of 10 master positions, 10 slave
positions.

Dim master(10) As Single
Dim slave(10) As Single
Dim I As Integer
Open “c:\work\cam_tut5.dat” For Input As #1
For I = 0 To 9

Input #1, master(I)
Input #1, slave(I)

Next I
DOWN_CAM master(0), slave(0), 10, 100

Function Reference

4-78

DOWN_CUBIC

FUNCTION Download Cubic Spline Data Points To Mx4

SYNTAX DOWN_CUBIC npts, cudata, index

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

npts long value specifying number of points to be downloaded
cudata position array, single precision
index long value, starting cubic spline table index to download

points

DESCRIPTION

This function performs the task of downloading cubic spline table
points to the Mx4 internal cubic spline table storage area, beginning at
the specified index.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, CUBIC_SCALE

EXAMPLE

Assume that the cubic spline position points are stored in the file
CUB_TUT8.DAT. Download this file to the Mx4 cubic spline table
beginning at cubic index 0. The file consists of 350 position points.

Dim cubdata(350) As Single
Dim I As Integer
Open “c:\work\cub_tut8.dat” For Input As #1
For I = 0 To 349

Input #1, cubdata(I)
Next I
DOWN_CUBIC 350, cubdata(0), 0

Function Reference

Mx4 & Windows v5.0 4-79

DOWN_POINTS

FUNCTION Download DSPL Table_p / Table_v Data Points

SYNTAX DOWN_POINTS ptdata, npts, index, posvel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

ptdata data points array, single precision
npts long value specifying number of points to be downloaded
index long value, starting table index to download points
posvel long value specifying data sent in table_p position format

(0) or table_v velocity format (1)

DESCRIPTION

This function downloads data to the DSPL table_p / table_v storage
areas. The posvel argument selects whether the data is sent in position
format (table_p) or velocity format (table_v).

SEE ALSO none

EXAMPLE

Assume that 200 velocity values are stored in the file TEST.DAT.
Download this file to the Mx4 table_v table beginning at index 50.

Dim ddata(200) As Single
Dim I As Integer
Open “c:\work\test.dat” For Input As #1
For I = 0 To 199

Input #1, ddata(I)
Next I
DOWN_POINTS ddata(0), 200, 50, 1

Function Reference

4-80

DOWN_POS

FUNCTION Download Position Compensation Table

SYNTAX DOWN_POS pdata, npts, table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

pdata data points array, single precision
npts long value specifying number of points to be downloaded
table long value specifying the table axis (1-8)

DESCRIPTION

This function downloads position compensation tables to the Mx4
controller.

SEE ALSO DOWN_VEL, TABLE_SEL

EXAMPLE

Download the 1024 point position compensation table
POSCOMP.DAT to the axis 6 position compensation table.

Dim compdata(1024) As Single
Dim I As Integer
Open “c:\work\poscomp.dat” For Input As #1
For I = 0 To 1023

Input #1, compdata(I)
Next I
DOWN_POS compdata(0), 1024, 6

Function Reference

Mx4 & Windows v5.0 4-81

DOWN_VEL

FUNCTION Download Velocity Compensation Table

SYNTAX DOWN_VEL vdata, npts, table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

vdata data points array, single precision
npts long value specifying number of points to be downloaded
table long value specifying the table axis (1-8)

DESCRIPTION

This function downloads velocity compensation tables to the Mx4
controller.

SEE ALSO DOWN_POS, TABLE_SEL

EXAMPLE

Download the 1024 point velocity compensation table
VELCOMP.DAT to the axis 3 velocity compensation table.

Dim compdata(1024) As Single
Dim I As Integer
Open “c:\work\velcomp.dat” For Input As #1
For I = 0 To 1023

Input #1, compdata(I)
Next I
DOWN_VEL compdata(0), 1024, 3

Function Reference

4-82

ENCOD_MAG Vx4++ option command

FUNCTION Define Encoder Line Count, Motor Poles, Commut. Option

SYNTAX ENCOD_MAG n, p1, p2, p3

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
p1 long value, number of encoder lines/rev

0 ≤ p1 ≤ 65535

p2 long value, number of motor poles

0 ≤ p2 ≤ 256

p3 long value, brushless DC commutation option

p3 = 0 : brushtype DC or AC induction motor tech
p3 = 0 : comm option 0
p3 = 1 : comm option 1

DESCRIPTION

The Vx4++ option card interfaces to the motors with any number of
magnetic poles and encoders with any number of encoder pulse
numbers. An example of this is a brushless DC machine with eight
poles, 1,000 line encoder and hall sensors mounted in a special
configuration. This command allows the user to define the encoder,
commutation, and motor pole parameters for the specified axis(es).

Note: Mx4 with Vx4++ will not execute the ENCOD_MAG command if
the VX4_BLOCK command is active for the axes in question.

SEE ALSO VX4_BLOCK

Function Reference

Mx4 & Windows v5.0 4-83

ENCOD_MAG cont.

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Axis four is an AC induction motor with a 1024 line encoder and 4
motor poles.

ENCOD_MAG 4, 1024, 4, 0

Function Reference

4-84

END_RTC

FUNCTION End Multi-Axis Command

SYNTAX END_RTC

ARGUMENTS

None

DESCRIPTION

A number of RTCs have a large and variable number of arguments.
These are mostly motion control RTCs which permit the desired
motion for several axes to be specified at once. All of the motion
control functions in the DLL are single axis. The BEGIN_RTC and
END_RTC functions permit a multi-axis RTC to be built-up from
multiple calls to a single axis RTC function. The AXMOVE function
illustrates this. A call to AXMOVE by itself will generate an AXMOVE RTC
for the specified axis. To generate a two-axis AXMOVE RTC, two calls to
AXMOVE would be bracketed between calls to BEGIN_RTC and END_RTC.

SEE ALSO BEGIN_RTC

APPLICATION

Multi-axis commands are needed when the trajectories of two or more
axes must be synchronized.

EXAMPLE

This example illustrates how BEGIN_RTC and END_RTC can be used to
issue a two axis AXMOVE command to Mx4. Assuming current positions
of zero for axes 1 and 2, we want to move axis 1 to the target position
of 234567 and axis 2 to the target position of -3000 counts. Let's also
assume that we want this move to be accomplished with the slew rate
velocity of 4.0 counts/200µs for axis 1 and -3.50 counts/200µs for axis
2, and an acceleration of 0.005 counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

Function Reference

Mx4 & Windows v5.0 4-85

ENDDLLCRITICALSECTION

FUNCTION End critical section

SYNTAX ENDDLLCRITICALSECTION

ARGUMENTS

None

DESCRIPTION

This command releases the mutex lock for exclusive access to the
DLL. The command should be used when multiple threads are
accessing the DLL, and it should be used after every function call to
the DLL. The function BEGINDLLCRITICAL SECTION acquires the
mutex lock.

SEE ALSO BEGINDLLCRITICALSECTION

APPLICATION

The function is used in multithreaded applications to provide
synchronization for DLL access and maintain a consistent state in the
DLL.

EXAMPLE

var1 = BEGINDLLCRITICALSECTION(100)
if var1 == ERR_OK then
BEGIN_RTC

AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC
ENDDLLCRITICALSECTION
Endif

Function Reference

4-86

EN_BUFBRK
FUNCTION Enable Buffer Breakpoint Interrupt

SYNTAX EN_BUFBRK buffbrk

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

buffbrk positive long value which represents the delta position for
the remaining number of bytes in the ring buffer. Since
each contouring point requires 8 bytes, this number must
be multiplied by 8 to indicate the real number of bytes left
in the ring buffer.

1 ≤ buffbrk ≤ 84 contouring data points

DESCRIPTION

This command will cause an interrupt when the number of contouring
data points in the contouring ring buffer falls below a preset
breakpoint. The buffer breakpoint interrupt status will appear in bit 0 of
the DPR interrupt flag location [Mx4:7FEh] [Mx4 Octavia:1FFEh].
This bit gets set if a buffer breakpoint interrupt occurs.

SEE ALSO DISABL_INT

APPLICATION

This command must be used in both 2nd order and cubic spline
contouring applications. To maintain continuity in a contouring
application, Mx4 must be constantly updated by the host processor
with a set of new (position/velocity) points on the contour. Since no
application can afford to run out of points, the host must set the buffer
breakpoint interrupt to a value such that running the remaining points
(what is left in the ring buffer) will give the host enough time to update
the buffer. For slower hosts, the argument for this command must be
relatively larger.

Function Reference

Mx4 & Windows v5.0 4-87

EN_BUFBRK cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

. ;load the ring buffer with contouring points,

. ;(position and speed)
BTRATE () ;set the 2nd order contouring block transfer rate to 5,

10, 15 or 20 ms
EN_BUFBRK () ;set the breakpoint in buffer
.
.
START (n) ;start contouring

EXAMPLE

Enable a contouring ring buffer’s breakpoint interrupts for the case that
the number of segment move commands in the ring buffer falls below
30.

EN_BUFBRK 30

Function Reference

4-88

EN_ENCFLT

FUNCTION Encoder Fault Interrupt

SYNTAX EN_ENCFLT n, m, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value, bit coding of the axes interrupt condition (see

Description)
fer double precision, unsigned following error value

0 <= fer <= 65535 counts

DESCRIPTION

This command enables the encoder fault interrupt for the specified
axes.

With the respective axis bit of argument m equal to 0, the encoder fault
interrupt is triggered for the axis in question if,

1. abs[following error] > ferr threshold
2. and, hardware encoder status bit is set

With the respective axis bit of argument m equal to 1, the encoder fault
interrupt is triggered for the axis in question if,

1. abs[following error] > ferr threshold

If an encoder fault interrupt condition is present for an axis, the axis
will be put into open loop with DAC output of 0 volts, and an interrupt
will be generated. If, however, the axis in question is already in open

Function Reference

Mx4 & Windows v5.0 4-89

EN_ENCFLT cont.

loop prior to the interrupt condition, an interrupt will be generated but
no action will be taken (ie: DAC voltage is unaffected).

The encoder fault interrupt is sustained until the EN_ENCFLT command
is reissued to the Mx4. Reissuing the EN_ENCFLT command also allows
the affected axis(es) to be put back into closed loop following the
execution of the command.

The hardware encoder status bits are reported to the lower nibble of
DPR location 113h (see Mx4 DPR Organization). A set bit indicates
that Mx4 has detected an encoder hardware failure. Mx4 reports an
“encoder status” error if for the axis in question,

1. the encoder feedback to Mx4 is losing encoder pulses or
one of the encoder signals (A or B) actively toggles while
the other one is inactive.

The DPR interrupt status locations 009h (bit 4) and 00Eh record the
occurrence and source of this interrupt, respectively. Bit 6 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

SEE ALSO DISABL2_INT

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the encoder fault interrupt for axis 3. Set the following error
threshold at 500 counts, using the encoder hardware status bits in the
interrupt condition.

EN_ENCFLT 3, 0, 500

Function Reference

4-90

EN_ERR

FUNCTION Enable Following Error Interrupt

SYNTAX EN_ERR n, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fer double precision, unsigned following error value

0 ≤ fer ≤ 65535 counts

DESCRIPTION

Upon the execution of this command, if at any time the following error
for a specified axis exceeds its programmed value, the servo control
card will generate an interrupt. This condition is recorded in DPR
interrupt status register location 000h. The DPR status register location
02h will identify the axis(es) responsible. Bit 1 of DPR location
[Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERR_REG bit
register.

Note: EN_ERR is not disabled after it occurs. The host is responsible
for disabling the interrupt.

SEE ALSO DISABL_INT, EN_ERRHLT

APPLICATION

This command may be used in all applications for two reasons. First,
EN_ERR reports a run-away or any other out-of-control condition.
Second, it makes sure that position error is within a specified tolerance
(i.e. the value in argument ferx).

Function Reference

Mx4 & Windows v5.0 4-91

EN_ERR cont.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Set a EN_ERR interrupt value of 200 encoder counts for axis 1.

EN_ERR 1, 200

Function Reference

4-92

EN_ERRHLT

FUNCTION Enable Following Error Interrupt and Halt

SYNTAX EN_ERRHLT n, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fer double precision, unsigned following error value

0 ≤ fer ≤ 65535 counts

DESCRIPTION

Upon execution of this command, if at any time the following error for
a specified axis exceeds its programmed value, the system will halt and
generate an interrupt. The halt brings the motion of the axis in question
to a stop using the programmed maximum acceleration rate. This
interrupt condition is recorded in DPR interrupt status register location
000h. The DPR status register location 001h reveals the axis(es)
responsible. Bit 1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh]
is also set.

The interrupt condition is also axis bit-coded in the DSPL FERRH_REG
bit register.

Note 1: EN_ERRHLT will be ignored if the respective axis abort
maximum acceleration is zero.

Note 2: EN_ERRHLT is not disabled after it occurs. The host is
responsible for disabling the interrupt.

Function Reference

Mx4 & Windows v5.0 4-93

EN_ERRHLT cont.

SEE ALSO DISABL_INT, EN_ERR, ESTOP_ACC

APPLICATION

Applications of this command are similar to EN_ERR. However, as a
result of this command's interrupt, the system will come to a stop. Stop
trajectory uses the programmed abort maximum acceleration. Please
see ESTOP_ACC. Please note that this command is not appropriate to
prevent system run-away in case of encoder loss, since in the absence
of encoder, the system cannot be stopped reliably.

Command Sequence Example
ESTOP_ACC () ;set the maximum accel. so system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT () ;set gains
.
.
EN_ERRHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 1, 2 and 3 with a
threshold of 100, 120, and 200 counts, respectively.

BEGIN_RTC
EN_ERRHLT 1, 100
EN_ERRHLT 2, 120
EN_ERRHLT 3, 200

END_RTC

Function Reference

4-94

EN_INDEX

FUNCTION Enable Index Pulse Interrupt

SYNTAX EN_INDEX n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first index pulse edge from the specified axis. The pulse edge
generates an interrupt and registers the actual position for all axes in
DPR locations 103h - 112h. The DPR interrupt status register locations
000h and 003h record the occurrence and source of this interrupt. Bit 1
of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL INDEX_REG
bit register.

Note 1: Only one index pulse can generate an interrupt at any given
time. The EN_INDEX command enables the index pulse
interrupt for the axis specified and automatically disables the
previous one (if any).

Note 2: The EN_INDEX and EN_PROBE commands CAN BE ENABLED
simultaneously.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

Function Reference

Mx4 & Windows v5.0 4-95

EN_INDEX cont.

APPLICATION

This command is used in homing applications. As a result of this
instruction, Mx4 will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. This instruction must be used in conjunction
with POS_PRESET to perform homing for linear table (or other index-
based) position calibration.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.

EN_INDEX 4

Function Reference

4-96

EN_MOTCP

FUNCTION Enable Motion Complete Interrupt

SYNTAX EN_MOTCP n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any closed
loop motion other than ring buffer 2nd order or ring buffer cubic spline
contouring comes to a stop. The DPR interrupt status register locations
000h and 005h record the occurrence and source of this interrupt. Bit 1
of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also bit-coded in the DSPL MOTCP_REG bit
register.

Note: EN_MOTCP is not disabled after it occurs. The host is
responsible for disabling the interrupt.

SEE ALSO DISABL_INT

APPLICATION

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z-
axes will start moving only when the x-y table has moved to a target
position.

Command Sequence Example
See AXMOVE and STOP

Function Reference

Mx4 & Windows v5.0 4-97

EN_MOTCP cont.

EXAMPLE

Enable the motion complete interrupt for all four axes.

BEGIN_RTC
EN_MOTCP 1
EN_MOTCP 2
EN_MOTCP 3
EN_MOTCP 4

END_RTC

Function Reference

4-98

EN_POSBRK

FUNCTION Enable Position Breakpoint Interrupt

SYNTAX EN_POSBRK n, pos

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

pos double precision, position breakpoint value

-2147483648 ≤ pos ≤ 2147483647 counts

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position for a specified axis passes the programmed breakpoint.
The DPR interrupt status register locations 000h and 004h record the
occurrence and source of this interrupt. Bit 1 of DPR location
[Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL POSBRK_REG
bit register.

Note 1: The position breakpoint is calculated as the absolute distance
from the present position (position at the moment at which the
EN_POSBRK RTC is interpreted) to the position breakpoint
value entered. The breakpoint interrupt is set when the axis in
question travels (in either direction) a distance equal to the
calculated absolute distance.

Function Reference

Mx4 & Windows v5.0 4-99

EN_POSBRK cont.

Note 2: EN_POSBRK is automatically disabled after the breakpoint
interrupt is generated. To activate this interrupt again, the host
must issue a new EN_POSBRK command.

Note 3: POS_PRESET and POS_SHIFT will automatically disable the
position breakpoint interrupt. The user is responsible to re-
enable the interrupt.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

APPLICATION

This instruction may be used in applications such as robotics, indexing
machine tools, etc. The CPU must be notified that the system has
passed an intermediate position. Based on this interrupt, the CPU will
execute a task. For example, in a robotics painting application, the
paint mixture may have to change based on the robot's arm location.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Enable a breakpoint interrupt with a value of 60,000 counts for axis 1
and 500,000 for axis 2.

BEGIN_RTC
EN_POSBRK 1, 60000
EN_POSBRK 2, 500000

END_RTC

Function Reference

4-100

EN_PROBE

FUNCTION Enable General Purpose External Interrupt

SYNTAX EN_PROBE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the probe

[Mx4]
m=1 : from *EXT1
m=2 : from *EXT2

[Mx4 Octavia]
m=1 : from *EXT1
m=2 : from *EXT2
m=3 : from *EXT3
m=4 : from *EXT4

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first *EXTx pulse edge. The pulse edge generates an interrupt
and registers the actual position for all axes in DPR locations 0A7h-
0B6h. (The hand shaking bytes are 0C8h and 0D0h for Mx4 and host,
respectively.) DPR interrupt status register locations 000h and 006h
record the occurrence and source of this interrupt. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL PROBE_REG
bit register.

Function Reference

Mx4 & Windows v5.0 4-101

EN_PROBE cont.

Note 1: Only one general purpose external interrupt can generate an
interrupt at any given time. The EN_PROBE command
enables the external interrupt specified and automatically
disables the previous one (if any).

Note 2: The EN_PROBE and EN_INDEX can be enabled
simultaneously.

SEE ALSO DISABL_INT, ESTOP_ACC

APPLICATION

This instruction is useful in probing applications. Since EN_PROBE
registers all positions when an interrupt occurs (falling pulse edge is
detected), it can be used in accurate recording of surface dimensions by
a probe.

 Command Sequence Example
CTRL () ;these instructions enable system to stop motion
KILIMIT ()

.

.
EN_PROBE ()
END

EXAMPLE

Enable the *EXT2 external interrupt.

EN_PROBE 2

Function Reference

4-102

ESTOP_ACC

FUNCTION Abort Motion Maximum Acceleration

SYNTAX ESTOP_ACC n, acc

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision, unsigned value specifying the

maximum halting acceleration (deceleration)

0 ≤ acc ≤ 1.999969 counts/(200µs)2

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

DESCRIPTION

This command specifies the maximum halting acceleration
(deceleration) for the axes specified. The maximum acceleration values
are used in the following cases: EN_ERRHLT, and ESTOP_ACC.

Note: ESTOP_ACC will be ignored if the specified argument is zero.

SEE ALSO EN_ERRHLT, MAXACC, STOP, VELMODE

Function Reference

Mx4 & Windows v5.0 4-103

ESTOP_ACC cont.

APPLICATION

This command sets the maximum possible deceleration for a
mechanical actuator. This RTC is used to set the deceleration rate for
an emergency case. In contrast to MAXACC, ESTOP_ACC provides a
sharper deceleration such that the entire system comes to a stop as
rapidly as possible. Please remember that the STOP and VELMODE RTCs
use MAXACC for their acceleration/deceleration.

Command Sequence Example
ESTOP_ACC () ;set the abort maximum acceleration
CTRL () ;make sure the system is in closed loop
EN_ERRHLT () ;set the maximum tolerance for the following error

;if the following error exceeds the ABORTACC
;parameter, the system will stop immediately

EXAMPLE

Set an abort motion maximum acceleration for axes 2 and 3 of 0.5
encoder counts/(200 µsec)2.

BEGIN_RTC
ESTOP_ACC 2, 0.5
ESTOP_ACC 3, 0.5

END_RTC

Function Reference

4-104

FERR

FUNCTION Get Following Error State Variable

SYNTAX FERR n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the following error for
the axis specified.

SEE ALSO POS, VEL

EXAMPLE

Read the following error of axis 3.

Dim Temp As Double
Temp = FERR (3)

Function Reference

Mx4 & Windows v5.0 4-105

FLUX_CURRENT Vx4++ option command

FUNCTION Set Field Compensation Or Flux Value

SYNTAX FLUX_CURRENT n, fval

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fval long value, for AC induction motor, defines a bipolar flux

value for the field producing component of the current

-32768 ≤ fval ≤ 32767

for brushless DC motor, defines a unipolar field
compensation parameter

0 ≤ fval ≤ 65535

DESCRIPTION

The FLUX_CURRENT command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines a bipolar flux value for the field-producing
component of the current. If the axis is a brushless DC motor, the
command sets a unipolar field compensation parameter.

Note: The FLUX_CURRENT command does not need to be
programmed for brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide

Function Reference

4-106

FLUX_CURRENT cont.

EXAMPLE

Set a flux value or -5000 for axis one (AC induction motor) and a field
compensation value of 1300 for axis two (brushless DC motor).

BEGIN_RTC
FLUX_CURRENT 1, -5000
FLUX_CURRENT 2, 1300

END_RTC

Function Reference

Mx4 & Windows v5.0 4-107

GEAR

FUNCTION Electronics Gear On

SYNTAX GEAR n, m, ratio

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
ratio single precision, gear ratio between master and slave

-256 ≤ ratio < 255.999

minimum gear ratio is +/- 1/128

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by ratio. Upon receiving
this command, the electronic gearing is engaged at once.

SEE ALSO GEAR_OFF, GEAR_POS, GEAR_PROBE

APPLICATION

See Application Notes

EXAMPLE

Axis 2 is a slave axis to axis 1 with a gear ratio of 2.5.

GEAR 1, 2, 2.5

Function Reference

4-108

GEAR_OFF

FUNCTION Electronics Gear Off

SYNTAX GEAR_OFF n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to disengage

DESCRIPTION

This command disengages the specified slave axis(es) at once.

SEE ALSO GEAR, GEAR_POS, GEAR_PROBE

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF 4

Function Reference

Mx4 & Windows v5.0 4-109

GEAR_OFF_ACC

FUNCTION Turns Electronic Gearing Off and Halt Slave(s)

SYNTAX GEAR_OFF_ACC n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to disengage

DESCRIPTION

This command disengages the system that was under master/slave
control. The slave axes will come to a complete stop at the maximum
acceleration rate specified by MAXACC command.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS, GEAR_PROBE

APPLICATION

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF_ACC 4

Function Reference

4-110

GEAR_POS

FUNCTION Electronics Gear On at a Specified Leader Position

SYNTAX GEAR_POS n, m, ratio, tp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
ratio single precision, gear ratio between master and slave

-256 ≤ ratio < 255.999

minimum gear ratio is +/- 1/128

tp double precision, master axis position value at which the
electronic gearing engages for the specified axis

-2147483648 ≤ tp ≤ 2147483647

DESCRIPTION

This command emulates a mechanical gear function. The slave follows
the master with the gear ratio specified by ratio. Upon receiving this
command, the electronic gearing starts engaging at the specified master
position (tp).

SEE ALSO GEAR, GEAR_OFF, GEAR_PROBE

APPLICATION

See DSPL Application Notes

Function Reference

Mx4 & Windows v5.0 4-111

GEAR_POS cont.

EXAMPLE

Axes 3 and 4 should follow axis 2 with gear ratios 2.0 and 4.0,
respectively. Both axes three and four should “engage” when axis 2
position is equal to 10,500 counts.

BEGIN_RTC
GEAR_POS 2, 3, 2.0, 10500
GEAR_POS 2, 4, 4.0, 10500

END_RTC

Function Reference

4-112

GEAR_PROBE

FUNCTION Electronics Gear On After Probe Input

SYNTAX GEAR_PROBE n, m, q, ratio

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
q long value, the *EXTx probe input to be used

[Mx4]
q = 1 : *EXT1
q = 2 : *EXT2

[Mx4 Octavia]
q = 1 : *EXT1
q = 2 : *EXT2
q = 3 : *EXT3
q = 4 : *EXT4

ratio single precision, gear ratio between master and slave

-256 ≤ ratiox < 255.999

minimum gear ratio is +/- 1/128

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by rx. The GEAR_PROBE
command engages the mechanical gear function for selected master
and slave axes after the specified external signal (*EXTx) is activated.

Function Reference

Mx4 & Windows v5.0 4-113

GEAR_PROBE cont.

Note 1: Execution of the GEAR_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe (*EXT1,2,3,4)
activation does not generate an interrupt with the GEAR_PROBE
command.

Note 2: Activation of *ESTOP during a GEAR operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in GEAR mode after the input-triggered
halt.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 8 is the leader, axis 1 is the follower with a gear ratio of 4.0. Axis
1 should “engage” at the occurrence of probe interrupt *EXT2.

GEAR_PROBE 8, 1, 2, 4.0

Function Reference

4-114

GETCOMMINSTCOUNT

FUNCTION Get Number of Serial Communication Instances Connected

SYNTAX GETCOMMINSTCOUNT (port)

ARGUMENTS

Port long value specifying comm port (1-4)

DESCRIPTION

This function is used with serial communication applications. The
function returns (long value) the number of instances of the DLL
during serial communication which have been successfully connected.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Read the number of instances connected over comm port 2 into Visual
Basic variable Temp.

Dim Temp As Long
Temp = GETCOMMINSTCOUNT (2)

Function Reference

Mx4 & Windows v5.0 4-115

GETCOMMTYPE

FUNCTION Get Communication Type

SYNTAX GETCOMMTYPE ()

ARGUMENTS

none

DESCRIPTION

This function is used to determine the current communication type.
The function returns (byte value) the type as follows,

0 bus
1 comm1
2 comm2
3 comm3
4 comm4
5 none

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Query the type of communication which is active.

Dim Temp As Byte
Temp = GETCOMMTYPE ()

Function Reference

4-116

GETCURRENTNODEADDRESS

FUNCTION Get Current Serial Communication Node Address

SYNTAX GETCURRENTNODEADDRESS ()

ARGUMENTS

none

DESCRIPTION

This function returns (byte value) the current value of the node address
for serial communication applications.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE,
RESETCOMMUNICATIONS

EXAMPLE

Query the serial communication node address.

Dim Temp As Byte
Temp = GETCURRENTNODEADDRESS ()

Function Reference

Mx4 & Windows v5.0 4-117

GETNUMBEROFAXES

FUNCTION Get the number of axes

SYNTAX GETNUMBEROFAXES ()

ARGUMENTS

none

DESCRIPTION

This function returns (integer) the current number of axes

SEE ALSO

EXAMPLE

Query the number of axes.

Dim AxesCount As Integer
AxesCount = GETNUMBEROFAXES ()

Function Reference

4-118

INP_STATE

FUNCTION Configure Logic State of Inputs

SYNTAX INP_STATE inp, state

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

inp long value, specifying the input

[Mx4] 0 <= inp <= 21
[Mx4 Octavia] 0 <= inp <= 31
[IOExp] 0 <= inp <= 63
[IOExp:2] 0 <= inp <= 127

state long value, specifying the logic state of the input

state = 0 : active LOW input
state = 1 : active HIGH input

DESCRIPTION

This command allows the user to define the logic state of the [Mx4:22]
[Mx4 Octavia:32] inputs. Each input may be configured as active LOW
or active HIGH (TTL logic levels) (the Mx4 inputs are level sensitive).

Note: At power-up and reset, Mx4 inputs default as active LOW.

SEE ALSO none

EXAMPLE

Configure the IN0 and IN5 inputs as active HIGH.

BEGIN_RTC
INP_STATE 0, 1
INP_STATE 5, 1

END_RTC

Function Reference

Mx4 & Windows v5.0 4-119

INT5MS

FUNCTION Enable / Disable the 5msec Interrupt

SYNTAX INT5MS m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the enable/disable status of the
interrupt

m = 0 disable the 5msec interrupt
m = 1 enable the 5msec interrupt

DESCRIPTION

The 5msec interrupt is useful in sampling applications where the host
may need to sample data from the Mx4 controller at timed intervals.
When enabled, the Mx4 controller issues a hardware interrupt to the
host every 5msec. The interrup is coded in DPR location 009h. Bit 6
of DPR location [Mx4:7Feh] [Mx4 Octavia:1FFEh] is also set.

SEE ALSO none

EXAMPLE

Enable the 5msec interrupt.

INT5MS 1

Function Reference

4-120

KILIMIT

FUNCTION Integral Gain Limit

SYNTAX KILIMIT n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val long value setting the limit of the integral action

Note: 0 ≤ val ≤ 14

val = 0 indicates no limit on integration channels
val = 14 indicates maximum limit on integration channels

For example,

Kilimit val = 0 +/- 10v DAC action from Ki control law parameter
Kilimit val = 1 +/- 5v DAC action from Ki control law parameter
Kilimit val = 2 +/- 2.5v DAC action from Ki control law parameter
Kilimit val = 3 +/- 1.25v DAC action from Ki control law parameter
 :
 :

DESCRIPTION

This command is used to set the limit for integral action related to the
choice of parx1 in the CTRL RTC. Integral limit is specified for each
axis. Default valx are set to zero (i.e., no limit on integration channels).

SEE ALSO CTRL

Function Reference

Mx4 & Windows v5.0 4-121

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the channel's
depletion time. Using this instruction is essential where large integral
gain is required. Clamping the integral channel will let the system zero
position error without a lengthy "creeping motion" to its target
position.

Command Sequence Example
CTRL () ;set the gains
KILIMIT () ;this instruction may be used before or after CTRL

EXAMPLE

Set a maximum limit on the integral action of axis 2, 3, and 4.

BEGIIN_RTC
KILIMIT 2, 14
KILIMIT 3, 14
KILIMIT 4, 14

END_RTC

Function Reference

4-122

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output

SYNTAX LOW_PASS n, freq

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
freq long value specifying the low pass filter cut-off frequency

0 ≤ freq ≤ 1850

DESCRIPTION

This command implements a low pass filter at the controller output for
the specified axis.

�

�
�

�

�

�
�

�
�

� �

�

� �
�

	
��
����������

�������������

�
�
�

��

��

�

�
�
��
���

���������

������
������

������
��
�� ��
!!
��
���

Mx4 Block Diagram with Low Pass Filter

Function Reference

Mx4 & Windows v5.0 4-123

LOW_PASS cont.

The low pass filter implements the following transfer function:

G s
s s

n

n n

() =
+ ⋅ +

ω
ζω ω

2

2 22

where, ω πn nf= 2 , fn = cut-off frequency, and ζ = 0 6.

The frequency and bandwidth of the low pass filter is programmable.

Note: By programming a cut-off frequency of 0, the low pass filter
for the specified axis is disabled.

SEE ALSO none

EXAMPLE

1) Set a low pass filter at 250 Hz for axis 2 (see below).

LOW_PASS 2, 250

2) Disable the low pass filter of axis 1.

LOW_PASS 1, 0

Note: Mx4 default setting for low pass filter is no filter (or filter
disabled.

Function Reference

4-124

LOW_PASS cont.

Magnitude Diagram

Phase Diagram of 250 Hz Low Pass Filter

Function Reference

Mx4 & Windows v5.0 4-125

MAXACC

FUNCTION Maximum Acceleration

SYNTAX MAXACC n, acc

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precesion, unsigned value specifying the

maximum acceleration / deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

DESCRIPTION

This command specifies the maximum acceleration / deceleration for
the axes specified. The maximum acceleration values are used in the
STOP and VELMODE commands.

Note: MAXACC will be ignored if the specified argument is zero.

SEE ALSO ESTOP_ACC, STOP, VELMODE

Function Reference

4-126

MAXACC cont.

APPLICATION

This command sets the maximum acceleration affordable by the servo
drive and motor combination. It is useful to program this parameter
such that the system will not go to control saturation during VELMODE or
STOP.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

.

.
AXMOVE () ;run system in axis move
VELMODE () ;run system in velocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200µs)2.

BEGIN_RTC
MAXACC 2, 0.25
MAXACC 3, 0.25

END_RTC

Function Reference

Mx4 & Windows v5.0 4-127

MONITOR_VAR

FUNCTION Select DSPL Variables To Monitor

SYNTAX MONITOR_VAR m, var

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the DPR variable monitoring
window

1 <= m <= 4

var long value specifying the DSPL variable to monitor in the
selected DPR monitoring window

1 <= var <= 128

DESCRIPTION

The MONITOR_VAR function selects which of the 128 DSPL variables to
report to the DPR variable monitoring windows (there are 4 windows,
for a maximum of 4 variables at one time).

SEE ALSO CHANGE_VAR, VAR

EXAMPLE

Select DSPL variable VAR67 to be reported to DPR monitor window
4.

MONITOR_VAR 4, 67

Function Reference

4-128

MOTOR_PAR Vx4++ option command

FUNCTION Motor Parameter

SYNTAX MOTOR_PAR n, mpar

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mpar long value, for AC induction motor, defines the motor

slip gain

-32768 ≤ fval ≤ 32767

for brushless DC motor, defines the commutation angle

-32768 ≤ fval ≤ 32767

DESCRIPTION

The MOTOR_PAR command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines the motor slip gain. If the axis is a brushless DC
motor, the command defines the commutation angle (in encoder
counts).

Note: The MOTOR_PAR command does not need to be programmed
for brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide
EXAMPLE

Program a slip gain equal to 5500 for axes two (the motoris an AC
induction motor).

MOTOR_PAR 2, 5500

Function Reference

Mx4 & Windows v5.0 4-129

MOTOR_TECH Vx4++ option command

FUNCTION Motor Technology

SYNTAX MOTOR_TECH n, mtech

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mtech long value,

AC induction, mtech = MT_AC_INDUCTION
brushless DC, mtech = MT_BRUSHLESS_DC
brushtype DC, mtech = MT_BRUSHTYPE_DC

DESCRIPTION

Mx4 with the Vx4++ drive control option is capable of controlling
brushtype DC, AC induction, and brushless DC motors. This command
allows the motor technology of each axis to be programmed.

Note: Mx4 with Vx4++ will not execute the MOTOR_TECH command
if the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Select brushless DC technology for axis one.

MOTOR_TECH 1, MT_BRUSHLESS_DC

Function Reference

4-130

MX4_CLEAR

FUNCTION Clear Interrupt Conditions

SYNTAX MX4_CLEAR mask, n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

mask long value, mask specifying the interrupt condition to
clear. Each bit in the mask corresponds to a specific
interrupt condition. If a bit is set, the corresponding
interrupt condition is cleared.

bit 0: following error & halt [EN_ERRHLT]
bit 1: following error [EN_ERR]
bit 2: index pulse [EN_INDEX]
bit 3: position breakpoint [EN_POSBRK]
bit 4: motion complete [EN_MOTCP]
bit 5: probe [EN_PROBE]
bit 6: conflicting commands
bit 7: RTC ignored, stop in progress
bit 8: encoder fault [EN_ENCFLT]
bit 9: <reserved>
bit 10: offset cancel finished [OFFSET]
bit 11: <reserved>
bit 12: DSPL host interrupt [INT_HOST, dspl]
bit 13: DSPL program running error
bit 14: 5 msec [INT5MS]
bit 15: <reserved>

n long value specifying the axis

Function Reference

Mx4 & Windows v5.0 4-131

MX4_CLEAR cont.

DESCRIPTION

The source of interrupts are recorded in the Mx4 controller’s Dual Port
RAM (DPR). When a specific interrupt occurs a bit is set in the DPR.
The MX4_ISTAT function can be used to test these bits. Mx4 never
clears these bits, this must be done by the host program via the
MX4_CLEAR function.

SEE ALSO DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE,
INT5MS, MX4_ISTAT

APPLICATION

EXAMPLE

Clear the axis 3 following error and halt interrupt.

MX4_CLEAR &H1, 3

Function Reference

4-132

MX4_INPUT

FUNCTION Return State Of Digital Input

SYNTAX MX4_INPUT inp

ARGUMENTS

inp long value, specifying the input

Mx4 : 0 <= inp <= 21
Mx4 Octavia : 0 <= inp <= 31
IOExp : 0 <= inp <= 63
IOExp ,2: 0 <= inp <= 127

DESCRIPTION

This function returns (long value) the on / off status of the specified
input. If the input is on, the function returns a non-zero value. If the
input is off, the function returns 0.

SEE ALSO INP_STATE, OUTP_OFF, OUTP_ON

APPLICATION

EXAMPLE

Read the state of each of Mx4 Octavia’s 32 inputs into the local array
Temp.

For I=0 To 31
Temp[I]=MX4_INPUT (I)

Next I

Function Reference

Mx4 & Windows v5.0 4-133

MX4_ISTAT

FUNCTION Test State Of Interrupt Conditions

SYNTAX MX4_ISTAT mask, n

ARGUMENTS

mask long value, mask specifying the interrupt condition to
check. Each bit in the mask corresponds to a specific
interrupt condition. If a bit is set, the corresponding
interrupt condition is checked.

bit 0: following error & halt [EN_ERRHLT]
bit 1: following error [EN_ERR]
bit 2: index pulse [EN_INDEX]
bit 3: position breakpoint [EN_POSBRK]
bit 4: motion complete [EN_MOTCP]
bit 5: probe [EN_PROBE]
bit 6: conflicting commands
bit 7: RTC ignored, stop in progress
bit 8: encoder fault [EN_ENCFLT]
bit 9: <reserved>
bit 10: offset cancel finished [OFFSET]
bit 11: <reserved>
bit 12: DSPL host interrupt [INT_HOST, dspl]
bit 13: DSPL program running error
bit 14: 5 msec [INT5MS]
bit 15: <reserved>

n long value specifying the axis

Function Reference

4-134

MX4_ISTAT cont.

DESCRIPTION

The source of interrupts are recorded in the Mx4 controller’s Dual Port
RAM (DPR). When a specific interrupt occurs a bit is set in the DPR.
The MX4_ISTAT function can be used to test these bits (the function
returns a long value, non-zero if any of the interrupt conditions in the
mask is true). Mx4 never clears these bits, this must be done by the
host program via the MX4_CLEAR function.

SEE ALSO DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE,
INT5MS, MX4_CLEAR

APPLICATION

EXAMPLE

Poll for an axis 1 index pulse interrupt. The timer event procedure is
used to poll for the interrupt condition. When it is detected, a counter
is incremented and the interrupt bit is cleared.

Sub Timer_T()
.
.
 If MX4_ISTAT(IC_INDEX_PULSE, 1) Then

InterruptCount = InterruptCount + 1
MX4_CLEAR IC_INDEX_PULSE, 1

 End If
.
.
End Sub

Function Reference

Mx4 & Windows v5.0 4-135

NOTCH (option)

FUNCTION Implement Notch Filter at Controller Output

SYNTAX NOTCH n, freq, q

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
freq long value specifying the notch filter frequency

0 ≤ freq ≤ 1650 Hz

q long value specifying the notch filter quality factor

q = 1 ~25% bandwidth filter
q = 2 ~10% bandwidth filter

DESCRIPTION

This command implements a notch filter at the controller output for the
specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

K Limiti

to DACOutput
Loop Gain

Notch
Filter

Mx4 Block Diagram with Notch Filter

Function Reference

4-136

NOTCH cont.

The notch filter implements the transfer function:

G s
s

s s

n
n

Q n

() = +

+ +

2 2

2 2

ω
ωω

where, ω πn nf= 2 and fn = notch frequency

The frequency and bandwidth of the notch is programmable.

Note: By programming a notch frequency of 0, the notch filter for
the specified axis is disabled.

SEE ALSO none

EXAMPLE

1) Set a notch filter at 750 Hz with a narrow bandwidth (q = 2) for
axis 2 (see Fig. 4-3 below).

NOTCH 2, 750, 2

2) Disable the notch filter of axis 1.

NOTCH 1, 0, 1

Note: The Mx4 default setting for notch filter is no notch (or notch
disabled).

Function Reference

Mx4 & Windows v5.0 4-137

NOTCH cont.

(a)

(b)

Frequency Response of Discrete 750 Hz, Q=2 Notch Filter

Function Reference

4-138

OFFSET

FUNCTION Amplifier Offset Cancellation

SYNTAX OFFSET n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command minimizes the offset generated by the D/A Converter
(DAC). Upon completion of offset tuning, an interrupt is generated to
the host. The condition is recorded in DPR interrupt status register
location 009h. DPR status register location 00Ch will identify the axis
responsible. Bit 6 of DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh]
is also set.

The interrupt condition is also axis bit-coded in bits 0-3 of the DSPL
OFFSET_REG bit register.

Note: OFFSET may be run with only one axis at a time. The status of
the remaining three axes is not affected by running OFFSET.

To run OFFSET, the following steps should be followed for the
corresponding axis:

1. The axis should be in closed loop with optimal gains set.
2. Ki must be non zero for the axis.
3. The axis should be 'stopped', with no motion commands in

progress.
4. Start OFFSET with the specified axis.
5. Offset adjust is complete when a host interrupt is generated.

SEE ALSO CTRL

Function Reference

Mx4 & Windows v5.0 4-139

OFFSET cont.

APPLICATION

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET, you may neutralize amplifier offset. To make this
happen, you must:

1. enable OFFSET for the axis whose offset is to be
neutralized, and

2. use a non-zero Ki gain that maintains stability and zeros
position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel until position error
is forced to zero. In the absence of amplifier offset, the DAC voltage
that would have achieved zero position error is zero. Any non-zero
DAC value is due to an error caused by amplifier offset voltage. Mx4
measures the voltage, reports satisfactory completion of the OFFSET
command (generates an interrupt), and uses this measured voltage
value to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine is turned on.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT () ;put system in a position loop, make sure integral

;gain is non-zero
.
.
OFFSET ()

EXAMPLE

After verifying that OFFSET Steps 1-3 (see DESCRIPTION, above)
have been followed, do offset tuning for axis 3.

OFFSET 3

Function Reference

4-140

OUTGAIN

FUNCTION Output Loop Gain

SYNTAX OUTGAIN n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value specifying the output gain,

m=0 gain=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gain=16

DESCRIPTION

This command is used to set the gain for the output of the position
loops. The default m is set to zero (gain = 1).

Note: Please see block diagram with CTRL command.

SEE ALSO CTRL

APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself as a low gain. This may be
compensated for by a loop gain adjustment. In practice, this command
may use an argument greater than 1 if the encoder line number is less
than 1000.

Function Reference

Mx4 & Windows v5.0 4-141

OUTGAIN cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Program output loop gains of eight for axis 3 and two for axis 4.

BEGIN_RTC
OUTGAIN 3, 3
OUTGAIN 4, 1

END_RTC

Function Reference

4-142

OUTP_OFF

FUNCTION Set Output to 'Off' State

SYNTAX OUTP_OFF outp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

outp long value specifying the single output to turn ‘Off’

[Mx4] 0 <= outp <= 12
[Mx4 Octavia] 0 <= outp <= 31
[IOExp] 0 <= outp <= 63
[IOExp:2] 0 <= outp <= 127

DESCRIPTION

This command allows the 'Off' status of an [Mx4:13] [Mx4 Octavia:32]
output to be set.

SEE ALSO OUTP_ON, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Turn 'Off' the OUT0, OUT5, OUT6, and OUT12 outputs.

BEGIN_RTC
OUTP_OFF 0
OUTP_OFF 5
OUTP_OFF 6
OUTP_OFF 12

END_RTC

Function Reference

Mx4 & Windows v5.0 4-143

OUTP_ON

FUNCTION Set Output to 'On' State

SYNTAX OUTP_ON outp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

outp long value specifying the single output to turn ‘On’

[Mx4] 0 <= outp <= 12
[Mx4 Octavia] 0 <= outp <= 31
[IOExp] 0 <= outp <= 63
[IOExp:2] 0 <= outp <= 127

DESCRIPTION

This command allows the 'On' status of an [Mx4:13] [Mx4 Octavia:32]
output to be set.

SEE ALSO OUTP_OFF, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Turn 'On' the OUT5, OUT22, and OUT30 Mx4 Octavia outputs.

BEGIN_RTC
OUTP_OFF 5
OUTP_OFF 22
OUTP_OFF 30

END_RTC

Function Reference

4-144

OVERRIDE

FUNCTION Feedrate override for CIRCLE/LINEAR

SYNTAX OVERRIDE val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

val double precision, feedrate override multiplier

0.1 ≤ Val ≤ 10

DESCRIPTION

This command is used to set the feedrate override for the CIRCLE and
LINEAR related commands.

SEE ALSO CIRCLE, LINEAR_MOVE, LINEAR_MOVE_S, LINEAR_MOVE_T

APPLICATION

EXAMPLES

Set a feedrate override of 4x.

OVERRIDE 4.0

Function Reference

Mx4 & Windows v5.0 4-145

PARREAD

FUNCTION Parameter Readback

SYNTAX PARREAD m, sbuf

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value which indicates the parameters to echo.
m=10h axis 1, 5 position loop gain values [CTRL]
m=11h axis 2, 6 position loop gain values [CTRL]
m=12h axis 3, 7 position loop gain values [CTRL]
m=13h axis 4, 8 position loop gain values [CTRL]
m=14h Kilimit value [KILIMIT]
m=15h position loop output gain values [OUTGAIN]
m=16h maximum acceleration [MAXACC]
m=17h enabled interrupt
m=18h mode of operation
m=19h following error and halt interrupt setpoint [EN_ERRHLT]
m=1Ah following error interrupt setpoint [EN_ERR]
m=1Bh axis 1, 5 and 2, 6 position breakpoint interrupt setpoint

[EN_POSBRK]
m=1Ch axis 3, 7 and 4, 8 position breakpoint interrupt setpoint

[EN_POSBRK]
m=1Dh buffer breakpoint interrupt setpoint and contouring block

transfer rate [EN_BUFBRK, BTRATE, CUBIC_RATE]
m=1Eh axis 1, 5 and 2, 6 position breakpoint output mask

[POSBRK_OUT]
m=1Fh axis 3, 7 and 4, 8 position breakpoint output mask

[POSBRK_OUT]
m=20h abort maximum acceleration [ESTOP_ACC]
m=21h master/slave status
m=22h output status [OUTP_ON, OUTP_OFF]
m=23h input state
m=24h encoder fault interrupt setpoint [EN_ENCFLT]
m=25h not used
m=26h acceleration feedforward gain value [CTRL_KA]
m=27h torque limit value [TRQ_LIMIT]

Function Reference

4-146

PARREAD cont.

Sbuf byte array of length 16, used by function to pass data back to
the user

DESCRIPTION

Upon the execution of this command, [Mx4][Mx4 Octavia]
echoes the desired parameters to the DPR. The function picks
up the [Mx4 : 8] [Mx4 Octavia : 16] bytes and places them in
the array Sbuf. The data from the DPR is copied to the array
as follows:

Sbuf[0] : 0B8h Sbuf[8] : 0B8h
Sbuf[1] : 0B9h Sbuf[9] : 0B8h
Sbuf[2] : 0Bah Sbuf[10] : 0B8h
Sbuf[3] : 0BBh Sbuf[11] : 0B8h
Sbuf[4] : 0BCh Sbuf[12] : 0B8h
Sbuf[5] : 0BDh Sbuf[13] : 0B8h
Sbuf[6] : 0Beh Sbuf[14] : 0B8h
Sbuf[7] : 0BFh Sbuf[15] : 0B8h

DATA FORMAT

Please, refer to the Mx4 Octavia User’s Guide or the Mx4
Users’s Guide for a complete list of the data formats.

SEE ALSO none

APPLICATION

This command can be used as a diagnostic tool to monitor all system
parameters.

Function Reference

Mx4 & Windows v5.0 4-147

PARREAD cont.

EXAMPLE

Verify the gains settings for axis 2.

Dim Temp[16] As Byte
PARREAD &H11, Temp[0]

After the above lines of code are executed, the gains for axis 2 are
located in the Temp array as follows:

Temp[0], Temp[1] contain the Ki gain
Temp[2], Temp[3] contain the Kp gain
Temp[4], Temp[5] contain the Kf gain
Temp[6], Temp[7] contain the Kd gain

Function Reference

4-148

POS

FUNCTION Get Actual Position State Variable

SYNTAX POS n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the actual position for
the axis specified.

SEE ALSO FERR, VEL

EXAMPLE

Read the actual position of axis 5.

Dim Temp As Double
Temp = POS (5)

Function Reference

Mx4 & Windows v5.0 4-149

POSBRK_OUT

FUNCTION Set Outputs After Position Breakpoint Interrupt

SYNTAX POSBRK_OUT n, outpon, outpoff

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
outpon long value, bit coding the outputs to turn ‘on’ upon

occurrence of position breakpoint interrupt (EN_POSBRK)
for specified axis.

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 0 OUT0 output
bit 1 OUT1 output
bit 2 OUT2 output
bit 3 OUT3 output
bit 4 OUT4 output
bit 5 OUT5 output
bit 6 OUT6 output
bit 7 OUT7 output
bit 8 OUT8 output
bit 9 OUT9 output
bit 10 OUT10 output
bit 11 OUT11 output
bit 12 OUT12 output
bit 13 OUT13 output
bit 14 OUT14 output
bit 15 OUT15 output
bit 16 OUT16 output
bit 17 OUT17 output
bit 18 OUT18 output
bit 19 OUT19 output
bit 20 OUT20 output

Function Reference

4-150

POSBRK_OUT cont.

bit 21 OUT21 output
bit 22 OUT22 output
bit 23 OUT23 output
bit 24 OUT24 output
bit 25 OUT25 output
bit 26 OUT26 output
bit 27 OUT27 output
bit 28 OUT28 output
bit 29 OUT29 output
bit 30 OUT30 output
bit 31 OUT31 output

outpoff long value, bit coding the outputs to turn ‘off’ upon
occurrence of position breakpoint interrupt (EN_POSBRK)
for specified axis.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 0 OUT0 output
bit 1 OUT1 output
bit 2 OUT2 output
bit 3 OUT3 output
bit 4 OUT4 output
bit 5 OUT5 output
bit 6 OUT6 output
bit 7 OUT7 output
bit 8 OUT8 output
bit 9 OUT9 output
bit 10 OUT10 output
bit 11 OUT11 output
bit 12 OUT12 output
bit 13 OUT13 output
bit 14 OUT14 output
bit 15 OUT15 output
bit 16 OUT16 output
bit 17 OUT17 output
bit 18 OUT18 output

Function Reference

Mx4 & Windows v5.0 4-151

POSBRK_OUT cont.

bit 19 OUT19 output
bit 20 OUT20 output
bit 21 OUT21 output
bit 22 OUT22 output
bit 23 OUT23 output
bit 24 OUT24 output
bit 25 OUT25 output
bit 26 OUT26 output
bit 27 OUT27 output
bit 28 OUT28 output
bit 29 OUT29 output
bit 30 OUT30 output
bit 31 OUT31 output

DESCRIPTION

This command enables the output status of selected outputs to be
activated by the occurrence of a position breakpoint interrupt
(EN_POSBRK) for a specified axis. The POSBRK_OUT need only be
executed once (ie: during initialization) unless the on/off output status
desired changes. The specified outputs will change state as
programmed through the outpon and outpoff arguments when the
specified axis generates a position breakpoint interrupt. The position
breakpoint interrupt (EN_POSBRK) must be enabled for the output status
changes to occur.

SEE ALSO EN_POSBRK, OUTP_OFF, OUTP_ON

APPLICATION

This command can be used for an output operation where the output
status must be tightly coupled to the position of one or more axes.

Command Sequence Example
EN_POSBRK ;enable the pos breakpoint int for specified axis(es)
POSBRK_OUT ;set the desired output status changes

Function Reference

4-152

POSBRK_OUT cont.

EXAMPLE

If a position breakpoint interrupt occurs on axis 1, turn on OUT0-
OUT3 and turn off OUT4.

POSBRK_OUT 1, &H0000000F, &H00000010

Function Reference

Mx4 & Windows v5.0 4-153

POSITION_UNIT

FUNCTION User-Specified Position Unit

SYNTAX POSITION_UNIT val

ARGUMENTS

val double precision, position unit specified in multiples of 1
count

DESCRIPTION

This function allows a user-specified position unit to be programmed.
The default unit of time is one count. The position unit affects the
interpretation of position, velocity, and acceleration arguments in
subsequent calls to the DLL.

SEE ALSO TIME_UNIT

APPLICATION

The POSITION_UNIT and TIME_UNIT functions allow the application
programmer to use whatever units are natural for the application.

EXAMPLE

Program the position and time unit so that the position, velocity, and
acceleration arguments use the units revolutions, revolutions/msec, and
revolutions/msec2. There are 4096 counts/revolution.

POSITION_UNIT 4096
TIME_UNIT 1# / 1000#

Function Reference

4-154

POS_PRESET

FUNCTION Preset Position Counter

SYNTAX POS_PRESET n, pset

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
pset double precision, position counter preset value

-2147483648 ≤ pset ≤ 2147483647 counts

DESCRIPTION

This command will define the present position point for the axes
specified.

Note: POS_PRESET will automatically disable the position breakpoint
interrupt (if enabled). POS_PRESET should be executed only
when the axes specified are not in motion.

SEE ALSO POS_SHIFT, EN_POSBRK

APPLICATION

This command is useful when the position counter must be forced to a
new value. POS_PRESET may be used in the establishment of a new
reference position.

EXAMPLE

Preset the axis 1 and axis 8 positions to 20000 and -45999 counts,
respectively.

BEGIN_RTC
POS_PRESET 1, 20000
POS_PRESET 8, -45999

END_RTC

Function Reference

Mx4 & Windows v5.0 4-155

POS_SHIFT

FUNCTION Position Reference Shift

SYNTAX POS_SHIFT n, psft

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
psft double precision, position reference value

-2147483648 ≤ psft ≤ 2147483647

DESCRIPTION

This command will shift the present position point for the axes
specified.

Note: POS_SHIFT will automatically disable the position breakpoint
interrupt (if enabled) of the specified axes.

SEE ALSO POS_PRESET, EN_POSBRK

APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new value
without losing position integrity (i.e., no counter information is lost).

EXAMPLE

The current axis one position is 45000 counts. Shift the axis 1 position
to 50000 counts. The current axis 3 position is 55000 counts. Shift the
axis 3 position to 50000 counts.

BEGIN_RTC
POS_SHIFT 1, 5000
POS_SHIFT 3, -5000

END_RTC

Function Reference

4-156

PWM_FREQ Vx4++ option command

FUNCTION Set Pulse Width Modulation (PWM) Frequency

SYNTAX PWM_FREQ m, pwmfreq

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the axis group

m = 1 set axes one, two PWM frequency
m = 2 set axes three, four PWM frequency

pwmfreq single precision PWM frequency

1.0 ≤ pwmfreq ≤ 31.0 kHz

DESCRIPTION

The frequency of the Vx4++ pulse width modulation outputs may be
programmed via the PWM_FREQ command. The outputs may be
programmed in axis pairs.

Note: Mx4 with Vx4++ will not execute the PWM_FREQ command if
the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set a PWM frequency of 15.4 kHz for axes three and four.

PWM_FREQ 2, 15.4

Function Reference

Mx4 & Windows v5.0 4-157

REL_AXMOVE

FUNCTION Relative Position Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE n, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the maximum

halting acceleration (deceleration)

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision incremental position

-805306367 ≤ pos ≤ 805306367 counts

vel double precision unsigned target velocity

0 ≤ vel ≤255.99998 counts/200µs

DESCRIPTION

The REL_AXMOVE command is similar to the AXMOVE command with the
exception that relative (or incremental) position is specified, rather than
an end position as with AXMOVE.

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
a target slew rate of -3.5 counts/200µs.

REL_AXMOVE 2, 1.0, -8000, 3.5

Function Reference

4-158

REL_AXMOVE_S

FUNCTION Relative S-Curve Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE_S n, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the

acceleration/deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision relative position

-2147483648 ≤ pos ≤ 2147483647 counts

vel double precision unsigned target velocity

0 ≤ vel ≤ 255.99998 counts/200µs

DESCRIPTION

The REL_AXMOVE_S RTC allows for s-curve command generation
with relative (to current position) endpoint position, slew rate velocity,
and acceleration for each axis. This command is suitable for linear
moves where s-curve acceleration is desired.

Function Reference

Mx4 & Windows v5.0 4-159

REL_AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the
REL_AXMOVE_S along with the linear velocity ramp of the
REL_AXMOVE command. With REL_AXMOVE_S, the acceleration
will reach a value of 2*accx for a maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
a target velocity of (unsigned) 3.5 counts/200µs.

REL_AXMOVE_S 2, 1.0, -8000, 3.5

Function Reference

4-160

REL_AXMOVE_T

FUNCTION Time-Based Relative Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE_T n, acc, pos, tm

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the

acceleration/deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision relative position

-2147483648 ≤ pos ≤ 2147483647 counts

tm double precision motion time

0 ≤ tm ≤ 5000000 (200µs)

Note: The time argument, tm, is an unsigned value with a unit of
200µsec.

DESCRIPTION

The REL_AXMOVE_T RTC allows for trapezoidal command
generation with relative (to current position) endpoint position,
acceleration, and time to complete the move for each axis. This

Function Reference

Mx4 & Windows v5.0 4-161

REL_AXMOVE_T cont.

command is suitable for linear moves where relative endpoint position
and motion time are the specifying parameters.

The REL_AXMOVE_T command is similar to REL_AXMOVE, with the
exception that the velocity argument is replaced with a time argument.
REL_AXMOVE_T will automatically calculate a suitable slew rate
velocity to achieve the programmed relative endpoint position in the
programmed amount of time, following a trapezoidal velocity profile
(similar to REL_AXMOVE).

SEE ALSO REL_AXMOVE, REL_AXMOVE_S, AXMOVE, AXMOVE_S,
AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 4 is unknown. It is known,
however, that we want to move axis 4 10000 counts in the negative
direction (that is, -10000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
be completed in 350msec (1750*200µsec).

REL_AXMOVE_T 4, 1.0, -10000, 1750

Function Reference

4-162

REL_AXMOVE_SLAVE

FUNCTION Superimposes a Relative Axis Move onto a Slave Engaged in
Gearing

SYNTAX REL_AXMOVE_SLAVE n, acc, rel_pos, rel_vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision relative move acceleration
rel_pos double precision position value relative to current

position
rel_vel double precision velocity value relative to current

velocity

DESCRIPTION

This command is similar to AXMOVE with two exceptions. First, it is
relative, not absolute; and second, it works only on the slave axis(es)
involved in electronically geared or cam applications. This command
allows the slave to momentarily disengage from the gearing process
and compensate for its positional short comings.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, GEAR,
GEAR_OFF, GEAR_OFF_ACC, GEAR_POS, GEAR_PROBE

APPLICATION

General master/slaving, in particular flying shear applications, can
benefit from this instruction. Flying shear with registration marks is
handled similarly to that of synchronous cutting. That is, the measured
cutting error is used in the next cycle as an added function to
compensate for the motion's shortcomings.

Function Reference

Mx4 & Windows v5.0 4-163

Slave Accel.

Slave Jerk

Number of Points

Time

Time

Master Speed

Slave Speed

Gear Ratio

One Full CAM Cycle

REL_AXMOVE

REL_AXMOVE_SLAVE cont.

EXAMPLE

Axis 7 is a slave axis engaged in GEAR with the master axis. Add a
trapezoidal profile “on top” of the gearing which adjusts the slave
+1000 counts.

REL_AXMOVE_SLAVE 7, 1.0, 1000, 1

Function Reference

4-164

RESET_MX4

FUNCTION Reset Mx4

SYNTAX RESET_MX4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This command brings the servo controller card back to power-up state.
Upon Mx4's reset completion, a host interrupt is generated via bit 4 of
DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh].

SEE ALSO none

APPLICATION

From time to time all systems may have to be software reset to allow
for an initialization.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Reset the Mx4 controller card.

RESET_MX4

Function Reference

Mx4 & Windows v5.0 4-165

RESETCOMMUNICATIONS

FUNCTION Reset Serial Communication

SYNTAX RESETCOMMUNICATIONS ()

ARGUMENTS

none

DESCRIPTION

This function resets the host – Mx4 serial communication. It returns
(long value) a 1 if successful, 0 otherwise.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS

EXAMPLE

Reset serial communications, monitor the result.

Dim Temp As Long
Temp = RESETCOMMUNICATIONS ()

Function Reference

4-166

R_1BYTE

FUNCTION Read Single Byte From Dual Port RAM

SYNTAX R_1BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads a single byte from the Mx4 Dual Port RAM from
the address (DPR base + offset). The function returns a byte value.

SEE ALSO R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR address 3C2h (RTC command code location).

Dim Temp As Byte
Temp = R_1BYTE (&H3C2)

Function Reference

Mx4 & Windows v5.0 4-167

R_2BYTE

FUNCTION Read Two Bytes From Dual Port RAM

SYNTAX R_2BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads two bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function returns a long
value.

SEE ALSO R_1BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR addresses 3C3h, 3C4h (RTC argument locations).

Dim Temp As Long
Temp = R_2BYTE (&H3C3)

Function Reference

4-168

R_4BYTE

FUNCTION Read Four Bytes From Dual Port RAM

SYNTAX R_4BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads four bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function returns a long
value.

SEE ALSO R_1BYTE, R_2BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h (RTC argument
locations).

Dim Temp As Long
Temp = R_4BYTE (&H3C3)

Function Reference

Mx4 & Windows v5.0 4-169

R_NBYTE

FUNCTION Reads n Bytes From Dual Port RAM

SYNTAX R_NBYTE (offset, number, bytearray)

ARGUMENTS

offset long value, offset into DPR from base address

number long value, number of bytes to read

bytearray byte array, pass by reference, return array of bytes read

DESCRIPTION

This function reads four bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function takes an array as
an argument for the return values.

SEE ALSO R_1BYTE, R_2BYTE, R_NBYTE, W_1BYTE, W_2BYTE,
W_4BYTE, W_NBYTE

EXAMPLE

Read Mx4 DPR addresses 3C2h – 3CCh.

Dim ByteArray(10) As Byte
R_NBYTE (&H3C3, 10, ByteArray)

Function Reference

4-170

SIGNAL_DSPL

FUNCTION Send A Real-Time ‘Signal’ to the DSPL Program

SYNTAX SIGNAL_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function sends a real-time software ‘signal’ to the running DSPL
program. In order for the signal to be received, the DSPL program
must be waiting at a WAIT_UNTIL_RTC command while the SIGNAL_DSPL
command is executed. The SIGNAL_DSPL – WAIT_UNTIL_RTC pair is
used for timing or synchronization purposes between a DSPL program
and the host computer.

SEE ALSO WAIT_UNTIL_RTC (DSPL Programmer’s Guide)

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Send a signal to the waiting DSPL program.

SIGNAL_DSPL

Function Reference

Mx4 & Windows v5.0 4-171

SIGNATURE

FUNCTION Read Mx4 Controller Signature

SYNTAX SIGNATURE sbuf

ARGUMENTS

Sbuf string, used to write the signature in

DESCRIPTION

Each Mx4 controller has an 11-byte signature which identifies the
controller and its firmware versions. This command requires a string as
an argument, and returns the string with format as follows:

Byte 1 ASCII “M”
Byte 2 ASCII “X”
Byte 3 ASCII “4”
Byte 4 integer portion of DSP1 firmware version
Byte 5 fraction portion of DSP1 firmware version
Byte 6 ASCII “+”
Byte 7 integer portion of DSP2 firmware version
Byte 8 fraction portion of DSP2 firmware version
Byte 9 ASCII “+”
Byte 10 integer portion of Vx4++ firmware version (if present)
Byte 11 integer portion of Vx4++ firmware version (if present)

SEE ALSO none

APPLICATION

This function can be used to test for the presence of Mx4 in a system.

EXAMPLE

Test for presence of Mx4.

Dim sBuffer As String
SBuffer = Space(11)
If Left$(SIGNATURE(sBuffer), 3) <> “MX4” Then

MsgBox “Mx4 Not Found”
End

End If

Function Reference

4-172

START

FUNCTION Start Contouring Motion

SYNTAX START n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command starts the motion (simultaneously) for the specified axes
included in 2nd order and cubic spline contouring. START applies to
contouring only.

Note: START will be ignored if contouring is in progress.

SEE ALSO STOP, VECCHG

APPLICATION

This command must be used in all 2nd order and ring buffer cubic
spline contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only
This command can be overwritten by VECCHG which redefines the axes
involved in the contouring process. For example, START starts the
contouring of axes 1, 3, and 4. If in the course of contouring, a VECCHG
is received (with argument) specifying axes 1, 2, and 3, the new
contouring points in the ring buffer will be used for the newly defined
axes. Please also see VECCHG.

Function Reference

Mx4 & Windows v5.0 4-173

START cont.

Command Sequence Example
. ;load ring buffer with positions and velocities
.
MAXACC () ;make sure system can stop
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
START () ;start contouring

EXAMPLE

Start contouring motion in axes 2, 3 and 4.

BEGIN_RTC
START 2
START 3
START 4

END_RTC

Function Reference

4-174

START_DSPL

FUNCTION Initiate DSPL Program Code Execution

SYNTAX START_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function initiates the execution of the previously downloaded
DSPL program.

SEE ALSO AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC,
SIGNAL_DSPL, STOP_DSPL

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Initiate DSPL program execution.

START_DSPL

Function Reference

Mx4 & Windows v5.0 4-175

STEPPER_ON Stp4 option command

FUNCTION Select Servo/Stepper Axes

SYNTAX STEPPER_ON n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value indicating stepper or servo for axis

m=0 servo axis
m=1 stepper axis

DESCRIPTION

This command requires the Stp4 add-on card. STEPPER_ON allows the
user to select the axes which are stepper control axes. Note that at
power-up / reset, all Mx4 axes are configured as servo axes.

EXAMPLE

Select axes 1 and 2 as stepper control axes.

BEGIN_RTC
STEPPER_ON 1
STEPPER_ON 2

END_RTC

Function Reference

4-176

STOP_AXIS

FUNCTION Stop Motion

SYNTAX STOP_AXIS n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command stops the motion of all specified axes simultaneously.
To stop motion, the servo control card uses the programmed values for
maximum acceleration / deceleration. Upon receipt of STOP, the servo
controller aborts the current command. The host is responsible for
clearing the ring buffer of any remaining commands if the axis(es)
stopped was involved in contouring motion.

Note 1: An emergency stop signal, ESTOP_ACC, will perform a
hardware stop. This is an open collector input signal which is
active low and is shared between all of the controller cards.

Note 2: STOP will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

If an axis is halting to a stop from a previously executed STOP RTC or
active ESTOP_ACC input, Mx4 will ignore any motion commands
(AXMOVE, REL_AXMOVE, START or VELMODE) and will report an "RTC
Command Ignored" interrupt to the host. The above motion commands
should not be sent to Mx4 for a halting axis until the axis motion has
come to a stop.

SEE ALSO MAXACC, START

Function Reference

Mx4 & Windows v5.0 4-177

STOP cont.

APPLICATION

For all applications involving bringing speed to zero in the quickest
possible manner.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
STOP () ;stop the motion
. ;upon completion of stop (command) trajectory
. ;Mx4 generates motion complete interrupt

EXAMPLE

Bring the motion of axes 1 and 6 to a halt.

BEGIN_RTC
STOP_AXIS 1
STOP_AXIS 6

END_RTC

Function Reference

4-178

STOP_DSPL

FUNCTION Terminate DSPL Program Code Execution

SYNTAX STOP_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function terminates the execution of the DSPL program. This
command will also halt the motion (if any) of all axes with the
programmed MAXACC acceleration.

SEE ALSO AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC,
SIGNAL_DSPL, START_DSPL

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Terminate DSPL program execution.

STOP_DSPL

Function Reference

Mx4 & Windows v5.0 4-179

SYNC

FUNCTION Master / Slave Select

SYNTAX SYNC m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value selects the Master / Slave status of the Mx4
card

m=0 Mx4 is configured as a Master
m=1 Mx4 is configured as a Slave

DESCRIPTION

If more than one Mx4 card is to be used in a system and card-to-card
synchronization is required, the SYNC command should be used. SYNC
allows multiple Mx4 cards to operate in synchronization within a
system by specifying a single Master and the remaining card(s) as
Slave(s). If only one Mx4 is used in a host computer system, that Mx4
must be configured as a Master.

Note: Mx4 powers-up and resets to a default Master status.

In addition to configuring the Mx4 cards with SYNC (for multiple card
systems), a cable jumper must be included on the J5 connector of each
of the boards. The cable must be wired such that the MASTER signal
from the Master Mx4 connects to the SLAVE signal of each of the
Slave Mx4(s) (see Mx4 User’s Guide, Installing Your Mx4).

SEE ALSO none

Function Reference

4-180

SYNC cont.

APPLICATION

This command is used in applications where tight coordination of more
than four axes is required. This command essentially slaves several
Mx4 cards to a single Master Mx4. Applications involving many axes
contouring may benefit from this command.

Command Sequence Example
This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e., the card is
initialized as a Master).

EXAMPLE

Configure the Mx4 controller as a slave in a multi-Mx4
synchronized system.

SYNC 1

Function Reference

Mx4 & Windows v5.0 4-181

TABLE_SEL

FUNCTION Select Compensation Table

SYNTAX TABLE_SEL n, tb

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

tb long value specifies the compensation table to be used

1 ≤ tb ≤ 8

DESCRIPTION

The TABLE_SEL command allows the user to arbitrarily select the
compensation table for the axis(es) in question. More than one axis
may use a compensation table.

SEE ALSO CIRCLE, CLEAR_POS_TABLE, CLEAR_VEL_TABLE,
DOWN_POS, DOWN_VEL

EXAMPLE

Axes 1 and 2 are to use compensation table 2, while axes 3 and 7 use
compensation table 1.

BEGIN_RTC
TABLE_SEL 1, 2
TABLE_SEL 2, 2
TABLE_SEL 3, 1
TABLE_SEL 7, 1

END_RTC

Function Reference

4-182

TIME_UNIT

FUNCTION User-Specified Time Unit

SYNTAX TIME_UNIT val

ARGUMENTS

val double precision, time unit specified in multiples of 1
second

DESCRIPTION

This function allows a user-specified time unit to be programmed. The
default unit of time is one second. The time unit affects the
interpretation of velocity and acceleration arguments in subsequent calls
to the DLL.

SEE ALSO POSITION_UNIT

APPLICATION

The POSITION_UNIT and TIME_UNIT functions allow the application
programmer to use whatever units are natural for the application.

EXAMPLE

Program the time unit so that velocity and acceleration arguments use
the units counts/msec and counts/msec2.

TIME_UNIT 1# / 1000#

Function Reference

Mx4 & Windows v5.0 4-183

TRQ_LIMIT

FUNCTION DAC Output Voltage Limit

SYNTAX TRQ_LIMIT n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val single precision, DAC output voltage (abs) limit

-10.0 <= val <= 9.9997 volts

DESCRIPTION

The TRQ_LIMIT command specifies a torque limit (by means of output
voltage limiting) value ranging from 0 volts (no output) to +/-10 volts
(full swing) with a resolution of approximately 0.3 millivolts.

The Mx4 controller powers-up and resets to a default torque limit value
allowing full output voltage swing.

SEE ALSO none

APPLICATION

This command can be used in applications where an axis torque needs
to be limited, such as packaging or material handling.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Limit the output voltage swing for axis 2 to +/- 7.5 volts.

TRQ_LIMIT 2, 7.5

Function Reference

4-184

VAR

FUNCTION Get DSPL Variable

SYNTAX VAR m

ARGUMENTS

m long value specifying the monitored var to read

1 <= m <= 4

DESCRIPTION

This function returns a double precision value, the selected monitored
DSPL variable. Remember that Mx4 allows a maximum of four DSPL
variables to be monitored from the DPR at the same time. The
selection of which of the 128 DSPL variables are reported to the DPR
window is made via the MONITOR_VAR command.

SEE ALSO CHANGE_VAR, MONITOR_VAR

EXAMPLE

Read the DSPL variables VAR12, VAR22, VAR44, and VAR59.

Dim Temp1, Temp2, Temp3, Temp4 As Double
MONITOR_VAR 1, 12
MONITOR_VAR 2, 22
MONITOR_VAR 3, 44
MONITOR_VAR 4, 59
Temp1 = VAR (1)
Temp2 = VAR (2)
Temp3 = VAR (3)
Temp4 = VAR (4)

Function Reference

Mx4 & Windows v5.0 4-185

VEC

FUNCTION Get Vx4++ Variable

SYNTAX VEC n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the selected Vx4++
state variable (VIEWVEC) for the axis specified.

SEE ALSO VIEWVEC

EXAMPLE

Read the Vx4++ state variable of axis 3.

Dim Temp As Double
Temp = VEC (3)

Function Reference

4-186

VECCHG

FUNCTION 2nd Order Contouring Vector Change

SYNTAX VECCHG n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value bit coding the axis(es)
m long value which represents the buffer position (in 8 byte

offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include
only those axes coded by n

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

Note: Three buffer levels are used to implement this instruction.

SEE ALSO START

APPLICATION

See START.

Function Reference

Mx4 & Windows v5.0 4-187

VECCHG cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the buffer breakpoint interrupt
.
.
START () ;start contouring for a selected number of axes
. ;based on buffer breakpoint interrupt transfer more
. ;points
VECCHG () ;use points in ring buffer for a new set of axes

EXAMPLE

Begin 2nd order contouring in axes 1, 2, and 3 after the 23rd segment
move command of the ring buffer.

VECCHG &H7, 23

Function Reference

4-188

VEL

FUNCTION Get Actual Velocity State Variable

SYNTAX VEL n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the actual velocity for
the axis specified.

SEE ALSO FERR, POS

EXAMPLE

Read the actual velocity of axis 8.

Dim Temp As Double
Temp = VEL (8)

Function Reference

Mx4 & Windows v5.0 4-189

VELMODE

FUNCTION Velocity Mode

SYNTAX VELMODE n, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
vel double precision target velocity

-256 ≤ vel ≤ 255.99998 counts/200µs

DESCRIPTION

Upon the execution of this command a velocity loop for the specified
axes will be closed. The velocity loop uses the same gains as those
specified using the control law command. VELMODE uses the MAXACC
maximum acceleration / deceleration value to accelerate or decelerate
to the desired velocity.

Note : VELMODE will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

SEE ALSO MAXACC

APPLICATION

This instruction is useful in all general purpose velocity control
applications. Please remember that although VELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, Mx4 continually tries to zero the position error.
Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
.
VELMODE ()

Function Reference

4-190

VELMODE cont.

EXAMPLE
Engage axis 2 in velocity mode with a velocity of 3.71 counts/200 µs.

VELMODE 2, 3.71

Function Reference

Mx4 & Windows v5.0 4-191

VIEWVEC Vx4++ option command

FUNCTION Specify Vx4++ State Variables to View

SYNTAX VIEWVEC n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value specifying state variable

m=0 Iqs error
m=1 Ids error
m=2 Iqs feedback
m=3 Ids feedback
m=4 Iqs command
m=5 Ir feedback
m=6 Is feedback
m=7 It feedback

DESCRIPTION

This command selects the Vx4++ state variable which is available in
the Mx4 Dual Port RAM and also with the VECT4_PARx DSPL
identifiers. As is evident above, only 1 variable may be “viewed” per
axis at any given time.

SEE ALSO VEC

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Change the Vx4++ state variable selection to Ids feedback for axis 1.
Any subsequent VECT4_PAR1 accesses will yield the axis 1 Ids
feedback value.

VIEWVEC 1, 3

Function Reference

4-192

VX4_BLOCK VX4++ option command

FUNCTION Blocks Vx4++ commands

SYNTAX VX4_BLOCK m, blk

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the axis groups

m = 1 axes one, two
m = 2 axes three, four

blk long value block code

blk = 0 Vx4++ block disabled
blk = 1 Vx4++ block enabled

DESCRIPTION

This command is used to block some of the VX4++ commands so that
those commands may not be accidentally executed. The user is
responsible to disable the block command in order to execute one of
the commands listed below (SEE ALSO).

SEE ALSO CURR_LIMIT, CURR_OFFSET, ENCOD_MAG,
MOTOR_TECH, PWM_FREQ

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Enable the Vx4++ command blocking for axes 3 and 4.

VX4_BLOCK 2, 1

Function Reference

Mx4 & Windows v5.0 4-193

W_1BYTE

FUNCTION Write Single Byte To Dual Port RAM

SYNTAX W_1BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value byte value, byte to write to DPR

DESCRIPTION

This function writes a single byte to the Mx4 Dual Port RAM at the
address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Write B6h to Mx4 DPR address 3C2h (RTC command code location).

W_1BYTE (&H3C2, &HB6)

Function Reference

4-194

W_2BYTE

FUNCTION Write Two Bytes To Dual Port RAM

SYNTAX W_2BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value long value, bytes to write to DPR

DESCRIPTION

This function writes two bytes to the Mx4 Dual Port RAM starting at
the address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_4BYTE

EXAMPLE

Write 48B3h to Mx4 DPR address 3C3h, 3C4h (RTC arguments
locations).

W_2BYTE (&H3C3, &H48B3)

Function Reference

Mx4 & Windows v5.0 4-195

W_4BYTE

FUNCTION Write Four Bytes To Dual Port RAM

SYNTAX W_4BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value long value, bytes to write to DPR

DESCRIPTION

This function writes four bytes to the Mx4 Dual Port RAM starting at
the address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE

EXAMPLE

Write 11223344h to Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h
(RTC arguments locations).

W_4BYTE (&H3C3, &H11223344)

Function Reference

4-196

W_NBYTE

FUNCTION Writes n Bytes From Dual Port RAM

SYNTAX W_NBYTE (offset, number, bytearray)

ARGUMENTS

offset long value, offset into DPR from base address

number long value, number of bytes to read

bytearray byte array, pass by reference, array of bytes written

DESCRIPTION

This function reads four bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function takes an array as
an argument for the return values.

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, R_NBYTE, W_1BYTE,
W_2BYTE, W_4BYTE

EXAMPLE

Write Mx4 DPR addresses 3C2h – 3CCh.

Dim ByteArray(10) As Byte
W_NBYTE (&H3C3, 10, ByteArray)

Function Reference

Mx4 & Windows v5.0 4-197

This page intentionally blank.

	Contents
	ch_1.pdf
	C vs. Visual Basic
	Installation
	Other Documentation
	Mx4 User's Guide, Mx4 Octavia User’s Guide
	Mx4Pro: Mx4 Tuning Expert
	DSPL Programmer’s Guide
	Vx4++ User's Guide
	Acc4 User’s Guide

	ch_2.pdf
	A Very Simple Motion Control Application
	Setup
	Creating the User Interface
	Supplying Code
	Make An Executable File
	Introduction
	Getting Started With 3D Panel Controls
	Jog Speed Control
	The Jog Control
	Position Display
	Initialization

	ch_3.pdf
	Obtaining Access To The DLL Functions
	Real Time Commands
	State Variables
	User-Defined Units
	Bus Communication
	Included with the DLL installation are three complete Visual Basic example applictions. The examples are located in the VB_Exam folder in the installation root directory.
	Example 1
	Example 2
	Example 3

	ch_4.pdf
	Reference
	Function Summary
	DESCRIPTION
	Simple Motion
	State Variables, DP RAM
	DSPL Variables
	System Diagnostic
	Multi-Axis RTCs
	DLL Synchronization
	DSPL & Tables
	Bus Communication
	Motor, Power, Sensors and Drive
	Coordinated Motion - Gearing
	Coordinated Motion - Cam
	Serial Communication
	
	
	ALLPOS
	FUNCTION	Read four state variables at one time
	SYNTAX	ALLPOS flag, pos1, pos2, pos3, pos4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ALLVEL, ALLERR, ALLVAR
	EXAMPLE
	Read axis 1-4.
	ALLPOS 0, Axis1, Axis2, Axis3, Axis4

	ALLVEL
	FUNCTION	Read four state variables at one time
	SYNTAX	ALLVEL flag, vel1, vel2, vel3, vel4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ALLPOS, ALLERR, ALLVAR
	EXAMPLE
	Read axis 1-4.
	ALLVEL 0, Axis1, Axis2, Axis3, Axis4

	ALLERR
	FUNCTION	Read four state variables at one time
	SYNTAX	ALLERR flag, pos1, pos2, pos3, pos4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ALLPOS, ALLVEL, ALLVAR
	EXAMPLE
	Read axis 1-4.
	ALLPOS 0, Axis1, Axis2, Axis3, Axis4

	ALLVAR
	FUNCTION	Read four state variables at one time
	SYNTAX	ALLVAR var1, var2, var3, var4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ALLPOS, ALLVEL, ALLERR, MONITOR_VAR
	EXAMPLE
	Read monitored variables
	ALLVAR VAR1, VAR2, VAR3, VAR4

	AUTOSTART_DSPL
	FUNCTION	Start DSPL Execution at Power-Up/Reset
	SYNTAX	AUTOSTART_DSPL flag
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CLEAR_DSPL, DOWNLOAD_DSPL, SIGNAL_DSPL, START_DSPL, STOP_DSPL
	EXAMPLE
	Enable the DSPL autostart option.
	AUTOSTART_DSPL (1)

	AXMOVE
	FUNCTION	Axis Move with Trapezoidal Trajectory
	SYNTAX	AXMOVE axis, acc, pos, vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	AXMOVE_S, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S, REL_AXMOVE_T, STOP

	AXMOVE cont.
	APPLICATION
	EXAMPLE 1

	AXMOVE cont.
	EXAMPLE 2

	AXMOVE_S
	FUNCTION	S-Curve Axis Move with Trapezoidal Trajectory
	SYNTAX	AXMOVE_S axis, acc, pos, vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	AXMOVE_S cont.
	SEE ALSO	AXMOVE, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S, REL_AXMOVE_T, STOP
	APPLICATION
	EXAMPLE 1

	AXMOVE_T
	FUNCTION	Time-Based Axis Move with Trapezoidal Trajectory
	SYNTAX	AXMOVE_T axis, acc, pos, tm
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	AXMOVE_T cont.
	SEE ALSO	AXMOVE, AXMOVE_S, REL_AXMOVE, REL_AXMOVE_S, REL_AXMOVE_T, STOP
	APPLICATION
	EXAMPLE

	BEGIN_RTC
	FUNCTION	Begin Multi-Axis Command
	SYNTAX	BEGIN_RTC
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	END_RTC
	APPLICATION
	EXAMPLE

	BEGINDLLCRITICALSECTION
	FUNCTION	Begin critical section
	SYNTAX	long timeout
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ENDDLLCTIRCALSECTION
	APPLICATION
	EXAMPLE

	BTRATE
	FUNCTION	Set 2nd Order Contour Block Transfer Rate
	SYNTAX	BTRATE m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CUBIC_RATE

	BTRATE cont.
	APPLICATION
	EXAMPLE

	CAM
	FUNCTION	Engage Electronic Cam
	SYNTAX	CAM n, m, tablestart, tablesize
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	The commands which make up the electronic cam feature are CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, and CAM_PROBE. DSPL keywords [CAMCOUNT1-8, Mx4 Octavia] [CAMCOUNT1-4, Mx4].
	The Mx4 controller is capable of storing up to 1600 cam points. Each cam point consists of a master relative position, and an associated slave relative position. A cam table can be between 3 and 1600 cam points long, and the user may define any number
	Cam table points may be downloaded in file format from within Mx4pro or built from within DSPL using the CAM_POINT command. The CAM_POINT command may also be used to modify cam points ‘on the fly.’ The �CAM cont.
	DSPL identifiers CAMCOUNT1,2,3,etc. indicate at which cam table indices the slave axes(es) are ‘at’ (CAMCOUNT1 is for axis 1, etc.).
	The cam points consist of relative position values for master and slave. The first cam point in a table must be 0, 0. The last point in a cam table is the cycle length for master and slave. For example, if the full cam cycle for a master axis is 5000
	SEE ALSO	CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE, MAXACC, SYNC
	APPLICATION

	CAM cont.
	EXAMPLE

	CAM_OFF
	FUNCTION	Turns Off, Disengages Cam Slave Axis(es)
	SYNTAX	CAM_OFF n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE, SYNC
	APPLICATION
	EXAMPLE

	CAM_OFF_ACC
	FUNCTION	Turns Off, Disengages Cam Slave Axis(es) With Acceleration
	SYNTAX	CAM_OFF_ACC n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF, CAM_POINT, CAM_POS, CAM_PROBE, SYNC
	APPLICATION
	EXAMPLE

	CAM_POINT
	FUNCTION	Place Cam Point Into Cam Table
	SYNTAX	CAM_POINT tablestart, tablesize, index, masterpos, slavepos
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, SYNC
	APPLICATION
	EXAMPLE

	CAM_POINT 500, 10, 2, 1000, 3000
	CAM_POS
	FUNCTION	Turns Electronic Cam On at a Specified Position
	SYNTAX	CAM_POS n, m, masterpos, tablestart, tablesize
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	CAM_POS cont.
	APPLICATION
	EXAMPLE
	FUNCTION	Turns Electronic Cam On After Probe Input
	SYNTAX	CAM_PROBE n, m, q, tablestart, tablesize
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, SYNC
	APPLICATION
	EXAMPLE

	CHANGECARDADDRESS
	FUNCTION	Change Mx4 Bus Address
	SYNTAX	CHANGECARDADDRESS address
	If used as a function, the function will return (long) the previous address if successful, zero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CURRENTCARDADDRESS
	EXAMPLE
	The Mx4 card has jumper settings placing it at address 0xd0000 on the ISA bus. Set the Visual Basic programming pointer to this address.
	CHANGECARDADDRESS &HD0000

	CHANGECOMMPORTSETTING
	FUNCTION	Change Serial Communication Comm Port Setting
	SYNTAX	CHANGECOMMPORTSETTING port
	If used as a function, the function will return (byte) the previous comm port setting.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE, GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS
	EXAMPLE
	Set the comm port to communicate to Mx4 through the comm2 port.
	CHANGECOMMPORTSETTING 2

	CHANGESLAVENODEADDRESS
	FUNCTION	Change Serial Communication Node Address
	SYNTAX	CHANGESLAVENODEADDRESS node
	If used as a function, the function will return (byte) the previous slave node address.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE, GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS
	EXAMPLE
	Set the serial communication slave node address to 4.
	CHANGESLAVENODEADDRESS 4

	ch_4A.pdf
	CHANGE_VAR
	FUNCTION	Change DSPL variable Value
	SYNTAX	CHANGE_VAR var, value
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	MONITOR_VAR, VAR
	EXAMPLE

	CLEAR_CUBIC
	FUNCTION	Clear Internal Cubic Spline Data Table
	SYNTAX	CLEAR_CUBIC
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CUBIC_INT, DOWN_CUBIC
	EXAMPLE

	CLEAR_DSPL
	FUNCTION	Clear DSPL Program
	SYNTAX	CLEAR_DSPL
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWNLOAD_DSPL
	EXAMPLE

	CLEAR_POINTS
	FUNCTION	Clear DSPL Table_p / Table_v data storage area
	SYNTAX	CLEAR_POINTS
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWN_POINTS
	EXAMPLE

	CLEAR_POS_TABLE
	FUNCTION	Clear Specified Position Compensation Table
	SYNTAX	CLEAR_POS_TABLE table
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWN_POS
	EXAMPLE

	CLEAR_VEL_TABLE
	FUNCTION	Clear Specified Velocity Compensation Table
	SYNTAX	CLEAR_VEL_TABLE table
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWN_VEL
	EXAMPLE

	COMMUNICATIONSLOST
	FUNCTION	Check For Lost Serial Communication
	SYNTAX	COMMUNICATIONSLOST ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS, GETCOMMINSTCOUNT, GETCOMMTYPE, GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS
	EXAMPLE
	Check for lost serial communication.
	IF (COMMUNICATIONSLOST () = 1) THEN

	CTRL
	FUNCTION	Control Law Parameters
	SYNTAX	CTRL n, par1, par2, par3, par4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	CTRL cont.
	SEE ALSO	CTRL_KA, KILIMIT, OFFSET, OUTGAIN

	CTRL cont.
	APPLICATION
	EXAMPLE

	CTRL_KA
	FUNCTION	Acceleration Feedforward Control Law Parameter
	SYNTAX	CTRL_KA n, ka
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CTRL, KILIMIT, OFFSET, OUTGAIN
	EXAMPLE

	CUBIC_INT
	FUNCTION	Start the Internal Cubic Spline Contouring Execution
	SYNTAX	CUBIC_INT m, si, n, ax
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS

	CUBIC_INT cont.
	DESCRIPTION
	SEE ALSO	CLEAR_CUBIC, CUBIC_RATE, CUBIC_SCALE, DOWN_CUBIC
	APPLICATION
	EXAMPLE

	CUBIC_RATE
	FUNCTION	Set Cubic Spline Point Transfer Rate
	SYNTAX	CUBIC_RATE m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CLEAR_CUBIC, CUBIC_INT, CUBIC_SCALE, DOWN_CUBIC

	CUBIC_RATE cont.
	APPLICATION
	EXAMPLE

	CUBIC_RATE cont.
	CUBIC_RATE cont.
	CUBIC_SCALE
	FUNCTION	Scales/Shift Position Points
	SYNTAX	CUBIC_SCALE n, pos_mult, pos_shift
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, DOWN_CUBIC
	APPLICATION

	CUBIC_SCALE cont.
	EXAMPLE

	CURRENTCARDADDRESS
	FUNCTION	Get Current Mx4 Bus Address
	SYNTAX	CURRENTCARDADDRESS ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECARDADDRESS
	EXAMPLE
	Read the current Mx4 card address into the Visual Basic variable “ADDR”.
	ADDR = CURRENTCARDADDRESS ()

	CURR_LIMIT	Vx4++ option command
	FUNCTION	Set Output Drive Current Limit
	SYNTAX	CURR_LIMIT n, clmt
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	Vx4_BLOCK
	APPLICATION

	CURR_LIMIT cont.	Vx4++ option command
	EXAMPLE

	CURR_OFFSET	Vx4++ option command
	FUNCTION	Compensate Current Feedback Offset
	SYNTAX	CURR_OFFSET n, val
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	Vx4_BLOCK
	APPLICATION
	EXAMPLE

	CURR_PID	Vx4++ option command
	FUNCTION	Current Loop Control Law Parameters
	SYNTAX	CURR_PID n, par1, par2, par3
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CTRL
	APPLICATION
	EXAMPLE

	DDAC
	FUNCTION	Direct DAC Output
	SYNTAX	DDAC n, val
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none

	DDAC cont.
	APPLICATION
	EXAMPLE

	DISABL_INT
	FUNCTION	Disable Interrupts
	SYNTAX	DISABL_INT n, mask
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL2_INT, EN_BUFBRK, EN_PROBE, EN_ERR, EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK
	APPLICATION

	DISABL_INT cont.
	EXAMPLE

	DISABL2_INT
	FUNCTION	Disable Interrupts
	SYNTAX	DISABL2_INT n, mask
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL_INT, EN_ENCFLT
	APPLICATION

	DISABL2_INT cont.
	EXAMPLE

	DOWNLOAD_DSPL
	FUNCTION	Download Compiled DSPL Program To Mx4
	SYNTAX	DOWNLOAD_DSPL filename
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CLEAR_DSPL, START_DSPL, STOP_DSPL
	EXAMPLE

	DOWN_CAM
	FUNCTION	Download Cam Data Points To Mx4 Cam Table
	SYNTAX	DOWN_CAM madata, sldata, npts, index
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE
	EXAMPLE

	DOWN_CUBIC
	FUNCTION	Download Cubic Spline Data Points To Mx4
	SYNTAX	DOWN_CUBIC npts, cudata, index
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, CUBIC_SCALE
	EXAMPLE

	DOWN_POINTS
	FUNCTION	Download DSPL Table_p / Table_v Data Points
	SYNTAX	DOWN_POINTS ptdata, npts, index, posvel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	EXAMPLE

	DOWN_POS
	FUNCTION	Download Position Compensation Table
	SYNTAX	DOWN_POS pdata, npts, table
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWN_VEL, TABLE_SEL
	EXAMPLE

	DOWN_VEL
	FUNCTION	Download Velocity Compensation Table
	SYNTAX	DOWN_VEL vdata, npts, table
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DOWN_POS, TABLE_SEL
	EXAMPLE

	ENCOD_MAG	Vx4++ option command
	FUNCTION	Define Encoder Line Count, Motor Poles, Commut. Option
	SYNTAX	ENCOD_MAG n, p1, p2, p3
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	VX4_BLOCK

	ENCOD_MAG cont.
	APPLICATION
	EXAMPLE

	END_RTC
	FUNCTION	End Multi-Axis Command
	SYNTAX	END_RTC
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	BEGIN_RTC
	APPLICATION
	EXAMPLE

	ENDDLLCRITICALSECTION
	FUNCTION	End critical section
	SYNTAX	ENDDLLCRITICALSECTION
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	BEGINDLLCRITICALSECTION
	APPLICATION
	EXAMPLE

	EN_BUFBRK
	FUNCTION	Enable Buffer Breakpoint Interrupt
	SYNTAX	EN_BUFBRK buffbrk
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL_INT
	APPLICATION

	EN_BUFBRK cont.
	EXAMPLE

	EN_ENCFLT
	FUNCTION	Encoder Fault Interrupt
	SYNTAX	EN_ENCFLT n, m, fer
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	EN_ENCFLT cont.
	SEE ALSO	DISABL2_INT
	APPLICATION
	EXAMPLE

	EN_ERR
	FUNCTION	Enable Following Error Interrupt
	SYNTAX	EN_ERR n, fer
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL_INT, EN_ERRHLT
	APPLICATION

	EN_ERR cont.
	EXAMPLE

	EN_ERRHLT
	FUNCTION	Enable Following Error Interrupt and Halt
	SYNTAX	EN_ERRHLT n, fer
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	EN_ERRHLT cont.
	SEE ALSO	DISABL_INT, EN_ERR, ESTOP_ACC
	APPLICATION
	EXAMPLE

	EN_INDEX
	FUNCTION	Enable Index Pulse Interrupt
	SYNTAX	EN_INDEX n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL_INT, POS_PRESET, POS_SHIFT

	EN_INDEX cont.
	APPLICATION
	EXAMPLE

	EN_MOTCP
	FUNCTION	Enable Motion Complete Interrupt
	SYNTAX	EN_MOTCP n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	DISABL_INT
	APPLICATION

	EN_MOTCP cont.
	EXAMPLE

	EN_POSBRK
	FUNCTION	Enable Position Breakpoint Interrupt
	SYNTAX	EN_POSBRK n, pos
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	EN_POSBRK cont.
	SEE ALSO	DISABL_INT, POS_PRESET, POS_SHIFT
	APPLICATION
	EXAMPLE

	EN_PROBE
	FUNCTION	Enable General Purpose External Interrupt
	SYNTAX	EN_PROBE m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	EN_PROBE cont.
	SEE ALSO	DISABL_INT, ESTOP_ACC
	APPLICATION
	EXAMPLE

	ESTOP_ACC
	FUNCTION	Abort Motion Maximum Acceleration
	SYNTAX	ESTOP_ACC n, acc
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	EN_ERRHLT, MAXACC, STOP, VELMODE

	ESTOP_ACC cont.
	APPLICATION
	EXAMPLE

	FERR
	FUNCTION	Get Following Error State Variable
	SYNTAX	FERR n
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	POS, VEL
	EXAMPLE
	Read the following error of axis 3.
	Dim Temp As Double
	Temp = FERR (3)

	FLUX_CURRENT	Vx4++ option command
	FUNCTION	Set Field Compensation Or Flux Value
	SYNTAX	FLUX_CURRENT n, fval
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	APPLICATION

	FLUX_CURRENT cont.
	EXAMPLE

	GEAR
	FUNCTION	Electronics Gear On
	SYNTAX	GEAR n, m, ratio
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	GEAR_OFF, GEAR_POS, GEAR_PROBE
	APPLICATION
	EXAMPLE

	GEAR_OFF
	FUNCTION	Electronics Gear Off
	SYNTAX	GEAR_OFF n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	GEAR, GEAR_POS, GEAR_PROBE
	APPLICATION
	EXAMPLE

	GEAR_OFF_ACC
	FUNCTION	Turns Electronic Gearing Off and Halt Slave(s)
	SYNTAX	GEAR_OFF_ACC n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	GEAR, GEAR_OFF, GEAR_POS, GEAR_PROBE
	APPLICATION

	GEAR_POS
	FUNCTION	Electronics Gear On at a Specified Leader Position
	SYNTAX	GEAR_POS n, m, ratio, tp
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	GEAR, GEAR_OFF, GEAR_PROBE
	APPLICATION

	GEAR_POS cont.
	EXAMPLE

	GEAR_PROBE
	FUNCTION	Electronics Gear On After Probe Input
	SYNTAX	GEAR_PROBE n, m, q, ratio
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	GEAR_PROBE cont.
	SEE ALSO	GEAR, GEAR_OFF, GEAR_POS
	APPLICATION
	EXAMPLE

	ch_4B.pdf
	GETCOMMINSTCOUNT
	FUNCTION	Get Number of Serial Communication Instances Connected
	SYNTAX	GETCOMMINSTCOUNT (port)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST, GETCOMMTYPE, GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS
	EXAMPLE
	Read the number of instances connected over comm port 2 into Visual Basic variable Temp.
	Dim Temp As Long
	Temp = GETCOMMINSTCOUNT (2)

	GETCOMMTYPE
	FUNCTION	Get Communication Type
	SYNTAX	GETCOMMTYPE ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS
	EXAMPLE
	Query the type of communication which is active.
	Dim Temp As Byte
	Temp = GETCOMMTYPE ()

	GETCURRENTNODEADDRESS
	FUNCTION	Get Current Serial Communication Node Address
	SYNTAX	GETCURRENTNODEADDRESS ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE, RESETCOMMUNICATIONS
	EXAMPLE
	Query the serial communication node address.
	Dim Temp As Byte
	Temp = GETCURRENTNODEADDRESS ()

	GETNUMBEROFAXES
	FUNCTION	Get the number of axes
	SYNTAX	GETNUMBEROFAXES ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO
	EXAMPLE
	Query the number of axes.
	Dim AxesCount As Integer
	AxesCount = GETNUMBEROFAXES ()

	INP_STATE
	FUNCTION	Configure Logic State of Inputs
	SYNTAX	INP_STATE inp, state
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	EXAMPLE

	INT5MS
	FUNCTION	Enable / Disable the 5msec Interrupt
	SYNTAX	INT5MS m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	EXAMPLE

	KILIMIT
	FUNCTION	Integral Gain Limit
	SYNTAX	KILIMIT n, val
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CTRL

	KILIMIT cont.
	APPLICATION
	EXAMPLE

	LOW_PASS (option)
	FUNCTION	Implement Low Pass Filter at Controller Output
	SYNTAX	LOW_PASS n, freq
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	LOW_PASS cont.
	SEE ALSO	none
	EXAMPLE

	LOW_PASS cont.
	MAXACC
	FUNCTION	Maximum Acceleration
	SYNTAX	MAXACC n, acc
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	ESTOP_ACC, STOP, VELMODE
	APPLICATION
	EXAMPLE

	MONITOR_VAR
	FUNCTION	Select DSPL Variables To Monitor
	SYNTAX	MONITOR_VAR m, var
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGE_VAR, VAR
	EXAMPLE

	MOTOR_PAR	Vx4++ option command
	FUNCTION	Motor Parameter
	SYNTAX	MOTOR_PAR n, mpar
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	APPLICATION
	EXAMPLE

	MOTOR_TECH	Vx4++ option command
	FUNCTION	Motor Technology
	SYNTAX	MOTOR_TECH n, mtech
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	Vx4_BLOCK
	APPLICATION
	EXAMPLE

	MX4_CLEAR
	FUNCTION	Clear Interrupt Conditions
	SYNTAX	MX4_CLEAR mask, n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS

	MX4_CLEAR cont.
	DESCRIPTION
	SEE ALSO	DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR, EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE, INT5MS, MX4_ISTAT
	APPLICATION
	EXAMPLE

	MX4_INPUT
	FUNCTION	Return State Of Digital Input
	SYNTAX	MX4_INPUT inp
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	INP_STATE, OUTP_OFF, OUTP_ON
	APPLICATION
	EXAMPLE

	MX4_ISTAT
	FUNCTION	Test State Of Interrupt Conditions
	SYNTAX	MX4_ISTAT mask, n
	ARGUMENTS

	MX4_ISTAT cont.
	DESCRIPTION
	SEE ALSO	DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR, EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE, INT5MS, MX4_CLEAR
	APPLICATION
	EXAMPLE

	NOTCH (option)
	FUNCTION	Implement Notch Filter at Controller Output
	SYNTAX	NOTCH n, freq, q
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	NOTCH cont.
	SEE ALSO	none
	EXAMPLE

	NOTCH cont.
	OFFSET
	FUNCTION	Amplifier Offset Cancellation
	SYNTAX	OFFSET n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CTRL

	OFFSET cont.
	APPLICATION
	EXAMPLE

	OUTGAIN
	FUNCTION	Output Loop Gain
	SYNTAX	OUTGAIN n, m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CTRL
	APPLICATION

	OUTGAIN cont.
	EXAMPLE

	OUTP_OFF
	FUNCTION	Set Output to 'Off' State
	SYNTAX	OUTP_OFF outp
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	OUTP_ON, POSBRK_OUT
	APPLICATION
	EXAMPLE

	OUTP_ON
	FUNCTION	Set Output to 'On' State
	SYNTAX	OUTP_ON outp
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	OUTP_OFF, POSBRK_OUT
	APPLICATION
	EXAMPLE
	FUNCTION	Feedrate override for CIRCLE/LINEAR
	SYNTAX	OVERRIDE val
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	val	double precision, feedrate override multiplier
	0.1 (Val (10
	DESCRIPTION
	This command is used to set the feedrate override for the CIRCLE and LINEAR related commands.
	SEE ALSO	CIRCLE, LINEAR_MOVE, LINEAR_MOVE_S, LINEAR_MOVE_T
	APPLICATION
	EXAMPLES
	Set a feedrate override of 4x.
	OVERRIDE 4.0

	PARREAD
	FUNCTION	Parameter Readback
	SYNTAX	PARREAD m, sbuf
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS

	PARREAD cont.
	DESCRIPTION
	DATA FORMAT
	SEE ALSO	none
	APPLICATION

	PARREAD cont.
	EXAMPLE

	POS
	FUNCTION	Get Actual Position State Variable
	SYNTAX	POS n
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	FERR, VEL
	EXAMPLE
	Read the actual position of axis 5.
	Dim Temp As Double
	Temp = POS (5)

	POSBRK_OUT
	FUNCTION	Set Outputs After Position Breakpoint Interrupt
	SYNTAX	POSBRK_OUT n, outpon, outpoff
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS

	POSBRK_OUT cont.
	POSBRK_OUT cont.
	DESCRIPTION
	SEE ALSO	EN_POSBRK, OUTP_OFF, OUTP_ON
	APPLICATION

	POSBRK_OUT cont.
	EXAMPLE

	POSBRK_OUT 1, &H0000000F, &H00000010
	POSITION_UNIT
	FUNCTION	User-Specified Position Unit
	SYNTAX	POSITION_UNIT val
	ARGUMENTS
	DESCRIPTION
	This function allows a user-specified position unit to be programmed. The default unit of time is one count. The position unit affects the interpretation of position, velocity, and acceleration arguments in subsequent calls to the DLL.
	SEE ALSO	TIME_UNIT
	APPLICATION
	EXAMPLE

	POS_PRESET
	FUNCTION	Preset Position Counter
	SYNTAX	POS_PRESET n, pset
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	POS_SHIFT, EN_POSBRK
	APPLICATION
	EXAMPLE

	POS_SHIFT
	FUNCTION	Position Reference Shift
	SYNTAX	POS_SHIFT n, psft
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	POS_PRESET, EN_POSBRK
	APPLICATION
	EXAMPLE

	PWM_FREQ	Vx4++ option command
	FUNCTION	Set Pulse Width Modulation (PWM) Frequency
	SYNTAX	PWM_FREQ m, pwmfreq
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	Vx4_BLOCK
	APPLICATION
	EXAMPLE

	REL_AXMOVE
	FUNCTION	Relative Position Axis Move with Trapezoidal Trajectory
	SYNTAX	REL_AXMOVE n, acc, pos, vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE_S, REL_AXMOVE_T, STOP
	EXAMPLE

	REL_AXMOVE_S
	FUNCTION	Relative S-Curve Axis Move with Trapezoidal Trajectory
	SYNTAX	REL_AXMOVE_S n, acc, pos, vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	REL_AXMOVE_S cont.
	SEE ALSO	AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_T, STOP
	EXAMPLE

	REL_AXMOVE_T
	FUNCTION	Time-Based Relative Axis Move with Trapezoidal Trajectory
	SYNTAX	REL_AXMOVE_T n, acc, pos, tm
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION

	REL_AXMOVE_T cont.
	SEE ALSO	REL_AXMOVE, REL_AXMOVE_S, AXMOVE, AXMOVE_S, AXMOVE_T, STOP
	EXAMPLE

	REL_AXMOVE_SLAVE
	FUNCTION	Superimposes a Relative Axis Move onto a Slave Engaged in Gearing
	SYNTAX	REL_AXMOVE_SLAVE n, acc, rel_pos, rel_vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, GEAR, GEAR_OFF, GEAR_OFF_ACC, GEAR_POS, GEAR_PROBE
	APPLICATION

	REL_AXMOVE_SLAVE cont.
	EXAMPLE

	RESET_MX4
	FUNCTION	Reset Mx4
	SYNTAX	RESET_MX4
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	APPLICATION
	EXAMPLE

	RESETCOMMUNICATIONS
	FUNCTION	Reset Serial Communication
	SYNTAX	RESETCOMMUNICATIONS ()
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE, GETCURRENTNODEADDRESS
	EXAMPLE
	Reset serial communications, monitor the result.
	Dim Temp As Long
	Temp = RESETCOMMUNICATIONS ()

	R_1BYTE
	FUNCTION	Read Single Byte From Dual Port RAM
	SYNTAX	R_1BYTE (offset)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE
	EXAMPLE
	Read Mx4 DPR address 3C2h (RTC command code location).
	Dim Temp As Byte
	Temp = R_1BYTE (&H3C2)

	R_2BYTE
	FUNCTION	Read Two Bytes From Dual Port RAM
	SYNTAX	R_2BYTE (offset)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE
	EXAMPLE
	Read Mx4 DPR addresses 3C3h, 3C4h (RTC argument locations).
	Dim Temp As Long
	Temp = R_2BYTE (&H3C3)

	R_4BYTE
	FUNCTION	Read Four Bytes From Dual Port RAM
	SYNTAX	R_4BYTE (offset)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, W_1BYTE, W_2BYTE, W_4BYTE
	EXAMPLE
	Read Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h (RTC argument locations).
	Dim Temp As Long
	Temp = R_4BYTE (&H3C3)

	R_NBYTE
	FUNCTION	Reads n Bytes From Dual Port RAM
	SYNTAX	R_NBYTE (offset, number, bytearray)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, R_NBYTE, W_1BYTE, W_2BYTE, W_4BYTE, W_NBYTE
	EXAMPLE
	Read Mx4 DPR addresses 3C2h – 3CCh.
	Dim ByteArray(10) As Byte
	R_NBYTE (&H3C3, 10, ByteArray)

	SIGNAL_DSPL
	FUNCTION	Send A Real-Time ‘Signal’ to the DSPL Program
	SYNTAX	SIGNAL_DSPL
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	This function sends a real-time software ‘signal’ to the running DSPL program. In order for the signal to be received, the DSPL program must be waiting at a WAIT_UNTIL_RTC command while the SIGNAL_DSPL command is executed. The SIGNAL_DSPL – WAIT_UNTIL_
	SEE ALSO	WAIT_UNTIL_RTC (DSPL Programmer’s Guide)
	APPLICATION
	EXAMPLE

	SIGNATURE
	FUNCTION	Read Mx4 Controller Signature
	SYNTAX	SIGNATURE sbuf
	ARGUMENTS
	DESCRIPTION
	Each Mx4 controller has an 11-byte signature which identifies the controller and its firmware versions. This command requires a string as an argument, and returns the string with format as follows:
	Byte 1	ASCII “M”
	Byte 2	ASCII “X”
	Byte 3	ASCII “4”
	Byte 4	integer portion of DSP1 firmware version
	Byte 5	fraction portion of DSP1 firmware version
	Byte 6	ASCII “+”
	Byte 7	integer portion of DSP2 firmware version
	Byte 8	fraction portion of DSP2 firmware version
	Byte 9	ASCII “+”
	Byte 10	integer portion of Vx4++ firmware version (if present)
	Byte 11	integer portion of Vx4++ firmware version (if present)
	SEE ALSO	none
	APPLICATION
	EXAMPLE

	START
	FUNCTION	Start Contouring Motion
	SYNTAX	START n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	STOP, VECCHG
	APPLICATION

	START cont.
	EXAMPLE

	START_DSPL
	FUNCTION	Initiate DSPL Program Code Execution
	SYNTAX	START_DSPL
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	This function initiates the execution of the previously downloaded DSPL program.
	SEE ALSO	AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC, SIGNAL_DSPL, STOP_DSPL
	APPLICATION
	EXAMPLE

	STEPPER_ON	Stp4 option command
	FUNCTION	Select Servo/Stepper Axes
	SYNTAX	STEPPER_ON n, m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	EXAMPLE

	STOP_AXIS
	FUNCTION	Stop Motion
	SYNTAX	STOP_AXIS n
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	MAXACC, START

	STOP cont.
	APPLICATION
	EXAMPLE

	STOP_DSPL
	FUNCTION	Terminate DSPL Program Code Execution
	SYNTAX	STOP_DSPL
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	This function terminates the execution of the DSPL program. This command will also halt the motion (if any) of all axes with the programmed MAXACC acceleration.
	SEE ALSO	AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC, SIGNAL_DSPL, START_DSPL
	APPLICATION
	EXAMPLE

	SYNC
	FUNCTION	Master / Slave Select
	SYNTAX	SYNC m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none

	SYNC cont.
	APPLICATION
	EXAMPLE
	Configure the Mx4 controller as a slave in a multi-Mx4 			synchronized system.
	SYNC 1

	TABLE_SEL
	FUNCTION	Select Compensation Table
	SYNTAX	TABLE_SEL n, tb
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CIRCLE, CLEAR_POS_TABLE, CLEAR_VEL_TABLE, DOWN_POS, DOWN_VEL
	EXAMPLE

	TIME_UNIT
	FUNCTION	User-Specified Time Unit
	SYNTAX	TIME_UNIT val
	ARGUMENTS
	DESCRIPTION
	This function allows a user-specified time unit to be programmed. The default unit of time is one second. The time unit affects the interpretation of velocity and acceleration arguments in subsequent calls to the DLL.
	SEE ALSO	POSITION_UNIT
	APPLICATION
	EXAMPLE

	TRQ_LIMIT
	FUNCTION	DAC Output Voltage Limit
	SYNTAX	TRQ_LIMIT n, val
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	none
	APPLICATION
	EXAMPLE

	VAR
	FUNCTION	Get DSPL Variable
	SYNTAX	VAR m
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CHANGE_VAR, MONITOR_VAR
	EXAMPLE
	Read the DSPL variables VAR12, VAR22, VAR44, and VAR59.
	Dim Temp1, Temp2, Temp3, Temp4 As Double
	MONITOR_VAR 1, 12
	MONITOR_VAR 2, 22
	MONITOR_VAR 3, 44
	MONITOR_VAR 4, 59
	Temp1 = VAR (1)
	Temp2 = VAR (2)
	Temp3 = VAR (3)
	Temp4 = VAR (4)

	VEC
	FUNCTION	Get Vx4++ Variable
	SYNTAX	VEC n
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	VIEWVEC
	EXAMPLE
	Read the Vx4++ state variable of axis 3.
	Dim Temp As Double
	Temp = VEC (3)

	VECCHG
	FUNCTION	2nd Order Contouring Vector Change
	SYNTAX	VECCHG n, m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	START
	APPLICATION

	VECCHG cont.
	EXAMPLE

	VEL
	FUNCTION	Get Actual Velocity State Variable
	SYNTAX	VEL n
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	FERR, POS
	EXAMPLE
	Read the actual velocity of axis 8.
	Dim Temp As Double
	Temp = VEL (8)

	VELMODE
	FUNCTION	Velocity Mode
	SYNTAX	VELMODE n, vel
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	MAXACC
	APPLICATION

	VELMODE cont.
	EXAMPLE
	FUNCTION	Specify Vx4++ State Variables to View
	SYNTAX	VIEWVEC n, m
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	VEC
	APPLICATION
	EXAMPLE

	VX4_BLOCK	VX4++ option command
	FUNCTION	Blocks Vx4++ commands
	SYNTAX	VX4_BLOCK m, blk
	If used as a function, the function will return (long) zero if successful, nonzero if error.
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	CURR_LIMIT, CURR_OFFSET, ENCOD_MAG,
	MOTOR_TECH, PWM_FREQ
	APPLICATION
	EXAMPLE

	W_1BYTE
	FUNCTION	Write Single Byte To Dual Port RAM
	SYNTAX	W_1BYTE (offset, value)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, R_4BYTE, W_2BYTE, W_4BYTE
	EXAMPLE
	Write B6h to Mx4 DPR address 3C2h (RTC command code location).
	W_1BYTE (&H3C2, &HB6)

	W_2BYTE
	FUNCTION	Write Two Bytes To Dual Port RAM
	SYNTAX	W_2BYTE (offset, value)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_4BYTE
	EXAMPLE
	Write 48B3h to Mx4 DPR address 3C3h, 3C4h (RTC arguments locations).
	W_2BYTE (&H3C3, &H48B3)

	W_4BYTE
	FUNCTION	Write Four Bytes To Dual Port RAM
	SYNTAX	W_4BYTE (offset, value)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE
	EXAMPLE
	Write 11223344h to Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h (RTC arguments locations).
	W_4BYTE (&H3C3, &H11223344)

	W_NBYTE
	FUNCTION	Writes n Bytes From Dual Port RAM
	SYNTAX	W_NBYTE (offset, number, bytearray)
	ARGUMENTS
	DESCRIPTION
	SEE ALSO	R_1BYTE, R_2BYTE, R_4BYTE, R_NBYTE, W_1BYTE, W_2BYTE, W_4BYTE
	EXAMPLE
	Write Mx4 DPR addresses 3C2h – 3CCh.
	Dim ByteArray(10) As Byte
	W_NBYTE (&H3C3, 10, ByteArray)

