
DSP Control Group, Inc.

Mx4& Windows 4.0
A Guide to Programming Mx4 in Visual Basic and C

Mx4 & Windows v4.0Mx4 & Windows v4.0

A Guide to Programming Mx4A Guide to Programming Mx4

In Visual Basic and CIn Visual Basic and C

This documentation may not be copied, photocopied, reproduced, translated,
modified, or reduced to any electronic medium or machine-readable form, in
whole or in part, without the prior written consent of DSP Control Group, Inc.

 Copyright 1998-1999 DSP Control Group, Inc.
PO Box 39331
Minneapolis, MN 55435
Phone: (612) 831-9556
FAX: (612) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for
any accident resulting from misuse of its products.

DSPL, Mx4, Acc4, Vx4++, and Vx8++ are trademarks of DSP Control Group,
Inc.

Other brand names and product names are trademarks of their respective
holders.

DSPCG makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a
particular purpose, regarding the licensed materials.

Mx4 & Windows v4.0 i

CContentsontents

11 IntroductionIntroduction .. 1-1

C vs. Visual Basic.. 1-1
Syntax.. 1-2
Data Types .. 1-2

Installation... 1-3
Other Documentation .. 1-3

22 Step-by-Step Application DevelopmentStep-by-Step Application Development...... 2-1

A Very Simple Motion Control Application 2-1
Setup ... 2-2
Creating the User Interface .. 2-6
Supplying Code.. 2-10
Make An Executable File ... 2-12

A Two Axis Jog Control.. 2-13
Introduction... 2-13
Getting Started With 3D Panel Controls....................... 2-14
Jog Speed Control ... 2-16
The Jog Control ... 2-18
Position Display ... 2-23
Initialization ... 2-24

33 Using Motion Commands In Visual BasicUsing Motion Commands In Visual Basic . 3-1

Obtaining Access To The DLL Functions 3-1
Real Time Commands.. 3-2
State Variables .. 3-2
DSPL Variables... 3-3

Contents

ii

DSPL Program Functionality ... 3-3
User-Defined Units.. 3-4
Inputs / Outputs... 3-5
Data Table Downloading ... 3-5
Mx4 Dual Port RAM Access ... 3-6
Bus Communication .. 3-6
Serial Communication.. 3-7
Visual Basic Examples... 3-7

44 Function ReferenceFunction Reference ... 4-1

Reference .. 4-1
Function Summary... 4-4

Control Law & Initialization... 4-5
Simple Motion ... 4-5
Input / Output Control ... 4-6
State Variables, DP RAM .. 4-6
DSPL Variables ... 4-6
System Diagnostic.. 4-7
Multi-Axis RTCs.. 4-7
DSPL & Tables.. 4-7
Contouring... 4-8
Motor, Power, Sensors and Drive 4-9
Coordinated Motion - Gearing 4-9
Coordinated Motion - Cam .. 4-10
Serial Communication .. 4-10
Bus Communication... 4-10
Interrupt Control.. 4-11
Filtering (optional) ... 4-11

Function Listing... 4-12

Mx4 & Windows v4.0 1-1

11 Introduction Introduction

The VB & C Mx4 DLL (Dynamic Link Library) allows Mx4 to be programmed
directly from both Visual Basic and C development platforms on the Windows
operating system (both Windows 95 and Windows NT DLLs are available).
The DLL contains functions and subroutines which permit the Visual Basic or
C programmer to configure Mx4, send commands, read the value of state
variables such as position and velocity, and much more.

C vs. Visual BasicC vs. Visual Basic

Windows applications can be developed with both C and Visual Basic
development tools. The C examples included with the installation were
developed using Microsoft Visual C++ v4.0, and the Visual Basic examples
were developed using Microsoft Visual Basic v5.0.

Visual Basic is a programming system designed to permit a rapid development
of Windows applications. It allows the programmer to interactively create a
graphical user interface. Command buttons, labels, scroll bars, and other
components of the user interface can be positioned graphically. Each of these
objects has a large number of easily modifiable properties which control its
appearance and behavior. The programmer must supply Visual Basic code to be
exectued in response to user interface events. Such an event might be the user
clicking on a command button or selecting a command from a menu.

This manual is written as a Visual Basic Mx4 Programmer’s Guide,
however, the information herein can be easily adapted for the C
programmer as well. Chapters 2 and 3 are intended for the Visual Basic
programmer, but the Chapter 4 function reference information, although
written from the Visual Basic perspective, is also useful for the C
programmer as is described below.

Introduction

1-2

The same DLL supports both Visual Basic and C application development.
The difference lies within the syntax and data types which differ between
Visual Basic and C.

SyntaxSyntax

Chapter 4 of this manual, Function Reference, presents the Visual Basic syntax
and data types for all of the commands. Of course, the programmer can
retrieve this information from the “header” files which are required by both
Visual Basic and C. These files, .bas modules for Visual Basic, and .h header
files for C, serve as function definitions and prototypes for the Visual Basic / C
development tools. The C programmer can use the supplied .h file for
obtaining the C function syntax for the command set.

An important distinction between the syntax for Visual Basic and C is the use
of both subroutines and functions within Visual Basic. That is, the majority of
the command set may be used as either subroutines (no return argument) or
functions (return argument). For example, the following lines will illustrate the
use of POS_PRESET as both a subroutine and a function,

POS_PRESET 1, 1000 ‘Visual Basic subroutine
Temp = POS_PRESET (1, 1000) ‘Visual Basic function

In C, the function call would be,

POS_PRESET (1, 1000); /* C function */

Data TypesData Types

The Visual Basic (.bas module) and C (.h) header files include information
regarding the data types of function arguments and return values. Again, the
function listings in Chapter 4 use Visual Basic data types. The C programmer
can simply use the .h header file supplied with the DLL for C function data
type information.

Introduction

Mx4 & Windows v4.0 1-3

InstallationInstallation

The VB & C DLL distribution media contains an automatic setup program
which will install the DLL, associated support files, as well as both Visual
Basic and C example applications on the user's system. To install the DLL,
simply type a:\setup.exe at the Windows File Run prompt and follow the
instructions. The installation will prompt the user for bus communication /
serial communication parameters for registry initialization.

Other DocumentationOther Documentation

In conjunction with this manual you may find the following items of assistance:

Mx4 User's Guide, Mx4 Octavia User’sMx4 User's Guide, Mx4 Octavia User’s
GuideGuide
This manual includes comprehensive information on Mx4's hardware, software,
system tuning, memory organization, trouble shooting and more. The Mx4
User's Guide is the focal point in learning the technical details of Mx4. All
other Mx4 manuals assume that users have already read the Mx4 User’s Guide.

Mx4Pro: Mx4 Tuning ExpertMx4Pro: Mx4 Tuning Expert
This manual describes Mx4Pro - a testing and tuning software used with Mx4.
Mx4Pro includes features such as a signal generator oscilloscope and live block
diagram which make this software useful for testing and performance
optimization.

DSPL Programmer’s GuideDSPL Programmer’s Guide
This manual will assist you with DSPL, DSPCG’s high level programming
language for the Mx4. DSPL has its own compiler and downloader, which are
included in the Mx4pro Development Tools.

Introduction

1-4

Vx4++ User's GuideVx4++ User's Guide
This manual includes information on the add-on drive control option. Vx4++ is
DSPCG's multi-DSP based drive controller that provides complete drive signal
processing for all industrial DC and AC machines. The capabilities of Vx4++
include that normally offered by servo control amplifiers.

Acc4 User’s GuideAcc4 User’s Guide
This manual includes information on the Mx4 Serial Adapter and Mx4 ADC
options. The Acc4 daughterboard allows the use of RS-232/485 serial
communication to facilitate host-serial-Mx4 based communication.

Mx4 & Windows v4.0 2-1

22 Step-by-Step Application Step-by-Step Application
DevelopmentDevelopment

The purpose of this chapter is to explain how to use Visual Basic and the VB &
C DLL to create Windows motor control applications. The intended audience
for this section is a control engineer who has some familiarity with Mx4 but
knows little about Visual Basic. More experienced Visual Basic programmers
may skip ahead to Chapter 3, Using Mx4 In The Visual Basic Environment;
however, this chapter may serve well as a reference for building an application
from the ground up in Visual Basic.

The following text is based upon developing Visual Basic applications using
Microsoft Visual Basic v5.0 in the Windows 95 operating system.

A Very Simple Motion Control ApplicationA Very Simple Motion Control Application

The example application illustrated in Figure 2-1 displays the position,
following error, and velocity of a servo motor connected to Mx4 in real-time. It
also allows the user to start and stop the motor by clicking on command
buttons.

Step-by-Step Application Development

2-2

Figure 2-1 : Simple Motion Control Application

The following describes the steps involved in the development of the
application program illustrated in Figure 2-1. These steps have been
categorized under Setup, Creating The User Interface, Supplying Code, and
finally, Making An Executable File.

SetupSetup

Several steps are required to create a new Visual Basic program. A Visual
Basic program (or project) consists of a number of different files. The best way
to organize these files is to create a seperate folder for them.

STEP 1:STEP 1:Create a project directory

Invoke the Window's File Manager. Create a folder for your project by selecting
"New" “Folder” from the File menu and enter the name of the new folder.

STEP 2:STEP 2:Start Visual Basic.

Once the Visual Basic environment has been opened, select “New Project” from
the File menu. Select “Standard EXE” from the New Project window (see
Figure 2-2).

Step-by-Step Application Development

Mx4 & Windows v4.0 2-3

Figure 2-2 : Visual Basic Environment, New Project

STEP 3:STEP 3: Save the project and form

After opening a new standard EXE project, the Visual Basic environment
displays a blank form, titled Form1 (see Figure 2-3). Use the "Save Project
As…" and “Save Form1 As…” File menu commands to save the default form,
FORM1.FRM, in the project folder which was created in Step 1.

Step-by-Step Application Development

2-4

Figure 2-3 : Default form Form1

In order to use the functions contained in the VB & C Mx4 DLL, a module
must be incorporated into the the project (the module provides function
declarations and constant definitions from the DLL to the current Visual Basic
project). The code for this module is provided with the DLL installation (see
the MX495_VB.TXT file in the installation root directory).

STEP 4:STEP 4:Create declaration module

To keep projects organized and self-contained, it is advisable to keep a copy of
the declaration module in each project folder. Copy the MX495_VB.TXT file
from the DLL installation directory to the current project folder. Declaration
modules must have a .BAS extension, so rename the file in the project folder to
MX4.BAS. Select “Add Module” from the Visual Basic Project menu (see
Figure 2-4), and then select “Existing” since the declaration module desired is
in the project folder. Select the MX4.BAS module. The module is now part of
the project and is displayed in the Project Explorer window (Figure 2-5).

Step-by-Step Application Development

Mx4 & Windows v4.0 2-5

Figure 2-4 : Adding a module to the project

Figure 2-5 : Project explorer window

Step-by-Step Application Development

2-6

Creating the User InterfaceCreating the User Interface

We are now ready to start creating the user interface. A Visual Basic
application consists of a number of forms (or Windows). Our project will have
only one form, the default form. This form is automatically loaded when the
application is started. We create the user interface by adding controls to this
form. A control is an object on a form such as a command button. Controls are
used to display information and to allow the user to input data and make
selections. The Toolbox (Figure 2-6) is used to add controls to the form. We
will use a label control to display the current position of axis-1.

Figure 2-6 : Visual Basic Toolbox

Step-by-Step Application Development

Mx4 & Windows v4.0 2-7

STEP 5:STEP 5:Create a label control

Click on the label tool. Position the cursor over the location on the form where
you want to place the label. The cursor should now be a cross hair. Click and
drag the cross hair to create a label control with the appropriate dimensions.

Controls have properties which effect their appearance and behavior. The
properties of a control are modified using the properties window (Figure 2-7).

Figure 2-7 : Properties Window

STEP 6:STEP 6:Bring up the Properties window

Click on the label control you just created to select it. If you have been
following this procedure exactly, it will be selected already. Press the F4
function key to bring up the properties window. If necessary, reposition the
properties window so that the label control is visible.

Step-by-Step Application Development

2-8

STEP 7:STEP 7: Select border style

Use the scroll-bar at the right of the properties list to scroll through the
properties of the label control. Find the BorderStyle property and click on it to
select it.

STEP 8:STEP 8: Choose border style

The default value of the BorderStyle property, "0", is shown in the Settings
Box. Click on the arrow to the right of the Settings Box to see a list of all valid
border styles. Select "Fixed-Single". Note how this property affects the
appearance of the label control.

All controls have a "name" property which is assigned by default when the
control is created. This name is used to access the control and its properties
from Visual Basic code. It is a good programming practice to assign a more
meaningful name to important controls.

STEP 9:STEP 9: Select a name for label

Set the name property of the label control created in Step 7 to "PositionLabel".

STEP10: STEP10: Create two more labels

To display the following error and velocity two more label controls are
required. Create these in just the same manner that you created the label control
for displaying position. Set their name properties to "ErrorLabel" and
"VelocityLabel".

The "Caption" property of a label control specifies the text of the label. The
initial value for this property can be specified by the programmer at design-
time. The property can also be modfied from Visual Basic code while the
program is running to create a real-time display. This is how the
"PositionLabel", "ErrorLabel", and "VelocityLablel" controls will be used.
Additional controls are needed to label the position, error, and velocity displays
(i.e. place the text "position" below the "PositionLabel" control).

STEP 11: STEP 11: Set caption properties

Create a label control below the "PositionLabel" control and
set its Caption property to "Position". Provide labels for the
"ErrorLabel" and "VelocityLabel" controls in the same way.

Step-by-Step Application Development

Mx4 & Windows v4.0 2-9

Several more controls are necessary to complete the user interface: a start
command button, a stop command button, and a timer. Timers are a special
type of control which we will discuss later.

STEP12:STEP12: Add Start command button

Add a command button control to the form. This will be the
start button. Set its Caption property to "Start" and its name
property to "StartButton".

STEP13STEP13: Add Stop command button

Add a second command button to the form. This will be the stop button. Set its
Caption property to "Stop" and its Name property to "StopButton".

STEP14STEP14: Add a timer control to the form

The timer control won't be visible when the program is running. It can be
placed anywhere on the form. Set its Interval property to 100. (This property
specifies the timer's timeout interval in milliseconds.)

The graphical portion of the user interface is now complete. Figure 2-8 shows
what it should look like.

Figure 2-8 : Completed Form

Step-by-Step Application Development

2-10

Supplying CodeSupplying Code

The next set of steps is to supply code to give the application the desired
functionality. Each object in the user interface has a number of events
associated with it. Event procedures are used to respond to these events.
"Load" is an important event associated with a form. This event occurs when
the form is first displayed. Our application has only one form, the default form.
This form is displayed automatically when the application is invoked. The
event procedure for responding to the "Load" event is a good place to put code
for initializing Mx4.

STEP 15:STEP 15: Bring up the Code window

Double click on the background (dotted) area of the form to bring up the code
window. A template for the Form_Load event procedure is displayed (Figure 2-
9).

STEP16:STEP16: Supply initialization code

Add the following Mx4 intitialization code to the Form-Load form.

Dim sBuffer As String ‘ String for the signature

‘ The buffer must be initialized to a length of at least 11
sBuffer = Space (11)

‘ This code will use the DLLs signature function to make sure
‘ the Mx4 card is present at the address specified in the
‘ Registry, default address is 0xD0000
If (Left$(signature(sBuffer), 3) <> “Mx4”) Then

MsgBox “Mx4 Card NOT found”, vbOK, “Mx4 Error”
End

End If

‘ The next two functions will set the time and position units
‘ of the DLL into 200 usec, position will be in units of encoder
‘ counts, velocity will be in units of encoder counts/200usec,
‘ and so on.
time_unit 1# / 5000#
position_unit 1

‘ The next 2 function calls will set up the control gains and
‘ maximum acceleration for axis 1. Notice the error checking,
‘ a common error that could occur is a parameter may be out of
‘ range.
If (ctrl (1, 100, 5208, 5796, 1432) <> ERR_OK) Then

MsgBox “Error occurred”, vbOK, “CTRL Error”
End If
If (maxacc (1,1#) <> ERR_OK) Then

MsgBox “Error occurred”, vbOK, “MAXACC Error”
End If

Step-by-Step Application Development

Mx4 & Windows v4.0 2-11

Figure 2-9 : Code Window

The timer control will generate a timeout event every 100ms. These events can
be used to update the real-time position, following error, and velocity display.
For example, to update the position display, the program must periodically read
the position of axis-1 and update the Caption property of the label control for
position.

STEP17:STEP17: Supply timeout code

Double click on the timer control. Add the statements shown below to the
Timer1_Timer event procedure.

Sub Timer1_Timer
 PositionLabel.Caption = pos(1)
 ErrorLabel.Caption = ferr(1)
 VelocityLabel.Caption = format(vel(1),"####0.000")
End Sub

When the user clicks on the start command button the program must issue a
"velocity mode" command to Mx4. When the user clicks on the stop button the
program must issue a "stop" command. This functionality is easily
implemented by supplying code for the start and stop button's "Click" event
procedure.

STEP 18STEP 18: Supply Start button code

Double click on the start command button. Add the statement shown below to
theStartButton_Click event procedure

Sub StartButton_Click()

Step-by-Step Application Development

2-12

 velmode 1, 1
End Sub

STEP 19STEP 19: Supply Stop button code

Double click on the stop command button. Add the statement show below to the
StopButton_Click event procedure.

Sub StopButton_Click()
 stop_axis 1
End Sub

The application is now complete. It’s time to see how it works.

STEP 20:STEP 20: Run the program

Start the program by selecting "Start" from the Run Menu. Check it out. If an
encoder is hooked up, you should be able to see the position display change as
the shaft of the motor is spun. When done experimenting, select "End" from the
Run Menu to terminate the application.

Make An Executable FileMake An Executable File

The final step in the creation of a Windows applicaiton using Visual Basic is to
generate an executable. The executable can be invoked just like any other
windows application, and is independent of the Visual Basic development
environment.

STEP 21:STEP 21: Create executable

Select "Make filename.exe…" from the File menu. By default this command
will create an executable in the project directory with the same name as the
project. Your application is now complete.

Step-by-Step Application Development

Mx4 & Windows v4.0 2-13

A Two Axis Jog ControlA Two Axis Jog Control

IntroductionIntroduction

This section describes a virtual jog control implemented using Visual Basic and
Mx4. This Windows application allows the user to control the position of a two
axis servo system by depressing up, down, left, and right buttons. The intended
audience for this section is a control engineer who has some familiarity with
Mx4 but knows little about Visual Basic.

Figure 2-10. Jog Control Application

The application's display is shown in Figure 2-10. The shaft positions of the
two servo motors are displayed to the right of the jog control. The horizontal
scroll bar below the jog control is used to select a jog speed. To rotate the shaft
of the axis-1 servo-motor clockwise the user positions the mouse over the
"right" button and presses the mouse button. While the button is held down the
shaft rotates at the specified jog speed. When the user releases the mouse
button, the motion stops. When the user clicks on the central octagon, the
system returns to its home position. To exit the application, the user clicks on
the close button.

Step-by-Step Application Development

2-14

The VB & C Mx4 DLL is used to program Mx4 in Visual Basic. This section
assumes the reader is familiar with accessing the routines in this DLL from
Visual Basic.

Getting Started With 3D PanelGetting Started With 3D Panel
ControlsControls

The jog control application achieves its realistic "look" through the extensive
use of 3D panel controls. We assume the reader is unfamiliar with these
controls and we will provide a brief introduction to them here. Readers already
familiar with 3D panel controls may skip this section.

The 3D panel control is one of a number of controls that are made available by
incorporating Sheridian Software System's 3D Widgets VBX (THREED.VBX)
into a project. This VBX is distributed with the professional edition of Visual
Basic. Figure 2-11 shows the additional controls that this VBX adds to the
toolbar.

Figure 2-11. Controls provided by THREED.VBX

Step-by-Step Application Development

Mx4 & Windows v4.0 2-15

Figure 2-12 Features of a 3D panel control

A 3D panel control can be used to group other controls on a raised background
or to lend a three dimensional appearance to a standard control such as a label.
A 3D panel has an outer bevel, a border, and an inner bevel. These features are
shown in Figure 2-12. The properties BevelInner, BevelOuter, BevelWidth,
and BorderWidth control the appearance of these features. For example, by
setting the BevelInner property to 0 (none) the inner bevel can be eliminated.

A 3D panel control is similar to a frame control in that other controls can be
placed on it. When the panel control is moved, these controls move with it.
When the panel control is deleted, these child controls are deleted as well. In
our jog control application, a 3D panel control is used to provide the overall
background for the display. 3D panel controls are also used to construct the x-
position, y-position, and jog speed displays. A label control is used to provide
the numeric display. This label control is placed on a 3D panel control which
provides the border for the display. The border panel is itself placed on the
background panel. These relationships are illustrated in Figure 2-13.

Step-by-Step Application Development

2-16

Figure 2-13. 3D panel controls used to provide an application background and
a display border.

Jog Speed ControlJog Speed Control

The user selects a jog speed using a horizontal scroll bar. The jog speed is
displayed numerically in a label control to the left of the scroll bar. The
components of the jog speed control are shown in Figure 2-14. Horizontal
scroll bar controls (Figure 2-15) have a Value property which gives the current
position of the scroll box on the scroll bar. The scroll bar's scale can be
specified using the Min and Max properties. Min specifies the value of the Value
property when the scroll box is at the left side of the scroll bar. Max specifies the
value of the Value property when the scroll box is at the right side of the scroll
bar. We have set the JogSpeedScroll control's Min property to zero and its Max
property to 32767. Because the Value property is an integer, we can't use it
directly to obtain the jog speed. Some scaling is required. The constant
MaxJogSpeed is used to specify the maximum jog speed the user can select. Jog
speeds must be between 0 and MaxJogSpeed. The equation below is used to
convert the scroll bar's Value property into a jog speed.

Step-by-Step Application Development

Mx4 & Windows v4.0 2-17

<speed> = JogSpeedScroll.Value * MaxJogSpeed / 32768.

Figure 2-14. Components of the jog speed control

Figure 2-15. Elements of a horizontal scroll bar

There are two events associated with the scroll bar: Scroll and Change. While
the user drags the scroll box, the scroll event is generated repeatedly and the
JogSpeedScroll_Scroll() event procedure is exectued. The user can also
change the position of the scroll box by clicking on the left or right arrows or
by clicking on the scroll bar itself. The Change event is generated whenever the
position of the scroll box is changed. The JogSpeedScroll_Change() event
procedure handles this event. The code for these two event procedures is given
in Listing 2-1. Both procedures update the Caption property of the label control
JogSpeedLabel1. This label control is used to display the selected jog speed.

Step-by-Step Application Development

2-18

Sub JogSpeedScroll_Change ()

 JogSpeedLabel1.Caption = Format(MaxJogSpeed *

JogSpeedScroll.Value / 32768, "####0.0000")

End Sub

Sub JogSpeedScroll_Scroll ()

 JogSpeedLabel1.Caption = Format(MaxJogSpeed *

JogSpeedScroll.Value / 32768, "####0.0000")

End Sub

Listing 2-1: Event procdures for JogSpeedScroll
horizontal scroll bar control

The Jog ControlThe Jog Control

The components of the jog control are shown in Figure 2-16. The operation of
the up, down, left, and right buttons is straight forwared. The event procedures
associated with the four buttons are all very similar. We will describe only the
event procedures for the RightButton control (Listing 2-2). When the user
positions the mouse over the control and presses the mouse button, a MouseDown
event is generated and the RightButton_MouseDown() event procedure is
executed. This event procedure issues a VELMODE command for axis-1 to Mx4.
This command causes the shaft of the axis-1 servo-motor to begin rotating in
the clockwise direction. The rotation speed is obtained from the
JogSpeedScroll horizontal scroll bar discussed earlier. When the user
releases the mouse button, a MouseUp event is generated and the
RightButton_MouseUp() event procedure is exectued. This procedure issues a
stop_axis command to Mx4 for axis-1 causing the shaft of the axis-1 servo-
motor to stop rotating.

Step-by-Step Application Development

Mx4 & Windows v4.0 2-19

Sub RightButton_MouseDown (Button As Integer, Shift As Integer, X

As Single, Y As Single)

 'Issue velmode command to Mx4 to make axis-1 spin in the

positive

 'direction at the speed specified by the the current value

 'of the Horizontal scroll bar.

 velmode 1, MaxJogSpeed * JogSpeedScroll.Value / 32768

End Sub

Sub RightButton_MouseUp (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'Issue a stop command to Mx4

 stop_axis 1

End Sub

Listing 2-2: Event procedures for the RightButton control.

Step-by-Step Application Development

2-20

Figure 2-16. Components of the jog control

The operation of the HomeButton control is a little more complicated. This is
because Visual Basic does not provide an "Octagonal Button" control. We had
to use a picture control and emulate some of the behavior of a standard
command button using Visual Basic code. The appearance of a command
button control changes when it is depressed. To emulate this behavior, we
needed two bitmap images: one showing the octagonal button in the up position
and the other showing it in the down position. (We created these images using
Corel Draw, although any other drawing program could have been used.) The
idea is to change the bitmap displayed by the HomeButton picture box control
while the program is running. To do this, two additional picture box controls
(OctagonIn and OctagonOut) are necessary. The Visible property of these
controls is set to False to prevent them from being displayed while the program
is running. OctagonIn holds the bitmap image of the button in the down
position. OctagonOut holds the image of the button in the up position. These
bitmaps are setup at design time by assigning the appropriate .BMP file to their
Picture property. To change the image displayed, we assign the Picture
property of either OctagonIn or OctagonOut to the Picture property of the
HomeButton control. The statement below, for example, will cause the
HomeButton control to display the image of the button in the down position.

Step-by-Step Application Development

Mx4 & Windows v4.0 2-21

HomeButton.Picture = OctagonIn.Picture

The event procedures for the HomeButton control are shown in Listings 3 and 4.
When the user positions the mouse over the home button and presses the mouse
button, a MouseDown event is generated and the HomeButton_MouseDown() event
procedure is executed. This procedure selects the button-down image. When the
user releases the mouse button, a MouseUp event is generated and the
HomeButton_MouseUp() event procedure is executed. This procedure selects the
button-up image. When the user presses and releases the mouse button over a
control, a Click event is generated. When the HomeButton_Click() event
procedure is exectued, an AXMOVE command is issued to Mx4 causing the servo-
motors to return to their home positions. The procedure must determine
whether to use a positive or a negative velocity to return each axis to its home
position. The procedure selects a positive axis-1 velocity, for example, only if
the shaft must rotate in the positive direction to get to the home position. Low
level Mx4 motion commands permit the desired motion for several axes to be
specified at once. All of the motion control procedures in the DLL are single
axis. The BEGIN_RTC() and END_RTC() procedures permit a multi-axis
command to be built up from multiple calls to a single axis motion control
porcedure. We did this with AXMOVE() in HomeButton_Click() to illustrate the
technique.

Step-by-Step Application Development

2-22

Sub HomeButton_Click ()

 Dim x_velocity, y_velocity

 'Determine whether a positive or a negative

 'velocity is required to return axis-1 to the

 'home position

 If pos(1) < 0 Then

 x_velocity = MaxJogSpeed

 Else

 x_velocity = -MaxJogSpeed

 End If

 'Determine whether a positive or a negative

 'velocity is required to return axis-2 to the

 'home position

 If pos(2) < 0 Then

 y_velocity = MaxJogSpeed

 Else

 y_velocity = -MaxJogSpeed

 End If

 'Issue an axmove command to Mx4 to get both

 'axes back to the home position

 begin_RTC

 axmove 1, 1.9999, 0, x_velocity

 axmove 2, 1.9999, 0, y_velocity

 end_RTC

End Sub

Listing 2-3: HomeButton_Click() event procedure

Step-by-Step Application Development

Mx4 & Windows v4.0 2-23

Sub HomeButton_MouseDown (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'While mouse button is down display the "Octagon In" picture

 HomeButton.Picture = OctagonIn.Picture

End Sub

Sub HomeButton_MouseUp (Button As Integer, Shift As Integer, X As

Single, Y As Single)

 'The user has release the mouse button. Display the "Octagon

Out"

 'picture

 HomeButton.Picture = OctagonOut.Picture

End Sub

Listing 2-4: HomeButton_MouseDown() and HomeButton_MouseUp()
event procedures.

Position DisplayPosition Display

The shaft positions of the x and y servo-motors are displayed in real-time using
label controls. The controls making up the position display are illustrated in
Figure 2-17. The timer control is configured to generate a Timer event every
100ms. When this event occurs, the Timer1_Timer() event procedure (Listing
2-5) is executed. This procedure updates the Caption properties of the label
controls (Axis1PositionLabel1 and Axis2PositionLabel2) used to display the
shaft positions of the two motors.

Step-by-Step Application Development

2-24

Figure 2-17 Components of the shaft position display

Sub Timer1_Timer ()

 'The timer has expired. Update the axis-1 and axis-2

 'position display

 Axis1PositionLabel1.Caption = pos(1)

 Axis2PositionLabel1.Caption = pos(2)

End Sub

Listing 2-5: The Timer1_Timer() event procedure

InitializationInitialization

This application has only one form. This form is loaded automatically at
startup. When the form is loaded, a Load event is generated and the
Form_Load() event procedure (Listing 2-6) is executed. This procedure is used
to initialize Mx4 and set up the application. The listing is self-explanatory. A

Step-by-Step Application Development

Mx4 & Windows v4.0 2-25

number of properties of the JogSpeedScroll horizontal scroll bar control are
initialized using the MaxJogSpeed constant. The location of the background
panel on the form is computed here as well. This is done to allow the
background panel to be in the center of the screen regardless of the screen's
resolution or size.

Sub Form_Load ()

 Screen.MousePointer = 11 'Turn mouse pointer into hourglass

 'Make sure Mx4 is present
 If Left$(signature(), 3) <> "MX4" Then
 MsgBox "Mx4 Not Found"
 End
 End If

 reset_MX4 'reset Mx4

 time_unit 1 'Let time unit be one Mx4 tick (200us)

 'Setup Control Law for Axis-1
 ctrl 1, 100, 5208, 5796, 1432 'Ki,Kp,Kf,Kd
 maxacc 1, 1.9999
 estop_acc 1, 1.9999
 outgain 1, 0
 KiLimit 1, 0

 'Setup Control Law for Axis-2
 ctrl 2, 100, 5208, 5796, 1432 'Ki,Kp,Kf,Kd
 maxacc 2, 1.9999
 estop_acc 2, 1.9999
 outgain 2, 0
 KiLimit 2, 0

 'make sure axis 1 and 2 are stopped
 begin_RTC
 stop_axis 1
 stop_axis 2
 end_RTC

 'Initialize the Jog Speed Control
 JogSpeedScroll.Value = 1 / MaxJogSpeed * 32768
 JogSpeedLabel1.Caption = Format(1, "####0.000")
 JogSpeedScroll.SmallChange = .1 / MaxJogSpeed * 32768
 JogSpeedScroll.LargeChange = 1 / MaxJogSpeed * 32768

Listing 2-6: Form_Load() event procedure

Step-by-Step Application Development

2-26

 'Position the background panel in the

 'center of the window

 Jog.Width = Screen.Width

 Jog.Height = Screen.Height

 Jog.Top = 0

 Jog.Left = 0

 BackgroundPanel.Top = (Jog.ScaleHeight -

BackgroundPanel.Height) / 2

 BackgroundPanel.Left = (Jog.ScaleWidth - BackgroundPanel.Width)

/ 2

 Screen.MousePointer = 0 'Return the mouse pointer to its normal

shape

Listing 2-6 (continued): Form_Load() event procedure.

Mx4 & Windows v4.0 3-1

33 Using Motion Using Motion
Commands Commands In VisualIn Visual
BasicBasic

This chapter provides a reference to the most commonly asked questions on
how to use the Mx4 DLL commands in Visual Basic. Detailed information on
all of the functions and commands are located in chapter 4 of this manual,
Function Reference.

Obtaining Access Obtaining Access To The DLL FunctionsTo The DLL Functions

Before beginning any programming in Visual Basic which utilizes the
functions of the DLL (MX495.DLL or MX4NT.DLL), the Visual Basic project
must have access to the DLL. This access comes in the way of a special module
that must be incorporated in the user’s project. This module contains a Visual
Basic declaration for each function in the DLL. It also defines a number of
useful constants.

After installing the Mx4 DLL, the root directory of the installation will contain
a file (MX495_VB.TXT or MX4NT_VB.TXT). This file contains the code for
the required Visual Basic module.

To create the module in a Visual Basic project, the .txt file should be copied to
the project directory with the .bas extension. For example, copy
MX495_VB.TXT to the project directory as MX4.BAS. In the Visual Basic
environment, select Add Module from the Project menu. Select Existing, then
select the MX4.BAS module, and Open. The module has been added to the
project and should be visible in the Project Explorer window. Any of the
functions discussed in this manual (see chapter 4, Function Reference) are now
available to the project.

Using Motion Commands In Visual Basic

3-2

Real Time CommandsReal Time Commands

One of the primary purposes of the DLL is to allow the Visual Basic
programmer to conveniently issue real time commands to Mx4. One category
of Mx4 commands requires special consideration: mutli-axis commands. Many
motion control commands permit the desired motion for several axes to be
specified at once. Such commands are useful for synchronizing the motion of
two or more axes. All of the motion control functions in the DLL are, however,
single axis. The BEGIN_RTC and END_RTC functions permit a multi-axis
command to be built up from multiple calls to a single axis DLL function. The
AXMOVE function illustrates this. A call to AXMOVE by itself will generate an
AXMOVE RTC for the specified axis. To generate a two-axis AXMOVE RTC two
calls to AXMOVE would be bracketed between calls to BEGIN_RTC and END_RTC as
shown below.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

While a multi-axis command is being built up, no commands are issued to
Mx4. An RTC is issued only after the call to the END_RTC function. Keep in
mind that the purpose of the BEGIN_RTC and END_RTC functions is to allow
specific commands to be generated. Their generality is limited. All of the
function calls bracketed by BEGIN_RTC and END_RTC must be of the same type.
Not all commands are multi-axis.

State VariablesState Variables

The state variables actual position [POS], actual velocity [VEL], and following
error [FERR] are available to the programmer for all [Mx4 : 4][Mx4 Octavia : 8]
axes. For example, to display the position, velocity, and following error of axis
6 to label controls lblPos, lblVel, and lblEr,

lblPos.Caption = POS (6)
lblVel.Caption = Format(VEL (6), “####0.000”)
lblErr.Caption = FERR (6)

Note that the velocity display is formatted to include fractional numbers.

 Using Motion Commands In Visual Basic

Mx4 & Windows v4.0 3-3

DSPL VariablesDSPL Variables

The DLL allows DSPL variables to be easily monitored as well as written to
through the functions CHANGE_VAR, MONITOR_VAR, and VAR.

To change the value of DSPL variable VAR82 to 10000.5,

CHANGE_VAR 82, 10000.5

DSPL variables are monitored through a window in the Dual Port RAM which
allows up to 4 variables to be “viewed” at the same time. Reading or
monitoring a variable involves associating the DSPL variable with the specific
DPR window (MONITOR_VAR), and then reading the DPR window (VAR). For
example, set monitor window number 1 to VAR44, set monitor window number
2 to VAR71. Then read the variable values into temp storage Temp1 and
Temp2.

MONITOR_VAR 1, 44
MONITOR_VAR 2, 71
Temp1 = VAR (1)
Temp2 = VAR (2)

After the above code is executed, Temp1 contains the value of VAR44, and
Temp2 contains the value of VAR71.

DSPL Program FunctionalityDSPL Program Functionality

With regards to DSPL programming applications, the Visual Basic
programmer may require any or all of the following functionality,

clearing a DSPL program [CLEAR_DSPL]
downloading a DSPL program [DOWNLOAD_DSPL]
setting a DSPL program for autostart execution [AUTOSTART_DSPL]
initiating execution of a DSPL program [START_DSPL]
signaling to a DSPL program from the host [SIGNAL_DSPL]
terminating DSPL program execution [STOP_DSPL]

As an example, download a compiled DSPL program, test (remember,
compiling a DSPL .hll file will create a .lod download file), which is located in

Using Motion Commands In Visual Basic

3-4

the c:\work directory. Prior to downloading, clear the DSPL storage area.
After the program has been downloaded, enable autostart execution.

Dim sFileName As String
sFileName = “c:\work\test.lod”
CLEAR_DSPL
DOWNLOAD_DSPL sFileName
AUTOSTART_DSPL 1

To initiate execution of a downloaded DSPL program,

START_DSPL

Similarly, to signal to a DSPL program waiting at a WAIT_UNTIL_RTC line, or to
terminate execution of a DSPL program,

SIGNAL_DSPL
STOP_DSPL

User-Defined UnitsUser-Defined Units

Not every motion application lends itself to pre-defined position and/or time
units, and for that reason, the DLL allows the Visual Basic programmer to
define both position [POSITION_UNIT] and time [TIME_UNIT] units. The default
DLL position unit is counts, and the default DLL time unit is seconds.

Consider the case of an engraving application which lends itself to units of
inches (where 1 inch is equal to 7390 counts) and milliseconds (msec); that is
position in units of inches, velocity in units of inches/msec, and acceleration in
units of inches/msec2. The following code sets these units for all subsequent
accesses through the DLL,

POSITION_UNIT 7390
TIME_UNIT 1#/1000#

 Using Motion Commands In Visual Basic

Mx4 & Windows v4.0 3-5

Inputs / OutputsInputs / Outputs

The DLL includes functions which allow the user to manipulate Mx4’s digital
I/O. Inputs may be read via the MX4_INPUT function while outputs can be
controlled with the OUTP_ON and OUTP_OFF functions.

For example, if IN19 is on, then turn on OUT4, otherwise turn off OUT20 and
OUT21.

If MX4_INPUT (19) Then
OUTP_ON 4

Else
BEGIN_RTC

OUTP_OFF 20
OUTP_OFF 21

END_RTC
End If

Data Table DownloadingData Table Downloading

Downloading data tables to Mx4 is an important feature of the DLL for many
applications. Data tables include cam tables [DOWN_CAM], cubic spline tables
[DOWN_CUBIC], position and velocity compensation tables [DOWN_POS and
DOWN_VEL], and DSPL table_p / table_v tables [DOWN_POINTS]. Downloading a
table is fundamentally the same, regardless of the type.

For example, download to Mx4 a cam table consisting of 10 master position,
slave position pairs to the cam table starting at cam index 100. The cam table
camex.dat is located in the c:\work directory.

Dim mdata(10) As Single
Dim sdata(10) As Single
Dim I As Integer
Open “c:\work\camex.dat” For Input As #1
For I = 0 To 9

Input #1, mdata(I)
Input #1, sdata(I)

Next I
DOWN_CAM mdata(0), sdata(0), 10, 100

Using Motion Commands In Visual Basic

3-6

Mx4 Dual Port RAM AccessMx4 Dual Port RAM Access

Even with all of the functionality provided by the DLL, the Visual Basic
programmer may want to read from and write directly to the Dual Port RAM.
The R_1BYTE, R_2BYTE, and R_4BYTE functions provide the read access while the
W_1BYTE, W_2BYTE, and W_4BYTE functions provide the write access to the DPR.

As an example of the DPR access functions, consider the application which
requires reading the ADC1 value from the Mx4 (see Acc4, and Mx4 User’s
Guide for information regarding ADC1-4 analog feedback values updated to
the DPR). The application will need to monitor the Mx4 access byte until it is
cleared, set the host DPR access byte for the ADC DPR window, as well as read
the ADC1 value from DPR addresses 502h, 503h.

While (R_1BYTE (&H500) <> 0)
Wend
W_1BYTE &H501, 1
Temp = R_2BYTE (&H502)
W_1BYTE &H501, 0

Bus CommunicationBus Communication

When the ISA bus Mx4 controller is used in a system, it (the Dual Port RAM)
resides at a specified bus address, such as 0xD0000. If multiple Mx4
controllers are used in the same bus address space, it is necessary for the host
application to address each of the Mx4’s at their unique bus address. The DLL
functions CURRENTCARDADDRESS and CHANGECARDADDRESS allow the Visual Basic
programmer to accomplish these tasks.

For example, read back the current card address which the DLL is set to, then
change the address to 0xD8000.

MsgBox “communicating at 0x” & Hex(CURRENTCARDADDRESS)
CHANGECARDADDRESS &HD8000

 Using Motion Commands In Visual Basic

Mx4 & Windows v4.0 3-7

Serial CommunicationSerial Communication

Rather than across a bus, serial communication to RS-232/RS-485 equipped
Mx4 controllers takes place across a comm port. The comm port setting is
made when the DLL (or Mx4pro) is first installed. To change the comm port
setting, the CHANGECOMMPORTSETTING function is used. For example, to change
the comm port used to communicate with a serial Mx4 to comm port 3,

CHANGECOMMPORTSETTING 3

RS-485 serial communication allows multiple Mx4 controllers to be connected
to the line as different nodes (up to a maximum of 16 nodes per line). If the
host program must communicate with more than one Mx4 per line, the node
address must be changed. To change the serial communication node address to
node 10,

CHANGESLAVENODEADDRESS 10

The complete set of serial communication-related functions are listed in chapter
4, Function Reference.

Visual Basic ExamplesVisual Basic Examples

Included with the DLL installation are three complete Visual Basic example
applictions. The examples are located in the VB_Exam folder in the
installation root directory.

Example 1Example 1

This example demonstrates the operation of two motors in a velocity controlled
mode (VELMODE). The operation is initiated and ended by a Start and a Stop
button. The operating speed for both motors is 5 encoder counts per 200 µs.
By means of this program you will learn how to:

1) Setup servo loops by specifying their gains and maximum
acceleration

Using Motion Commands In Visual Basic

3-8

2) Specify the time and distance units for speed and other motion
dynamics
3) Check for out-of-range parameter errors
4) Operate motors in velocity mode
5) Display the positions, velocities and errors for both motors
6) Use Multi-axis motion commands in Visual Basic.

Example 2Example 2

This example demonstrates the operation of two motors in Jog mode. The
speed for both motors is adjusted by a horizontal slide bar. Motion in each
direction is initiated by depressing an arrow key in a proper direction.
Depressing the middle key brings both motors to their starting positions.
Finally, positions of both axes are numerically displayed. By means of this
program, you will learn how to:

1) Use the slide bar in conjunction with real time change of motion
parameters (e.g. speed)
2) Use the mouse in conjunction with the real time commands.

Example 3Example 3

The third example application allows the user to download a DSPL program,
and start and stop the execution of the program. The application also
demonstrates changing the Mx4 card address for multi-card applications. Axis
1 and axis 2 state variables position, velocity, and error are also displayed to the
screen.

Mx4 & Windows v4.0 4-1

44 Function Reference Function Reference

ReferenceReference

AUTOSTART_DSPL ...4-13
AXMOVE ...4-14
AXMOVE_S...4-17
AXMOVE_T...4-19
BEGIN_RTC...4-21
BTRATE ...4-22
CAM ..4-24
CAM_OFF ...4-27
CAM_OFF_ACC ..4-28
CAM_POINT...4-29
CAM_POS ...4-31
CAM_PROBE...4-33
CHANGECARDADDRESS ..4-36
CHANGECOMMPORTSETTING ...4-37
CHANGESLAVENODEADDRESS ...4-38
CHANGE_VAR ..4-39
CLEAR_CUBIC ..4-40
CLEAR_DSPL ..4-41
CLEAR_POINTS..4-42
CLEAR_POS_TABLE ...4-43
CLEAR_VEL_TABLE ...4-44
COMMUNICATIONSLOST ..4-45
CTRL ..4-46
CTRL_KA ...4-49
CUBIC_INT...4-50
CUBIC_RATE ..4-52
CUBIC_SCALE ..4-56
CURRENTCARDADDRESS ..4-58
CURR_LIMIT ..4-59
CURR_OFFSET ..4-61
CURR_PID...4-62

Function Reference

4-2

DDAC ..4-63
DISABL_INT ..4-65
DISABL2_INT ..4-67
DOWNLOAD_DSPL ...4-69
DOWN_CAM...4-70
DOWN_CUBIC ..4-71
DOWN_POINTS ..4-72
DOWN_POS...4-73
DOWN_VEL...4-74
ENCOD_MAG...4-75
END_RTC ...4-77
EN_BUFBRK...4-78
EN_ENCFLT...4-80
EN_ERR ...4-82
EN_ERRHLT...4-84
EN_INDEX...4-86
EN_MOTCP...4-88
EN_POSBRK...4-90
EN_PROBE...4-92
ESTOP_ACC...4-94
FERR ..4-96
FLUX_CURRENT..4-97
GEAR ..4-99
GEAR_OFF...4-100
GEAR_OFF_ACC..4-101
GEAR_POS...4-102
GEAR_PROBE ..4-104
GETCOMMINSTCOUNT...4-106
GETCOMMTYPE ..4-107
GETCURRENTNODEADDRESS ...4-108
INP_STATE...4-109
INT5MS ...4-110
KILIMIT ...4-111
LOW_PASS (option) ..4-113
MAXACC ...4-116
MONITOR_VAR ..4-118
MOTOR_PAR...4-119
MOTOR_TECH ..4-120
MX4_CLEAR...4-121
MX4_INPUT...4-123

 Function Reference

Mx4 & Windows v4.0 4-3

MX4_ISTAT...4-124
NOTCH (option) ...4-126
OFFSET ...4-129
OUTGAIN ...4-131
OUTP_OFF...4-133
OUTP_ON ...4-134
OVERRIDE...4-135
PARREAD ...4-136
POS ..4-145
POSBRK_OUT ..4-146
POSITION_UNIT ...4-150
POS_PRESET ..4-151
POS_SHIFT...4-152
PWM_FREQ...4-153
REL_AXMOVE ..4-154
REL_AXMOVE_S..4-155
REL_AXMOVE_T..4-157
REL_AXMOVE_SLAVE...4-159
RESET_MX4...4-161
RESETCOMMUNICATIONS..4-162
R_1BYTE ...4-163
R_2BYTE ...4-164
R_4BYTE ...4-165
SIGNAL_DSPL ..4-166
SIGNATURE...4-167
START..4-168
START_DSPL ..4-170
STEPPER_ON ..4-171
STOP_AXIS...4-172
STOP_DSPL...4-174
SYNC ..4-175
TABLE_SEL...4-177
TIME_UNIT...4-178
TRQ_LIMIT...4-179
VAR ..4-180
VEC ..4-181
VECCHG ...4-182
VEL ..4-184
VELMODE ...4-185
VIEWVEC ...4-187

Function Reference

4-4

VX4_BLOCK...4-188
W_1BYTE ...4-189
W_2BYTE ...4-190
W_4BYTE ...4-191

Function SummaryFunction Summary

The Mx4 Visual Basic programming function set includes many commands
and programming tools. The functions consist of sixteen major command
categories. Each category extends the power and flexibility of Mx4 in general
areas of motion control.

Contouring Simple Motion

Interrupt
ControlDP RAM

State Variables,

Input/Output

Motor, Power
Sensors & Drive

Control Law &
Initialization

Variables
DSPL

Coordinated

Coordinated
Motion - Gearing

Motion - Cam

Filtering

Optional

Control

Serial
Communication

System

Diagnostic DSPL &

Tables
Multi-Axis

RTCs

Bus
Communication

Fig. 4-1:Function Categories

 Function Reference

Mx4 & Windows v4.0 4-5

Control Law & InitializationControl Law & Initialization
Control gains, system parameters, time, position, and velocity units all fall in
this category.

COMMAND DESCRIPTION
CTRL Position, velocity loop control law parameters
CTRL_KA Program an acceleration feed-forward gain
ESTOP_ACC Specify emergency stop maximum acceleration
KILIMIT Integral gain limit
MAXACC Specify maximum acceleration
OFFSET Amplifier offset cancellation
OUTGAIN Position loop output gain
POS_PRESET Preset position counters
POS_SHIFT Position counter reference shift
POSITION_UNIT Specify user-position units
RESET_MX4 Reset Mx4 controller card
SIGNATURE Check Mx4 controller signature
STEPPER_ON Select stepper / servo axes
SYNC Define Mx4 master/slave status
TIME_UNIT Specify user-time units
TRQ_LIMIT Specify a torque limit

Simple MotionSimple Motion
The instructions within this category control the torque, velocity, and position
of one or multiple axes with a trapezoidal profile. The commands in this
category may be classified as open and closed loop.

COMMAND DESCRIPTION
AXMOVE Trapezoidal axis move
AXMOVE_S s-curve axis move
AXMOVE_T Time based axis move
DDAC Direct DAC command (open loop)
REL_AXMOVE Relative position axis move
REL_AXMOVE_S Relative s-curve axis move
REL_AXMOVE_T Time based relative axis move
STOP Stops the motion
VELMODE Velocity mode

Function Reference

4-6

Input / Output ControlInput / Output Control
These functions are used to control and query the status of the Mx4 discrete
inputs and outputs.

COMMAND DESCRIPTION
INP_STATE Configure logic state of inputs
MX4_INPUT Read status of Mx4 inputs
OUTP_OFF Set status of outputs to low logic level
OUTP_ON Set status of outputs to high logic level
POSBRK_OUT Set outputs after position breakpoint interrupt

State Variables, DP RAMState Variables, DP RAM
These functions provide Dual Port RAM utilities for reading from and writing
to the Mx4 controller.

COMMAND DESCRIPTION
FERR Read Mx4 following error state variables
POS Read Mx4 actual position state variables
R_1BYTE Read single byte from specified DPR address offset
R_2BYTE Read single word from specified DPR address offset
R_4BYTE Read long word from specified DPR address offset
VEL Read Mx4 actual velocity state variable
W_1BYTE Write single byte to specified DPR address offset
W_2BYTE Write single word to specified DPR address offset
W_4BYTE Write long word to specified DPR address offset

DSPL VariablesDSPL Variables
The following functions allow read/write functionality to DSPL variables
(VAR1-VAR128).

COMMAND DESCRIPTION
CHANGE_VAR Write value to specified DSPL variable
MONITOR_VAR Select DSPL variable to be read
VAR Read DSPL variable

 Function Reference

Mx4 & Windows v4.0 4-7

System DiagnosticSystem Diagnostic
In addition to Mx4’s full diagnostic reporting via the DPR, the host may
examine internal Mx4 parameters and provide debug support with the PARREAD
RTC.

COMMAND DESCRIPTION
PARREAD Mx4 system parameter readback

Multi-Axis Multi-Axis RTCsRTCs
These functions make it possible for multi-axis commands to be executed
simultaneously from Visual Basic.

COMMAND DESCRIPTION
BEGIN_RTC Begin multi-axis command
END_RTC End multi-axis command

DSPL & TablesDSPL & Tables
These functions are used to set up and control the execution of a DSPL program
on the Mx4.

COMMAND DESCRIPTION
AUTOSTART_DSPL Start DSPL execution at power-up/reset
CLEAR_DSPL Clear DSPL program from Mx4 memory
CLEAR_POINTS Clear points table
CLEAR_POS_TABLE Clear position compensation table
CLEAR_VEL_TABLE Clear velocity compensation table
DOWNLOAD_DSPL Download compiled DSPL program to Mx4
DOWN_POINTS Download points table
DOWN_POS Download position compensation table
DOWN_VEL Download velocity compensation table
SIGNAL_DSPL Signal the DSPL program
START_DSPL Begin execution of DSPL program
STOP_DSPL Halt DSPL program execution
TABLE_SEL Select compensation table

Function Reference

4-8

ContouringContouring
The Mx4 includes contouring commands for users who need to generate
arbitrary motion profiles. In these applications, a host computer generates
position and velocity data points for a complex contouring path in a periodic
basis. In CNC and robotics applications, motion trajectories may be computed
in real time. These trajectories are transmitted to Mx4 in blocks of
position(/velocity) points. The ring buffer area of Mx4's dual port RAM is the
storage area for these motion blocks. Mx4 performs high order interpolation on
all these points and executes the trajectory path on a point to point basis.

COMMAND DESCRIPTION
BTRATE Block transfer rate for 2nd order contour
CLEAR_CUBIC Clear cubic data table
CUBIC_INT Start the internal cubic spline table
CUBIC_RATE Set cubic spline point transfer rate
CUBIC_SCALE Scales, shifts position points
DOWN_CUBIC Download cubic data table
OVERRIDE Set feedrate override for LINEAR / CIRCLE
START Start contouring motion
VECCHG Contouring vector change

 Function Reference

Mx4 & Windows v4.0 4-9

Motor, Power, Sensors and DriveMotor, Power, Sensors and Drive
(available with Vx4++ option only)

Mx4 allows the option of an add-on multi-DSP drive control card called
Vx4++. The drive control option performs all of the signal processing functions
of servo amplifier control boards. Vx4++ controls include commutation, current
loops, field current, torque current, current limiting, pulse-width modulation
frequency, etc. This board makes the Mx4 control unit compatible with all
power devices, industrial motors, and a majority of sensors on the market.

COMMAND DESCRIPTION
CURR_LIMIT Current limit setting
CURR_OFFSET Current loop offset adjustment
CURR_PID Program current loop control law parameters
ENCOD_MAG Specify encoder lines, motor poles, comm. option
FLUX_CURRENT Bipolar field flux value
MOTOR_PAR Set the motor parameter

MOTOR_TECH Define the motor technology
PWM_FREQ Set output PWM signal frequency
VEC read Vx4++ VIEWVEC parameter
Vx4_BLOCK Block further instructions to Vx4++
VIEWVEC Specify Vx4++ parameters to view

Coordinated Motion - GearingCoordinated Motion - Gearing
Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. In addition to the electronic gearing master-slaving
technique, compensation tables also help users specify their own application
specific "slaving function".

COMMAND DESCRIPTION
GEAR Unconditional 'electronic' gearing
GEAR_OFF Disengage 'electronic' gearing
GEAR_OFF_ACC Turns electronic gearing off and halt slave(s)
GEAR_POS 'electronic' gearing based on position value
GEAR_PROBE 'electronic' gearing based on external interrupt
REL_AXMOVE_SLAVE Superimposes a relative axis move onto a slave engaged in gearing

Function Reference

4-10

Coordinated Motion - CamCoordinated Motion - Cam
Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. A subset of table oriented master/slaving is what is
known as "electronic cam".

COMMAND DESCRIPTION
CAM Turns electronic cam on
CAM_OFF Turns only electronic cam off
CAM_OFF_ACC Turns electronic cam off and halts slave(s)
CAM_POINT Place cam point into cam table
CAM_POS Turns electronic cam on at a specified position
CAM_PROBE Turns electronic cam on after EN_PROBE is set
DOWN_CAM Download cam data points

Serial CommunicationSerial Communication
These functions allow serial (RS-232, RS-485) communication parameters to be
modified.

COMMAND DESCRIPTION
CHANGECOMMPORTSETTING Change comm port setting
CHANGESLAVENODEADDRESS Change Mx4 slave node address
COMMUNICATIONSLOST Check for communication lost
GETCOMMINSTCOUNT Return number of DLL instances connected
GETCOMMTYPE Return comm type
GETCURRENTNODEADDRESS Return current Mx4 slave node address
RESETCOMMUNICATIONS Reset serial communications

Bus CommunicationBus Communication
These functions allow bus (ISA) communication parameters to be modified.

COMMAND DESCRIPTION
CHANGECARDADDRESS Sets the Mx4 bus address pointer
CURRENTCARDADDRESS Returns the current Mx4 bus address pointer

 Function Reference

Mx4 & Windows v4.0 4-11

Interrupt ControlInterrupt Control
The Mx4 DSPL includes a comprehensive set of instructions to handle
interrupts. There are many system conditions that require the host's and/or
DSPL program's immediate attention for an executive (or system-level)
decision. Some interrupts will be issued concurrently requiring immediate
action by the Mx4. The complete set of interrupts provided by Mx4 facilitates
data reporting to the host for issues of system-level significance.

COMMAND DESCRIPTION
DISABL_INT Disable the interrupts
DISABL2_INT Disable the interrupts
EN_BUFBRK Contouring buffer breakpoint interrupt enable
EN_ENCFLT Encoder fault interrupt
EN_ERR Following error interrupt enable
EN_ERRHLT Following error / halt interrupt enable
EN_INDEX Index pulse interrupt enable
EN_MOTCP Motion complete interrupt enable
EN_POSBRK Position breakpoint interrupt enable
EN_PROBE General purpose ext probe interrupt enable
INT5MS 5msec sampling interrupt
MX4_CLEAR Clear interrupt conditions
MX4_ISTAT Test for interrupt conditions

Filtering (optional)Filtering (optional)

COMMAND DESCRIPTION
LOW_PASS Implement low pass filter at controller output
NOTCH Implement notch filter at controller output

Function Reference

4-12

Function ListingFunction Listing

The function reference is listed with syntax and data types specific to Visual
Basic. The command listing follows this format:

FUNCTION indicates the command function

SYNTAX proper command syntax

ARGUMENTS command arguments (if any) are defined

DESCRIPTION explanation of command operation, functionality

SEE ALSO listing of related commands

APPLICATION some helpful suggestions as to for which applications a
command may be useful

EXAMPLE an example illustrating the command in use

 Function Reference

Mx4 & Windows v4.0 4-13

AUTOSTART_DSPL

FUNCTION Start DSPL Execution at Power-Up/Reset

SYNTAX AUTOSTART_DSPL flag

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Flag long value flag enabling or disabling the autostart option

Flag = 0 autostart is disabled
Flag = 1 autostart is enabled

DESCRIPTION

The DSPL autostart feature requires an Mx4 controller with the
optional battery-backup memory. The autostart feature allows Mx4 to
begin DSPL program execution immediately after power-up. A DSPL
program must have previously been loaded into Mx4’s battery-backup
memory before the AUTOSTART_DSPL command is used. Once an
AUTOSTART_DSPL command has been executed by Mx4, Mx4 will
remain in the specified (enable / disable) autostart state until it
executes another AUTOSTART_DSPL command; even after power-down.
The Mx4 (with the battery-backup memory option) is shipped from the
factory with the autostart feature disabled.

SEE ALSO CLEAR_DSPL, DOWNLOAD_DSPL, SIGNAL_DSPL, START_DSPL,
STOP_DSPL

EXAMPLE

Enable the DSPL autostart option.

AUTOSTART_DSPL (1)

Function Reference

4-14

AXMOVE

FUNCTION Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE axis, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

vel positive double precision target velocity

0 ≤ velx ≤ 255.99998 counts/200µs

DESCRIPTION

The AXMOVE command allows for trapezoidal command generation
with specified endpoint position, slew rate velocity, and acceleration
for each axis. This command is suitable for linear moves.

SEE ALSO AXMOVE_S, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

 Function Reference

Mx4 & Windows v4.0 4-15

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time
there is a need for a linear move from point A to point B in a multi-
dimensional space. To name a few applications: pick and place robots
(e.g., in component insertion), rapid traverse (e.g., in machining), and
master/slaving (e.g., in paper processing and packaging) applications.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gain values
KILIMIT ()

AXMOVE () ;run system in axis move (linear trapezoidal) mode
:
EN_MOTCP () ;enable motion complete

;upon the completion of this (command) trajectory
;Mx4 generates motion complete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567 and axis 2 to the target position
of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200µs for axis 1
and 3.50 counts/200µs for axis 2, and an acceleration of 0.005
counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.0
AXMOVE 2, 0.005, -3000, 3.5

END_RTC

Function Reference

4-16

AXMOVE cont.

EXAMPLE 2

The user can issue a new axis move command before the motion of the
previous AXMOVE command is completed. For example, assume the
AXMOVE command of Example 1 is executed. Now, the DSPL Motion
program 'decides' to stop axis two at a new target position of -50000
counts with a new slew rate of 8.0 counts/200µs and a new
acceleration of 0.035 counts/(200µs)2. While the AXMOVE of Example 1
is in progress, the DSPL Motion program issues the new command.

AXMOVE 2, 0.035, -50000, 8.0

 Function Reference

Mx4 & Windows v4.0 4-17

AXMOVE_S

FUNCTION S-Curve Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE_S axis, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

vel positive double precision target velocity

0 ≤ velx ≤ 255.99998 counts/200µs

DESCRIPTION

The AXMOVE_S command allows for s-curve command generation
with specified endpoint position, slew rate velocity, and acceleration
for each axis. This command is suitable for linear moves where s-
curve acceleration is desired.

Function Reference

4-18

AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the AXMOVE_S
along with the linear velocity ramp of the AXMOVE command. With
AXMOVE_S, the acceleration will reach a value of 2*accx for a
maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 200000 counts and axis 2 to the target
position of -3000 counts. Let's also assume that we want this move to
be accomplished with the slew rate velocity of 4.0 counts/200 µs for
axis 1 and 2.0 counts/200 µs for axis 2. Use an acceleration reference
of 0.05 counts/(200 µs)2 for both axes.

BEGIN_DSPL
AXMOVE_S 1, 0.05, 200000, 4.0
AXMOVE_S 2, 0.05, -3000, 2.0

END_RTC

 Function Reference

Mx4 & Windows v4.0 4-19

AXMOVE_T

FUNCTION Time-Based Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE_T axis, acc, pos, tm

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

axis long value specifying the axis
acc positive double precision value specifying the maximum

halting acceleration (deceleration)

0 ≤ accx ≤ 1.999969 counts/(200µs)2

pos double precision target position

-2147483648 ≤ posx ≤ 2147483647 counts

tm positive double precision motion time

0 ≤ tmx ≤ 5000000 (200µs)

DESCRIPTION

The AXMOVE_T commands allow for trapezoidal command generation
with specified endpoint position, acceleration, and time to complete
the move for each axis. This command is suitable for linear moves
where endpoint position and motion time are the specifying
parameters.

Function Reference

4-20

AXMOVE_T cont.

The AXMOVE_T command is similar to AXMOVE, with the exception
that the velocity argument is replaced with a time argument.
AXMOVE_T will automatically calculate a suitable slew rate velocity to
achieve the programmed endpoint position in the programmed amount
of time, following a trapezoidal velocity profile (similar to AXMOVE).

SEE ALSO AXMOVE, AXMOVE_S, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE

Move axis 1 to the target position of 10000 counts and axis 3 to the
target position of 3599 counts. Let's assume that we want this move to
be accomplished with the acceleration reference of 0.56 counts/(200
µs)2 and a time of 50msec (250*200µsec) for both axes.

BEGIN_RTC
AXMOVE_T 1, 0.56, 10000, 250
AXMOVE_T 3, 0.56, 3599, 250

END_RTC

 Function Reference

Mx4 & Windows v4.0 4-21

BEGIN_RTC

FUNCTION Begin Multi-Axis Command

SYNTAX BEGIN_RTC

ARGUMENTS

None

DESCRIPTION

A number of RTCs have a large and variable number of arguments.
These are mostly motion control RTCs which permit the desired
motion for several axes to be specified at once. All of the motion
control functions in the DLL are single axis. The BEGIN_RTC and
END_RTC functions permit a multi-axis RTC to be built-up from
multiple calls to a the single axis RTC function. The AXMOVE function
illustrates this. A call to AXMOVE by itself will generate an AXMOVE RTC
for the specified axis. To generate a two-axis AXMOVE RTC, two calls to
AXMOVE would be bracketed between calls to BEGIN_RTC and END_RTC.

SEE ALSO END_RTC

APPLICATION

Multi-axis commands are needed when the trajectories of two or more
axes must be synchronized.

EXAMPLE

This example illustrates how BEGIN_RTC and END_RTC can be used to
issue a two axis AXMOVE command to Mx4. Assuming current positions
of zero for axes 1 and 2, we want to move axis 1 to the target position
of 234567 and axis 2 to the target position of -3000 counts. Let's also
assume that we want this move to be accomplished with the slew rate
velocity of 4.0 counts/200µs for axis 1 and -3.50 counts/200µs for axis
2, and an acceleration of 0.005 counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

Function Reference

4-22

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate

SYNTAX BTRATE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value selects the block transfer rate for all of the
axes.

m=0 block transfer rate is 5 ms per point
m=1 block transfer rate is 10 ms per point
m=2 block transfer rate is 15 ms per point
m=3 block transfer rate is 20 ms per point

DESCRIPTION

This command sets the 2nd order contouring block transfer rate for
the system. For example, if the block transfer rate is set at 10 ms, the
time interval between each point in the ring buffer is '10 ms' (e.g., the
DSP will interpolate each point for 10 ms).

Note 1: The host should not adjust the block transfer rate when
contouring is in process.

Note 2: The default block transfer rate is set at 5 ms per point.

SEE ALSO CUBIC_RATE

 Function Reference

Mx4 & Windows v4.0 4-23

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly,
slower CPUs are capable of breaking down geometries to position and
velocity points that are widely spaced in time. This instruction makes
the time interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15, or 20 ms), Mx4 will
internally perform a high-order interpolation of the points breaking
them down to 200 µs.

Command Sequence Example
See EN_BUFBRK

EXAMPLE

Set a contouring interpolation interval of 10 ms.

BTRATE 1

Function Reference

4-24

CAM

FUNCTION Engage Electronic Cam

SYNTAX CAM n, m, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
tablestart long value specifies cam table start index

0 <= tablestart <= 1600

tablesize long value specifies cam table size

3 <= tablesize <= 1600

DESCRIPTION

The commands which make up the electronic cam feature are CAM, CAM_OFF,
CAM_OFF_ACC, CAM_POINT, CAM_POS, and CAM_PROBE. DSPL keywords
[CAMCOUNT1-8, Mx4 Octavia] [CAMCOUNT1-4, Mx4].

The Mx4 controller is capable of storing up to 1600 cam points. Each cam
point consists of a master relative position, and an associated slave relative
position. A cam table can be between 3 and 1600 cam points long, and the user
may define any number of cam tables in the 1600-point cam table capacity.
Cam commands utilize tablestart and tablesize arguments to specify which
‘portion’ of the 1600-point cam table region to ‘run’ on.

Cam table points may be downloaded in file format from within Mx4pro or
built from within DSPL using the CAM_POINT command. The CAM_POINT
command may also be used to modify cam points ‘on the fly.’ The

 Function Reference

Mx4 & Windows v4.0 4-25

CAM cont.

DSPL identifiers CAMCOUNT1,2,3,etc. indicate at which cam table indices the
slave axes(es) are ‘at’ (CAMCOUNT1 is for axis 1, etc.).

The cam points consist of relative position values for master and slave. The
first cam point in a table must be 0, 0. The last point in a cam table is the cycle
length for master and slave. For example, if the full cam cycle for a master
axis is 5000 counts and the slave would travel -1024 counts in that cycle, the
last cam point in that cam table would be 5000, -1024. Note that the
master/slave position ratios can not exceed the range [-256 to 255,999]. Also,
the minimum ratio is +/- 1/128. For example, for 1000 counts of the master
axis, the slave axis(es) can not have more than -256000 counts in the negative
direction or 255999 counts in the positive direction.

The slave axes utilize the MAXACC acceleration value as the maximum
acceleration the slave axis can reach while following the electronic cam
trajectory, and therefore must be programmed before cam operation. This
command turns on the mechanical cam function for the selected master and
slave(s). The slave(s) follow the master according to the master/slave position
pairs stored in the cam table. The slave axes(es) utilize MAXACC as the
maximum acceleration they can achieve in following the master trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,
MAXACC, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

Function Reference

4-26

CAM cont.

EXAMPLE

Set axis 1 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25 point cam table beginning at index 100.

BEGIN_RTC
CAM 1, 2, 0, 10
CAM 1, 3, 100, 25

END_RTC

 Function Reference

Mx4 & Windows v4.0 4-27

CAM_OFF

FUNCTION Turns Off, Disengages Cam Slave Axis(es)

SYNTAX CAM_OFF n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to be disengaged

DESCRIPTION

This command disengages the system that was under master slave
control.

SEE ALSO CAM, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,
SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Immediately disengage slave axes 3 and 4 from the master axis.

BEGIN_RTC
CAM_OFF 3
CAM_OFF 4

END_RTC

Function Reference

4-28

CAM_OFF_ACC

FUNCTION Turns Off, Disengages Cam Slave Axis(es) With
Acceleration

SYNTAX CAM_OFF_ACC n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to be disengaged

DESCRIPTION

This command disengages the system that was under master/slave
control. The slave axis(es) will come to a stop at the maximum
acceleration rate programmed by MAXACC.

SEE ALSO CAM, CAM_OFF, CAM_POINT, CAM_POS, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Disengage with acceleration profile slave axes 3 and 4 from the master
axis.

BEGIN_RTC
CAM_OFF_ACC 3
CAM_OFF_ACC 4

END_RTC

 Function Reference

Mx4 & Windows v4.0 4-29

CAM_POINT

FUNCTION Place Cam Point Into Cam Table

SYNTAX CAM_POINT tablestart, tablesize, index, masterpos,
slavepos

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

tablestart long value specifies cam table start index

0 <= tablestart <= 1600

tablesize long value specifies cam table size

3 <= tablesize <= 1600

index long value specifies index at which to place the cam
point

0 <= index <= (tablesize-1)

masterpos long value cam point master axis relative position
slavepos long value cam point slave axis relative position

DESCRIPTION

The CAM_POINT allows the user to either build entire cam tables from
within the DSPL environment or alternatively, edit cam table points
(i.e.: change cam points ‘on the fly’). Cam table points consist of
master, slave position pairs, and cam tables can be anywhere from 3 to
1600 cam points long. The first point of a cam table (index = 0) must
be 0,0. The last point of a cam table (index = tablesize-1) is
mastercyclelength, slavecyclelength; where the cycle lengths for the
master and slave are the relative cam cycle lengths (i.e.: master cycle
length is 4096 counts, the slave cycle length is 1024 counts, for a full
cycle ratio of 4:1). Cam master/slave position ratios can not exceed
the range [-256 to 255,999]. Also, the minimum ratio is +/- 1/128.

Function Reference

4-30

CAM_POINT cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, SYNC

APPLICATION

See Application Notes.

EXAMPLE

A 10-point cam table exists at table start index 500. Replace the 3rd
point of the table with the master, slave point 1000, 3000.

CAM_POINT 500, 10, 2, 1000, 3000

 Function Reference

Mx4 & Windows v4.0 4-31

CAM_POS

FUNCTION Turns Electronic Cam On at a Specified Position

SYNTAX CAM_POS n, m, masterpos, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
masterpos double precision value specifying the master position

value for slave axis x that the electronics cam engages
tablestart long value specifies cam table start index for slave

0 <= tablestart <= 1600

tablesize long value specifies cam table size for slave

3 <= tablesize <= 1600

DESCRIPTION

This command engages at the specified master position the
mechanical cam function for the selected master and slave(s). The
slave(s) follows the master according to the master/slave position pairs
stored in the cam table. The slave axis(es) utilizes MAXACC as the
maximum acceleration it can achieve in following the master
trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

Function Reference

4-32

CAM_POS cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Set axis 4 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25-point cam table beginning at index 100. Axis 2
slave should engage when the master axis is at position 1000, and axis
3 slave should engage when the master axis is at position 4096.

BEGIN_DSPL
CAM_POS 8, 2, 1000, 0, 10
CAM_POS 8, 3 ,4096, 100, 25

END_RTC

 Function Reference

Mx4 & Windows v4.0 4-33

CAM_PROBE

FUNCTION Turns Electronic Cam On After Probe Input

SYNTAX CAM_PROBE n, m, q, tablestart, tablesize

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
q long value specifies the *EXTx probe interrupt to be

used

[Mx4]
q=1 : *EXT1
q=2 : *EXT2

[Mx4 Octavia]
q=1 : *EXT1
q=2 : *EXT2
q=4 : *EXT3
q=8 : *EXT4

tablestart long value specifies cam table start index for slave

0 <= tablestart <= 1600

tablesize long value specifies cam table size for slave

3 <= tablesize <= 1600

Function Reference

4-34

CAM_PROBE cont.

DESCRIPTION

This command engages at the occurrence of the specified external
interrupt (*EXT1,2,3,4) the mechanical cam function for the
selected master and slave(s). The slave(s) follow the master according
to the master/slave position pairs stored in the cam table. The slave
axis(es) utilizes MAXACC as the maximum acceleration they can achieve
in following the master trajectory.

Note: Execution of the CAM_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe input (*EXT1,
*EXT2, *EXT3, or *EXT4) activation does not generate an
interrupt with the CAM_PROBE command.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

 Function Reference

Mx4 & Windows v4.0 4-35

CAM_PROBE cont.

EXAMPLE

Set axis 2 as the master axis, axes 1 and 3 as slaves. The axis 1 slave
will use the 100-point cam table beginning at index 0, while the axis 3
slave will use the 250-point cam table beginning at index 220. Engage
slave axes in cam at occurrence of *EXT2 interrupt.

BEGIN_RTC
CAM_PROBE 2, 1, 2, 0, 100
CAM_PROBE 2, 3, 2, 220, 250

END_RTC

Function Reference

4-36

CHANGECARDADDRESS

FUNCTION Change Mx4 Bus Address

SYNTAX CHANGECARDADDRESS address

If used as a function, the function will return (long) the previous
address if successful, zero if error.

ARGUMENTS

address long value specifying new card address

DESCRIPTION

This function is used to change the pointer to the Mx4 card residing
on the ISA bus.

SEE ALSO CURRENTCARDADDRESS

EXAMPLE

The Mx4 card has jumper settings placing it at address 0xd0000 on
the ISA bus. Set the Visual Basic programming pointer to this
address.

CHANGECARDADDRESS &HD0000

 Function Reference

Mx4 & Windows v4.0 4-37

CHANGECOMMPORTSETTING

FUNCTION Change Serial Communication Comm Port Setting

SYNTAX CHANGECOMMPORTSETTING port

If used as a function, the function will return (byte) the previous comm
port setting.

ARGUMENTS

port byte value specifying new comm port

DESCRIPTION

This function is used to change the comm port which is used to
communicate serially to the Mx4 card.

SEE ALSO CHANGESLAVENODEADDRESS, COMMUNICATIONSLOST,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Set the comm port to communicate to Mx4 through the comm2 port.

CHANGECOMMPORTSETTING 2

Function Reference

4-38

CHANGESLAVENODEADDRESS

FUNCTION Change Serial Communication Node Address

SYNTAX CHANGESLAVENODEADDRESS node

If used as a function, the function will return (byte) the previous slave
node address.

ARGUMENTS

node byte value specifying new node address

DESCRIPTION

This function is used to change the serial communication slave node
address of the Mx4 card desired.

SEE ALSO CHANGECOMMPORTSETTING, COMMUNICATIONSLOST,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Set the serial communication slave node address to 4.

CHANGESLAVENODEADDRESS 4

Function Reference

Mx4 & Windows v4.0 4-39

CHANGE_VAR

FUNCTION Change DSPL variable Value

SYNTAX CHANGE_VAR var, value

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Var long value specifying DSPL variable (1-128) to modify
Value double precision value for specified variable

DESCRIPTION

DSPL variable values may be changed in real time via the CHANGE_VAR
function.

SEE ALSO MONITOR_VAR, VAR

EXAMPLE

Set DSPL VAR67 equal to 1000.123.

CHANGE_VAR 67, 1000.123

Function Reference

4-40

CLEAR_CUBIC

FUNCTION Clear Internal Cubic Spline Data Table

SYNTAX CLEAR_CUBIC

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function issues a CLEAR_CUBIC RTC. This command clears the
Mx4 internal cubic spline data storage area.

SEE ALSO CUBIC_INT, DOWN_CUBIC

EXAMPLE

Clear the Mx4 cubic spline data table storage area.

CLEAR_CUBIC

Function Reference

Mx4 & Windows v4.0 4-41

CLEAR_DSPL

FUNCTION Clear DSPL Program

SYNTAX CLEAR_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function clears the Mx4 DSPL program storage area.

SEE ALSO DOWNLOAD_DSPL

EXAMPLE

Clear the Mx4 DSPL program storage area.

CLEAR_DSPL

Function Reference

4-42

CLEAR_POINTS

FUNCTION Clear DSPL Table_p / Table_v data storage area

SYNTAX CLEAR_POINTS

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

None

DESCRIPTION

This function clears the Mx4 DSPL table_p / table_v data storage
area.

SEE ALSO DOWN_POINTS

EXAMPLE

Clear the Mx4 DSPL table_p / table_v storage area.

CLEAR_POINTS

Function Reference

Mx4 & Windows v4.0 4-43

CLEAR_POS_TABLE

FUNCTION Clear Specified Position Compensation Table

SYNTAX CLEAR_POS_TABLE table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Table long value specifying position compensation table to
clear (1-4, Mx4; 1-8, Mx4 Octavia)

DESCRIPTION

This function clears the position compensation table for the specified
axis.

SEE ALSO DOWN_POS

EXAMPLE

Clear the axis 3 position compensation table.

CLEAR_POS 3

Function Reference

4-44

CLEAR_VEL_TABLE

FUNCTION Clear Specified Velocity Compensation Table

SYNTAX CLEAR_VEL_TABLE table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

Table long value specifying velocity compensation table to
clear (1-4, Mx4; 1-8, Mx4 Octavia)

DESCRIPTION

This function clears the velocity compensation table for the specified
axis.

SEE ALSO DOWN_VEL

EXAMPLE

Clear the axis 4 velocity compensation table.

CLEAR_VEL 4

Function Reference

Mx4 & Windows v4.0 4-45

COMMUNICATIONSLOST

FUNCTION Check For Lost Serial Communication

SYNTAX COMMUNICATIONSLOST ()

ARGUMENTS

none

DESCRIPTION

This function checks if the serial communication between host and
Mx4 has been lost. The function returns long value 1 if
communication is lost, 0 otherwise.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Check for lost serial communication.

IF (COMMUNICATIONSLOST () = 1) THEN

Function Reference

4-46

CTRL

FUNCTION Control Law Parameters

SYNTAX CTRL n, par1, par2, par3, par4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
par1 long unsigned value for Ki gain
par2 long unsigned value for Kp gain
par3 long unsigned value for Kf gain
par4 long unsigned value for Kd gain

0 ≤ parx ≤ 32767

DESCRIPTION

This command performs a state feedback control algorithm combined
with a modified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide a robust control, which is smooth and stable over a wide
range of servo operation. In addition, this algorithm performs a
modified PID with the saturation threshold set for integral action. A
common PID includes two zeros and one pole, which may not be
suitable for systems with noisy feedback. Also, the integral part of a
common PID algorithm may saturate the registers creating overshoots
or other forms of instability. A modified PID includes a second pole
to solve the latter problem and a programmable integral limit to solve
the former one.

In the modified PID algorithm; par1, par2, par3, and par4 are values
representing the integral, proportional, velocity state feed forward,
and differential gains, respectively.

Function Reference

Mx4 & Windows v4.0 4-47

CTRL cont.

Scaling Factors
The DSP uses an internal scaling factor for each gain. These factors
have been optimally selected for worst case numerical conditions.
These factors are:

GAIN SCALING FACTOR VALUE
Kf 1.525E-08 v/(c/s)

Kp 0.595E-06 v/c

Ki 3.308E-05 (v/s)/c

Kd 1.9875E-08 v/(c/s)

Output Loop Gain integer NA

v = volts, c = encoder edge counts, s = seconds

For example,

100 counts of position error and Kp of 1000 (other gains are zero) will
result in an output voltage of 59.5 millivolts.

 i.e. 100 × 1000 × 0.595E-06 = 59.5

V

K
K

P

n

d
i

n
_

+ +

+

+
+

_

Sampling Period

P ACTUAL

nV̂

K f

K p

Kalman
Filter

to DAC

K Limiti

Output
Loop Gain

Block Diagram of Control Law

SEE ALSO CTRL_KA, KILIMIT, OFFSET, OUTGAIN

Function Reference

4-48

CTRL cont.

APPLICATION

This command is used in all position/velocity control tuning
applications. For more information on the effectiveness of each gain
on system dynamic response, please refer to the Mx4Pro: Tuning
Expert manual. This manual will help you understand the significance
of gains in tuning. Please read this even if you cannot run Mx4Pro on
your machine because it lacks the DOS operating system.

Command Sequence Example
See AXMOVE and VELMODE

EXAMPLE

Set the following modified PID gain values for axes 2 and 4:

Ki = 100
Kp = 4000
Kf = 3000
Kd = 2500

Ki = 20
Kp = 8000
Kf = 5500
Kd = 7000

BEGIN_RTC
CTRL 2, 100, 4000, 3000, 2500
CTRL 4, 20, 8000, 5500, 7000

END_RTC

Function Reference

Mx4 & Windows v4.0 4-49

CTRL_KA

FUNCTION Acceleration Feedforward Control Law Parameter

SYNTAX CTRL_KA n, ka

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
ka long unsigned value for Ka gain

0 <= ka <= 32767

DESCRIPTION

The CTRL_KA command allows the user to program an acceleration
feedforward gain for the specified axis.

SEE ALSO CTRL, KILIMIT, OFFSET, OUTGAIN

EXAMPLE

Program a Ka of 5000 for both axes 1 and 3.

BEGIN_RTC
CTRL_KA 1, 5000
CTRL_KA 3, 5000

END_RTC

Function Reference

4-50

CUBIC_INT

FUNCTION Start the Internal Cubic Spline Contouring Execution

SYNTAX CUBIC_INT m, si, n, ax

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifies the number of points in the cubic
spline table to run. Each point is characterized by the
position for only one motor. The maximum number of
points is 4,096.

si long value specifies the starting index in the table

n long value specifies the number of times m points of a
spline table will be looped over

n ≤ 32767

ax long value bit codes the axes involved

Note: n = 0 means run the specified number of points infinite
number of times.

Function Reference

Mx4 & Windows v4.0 4-51

CUBIC_INT cont.

DESCRIPTION

This command starts execution of the points stored in the cubic spline
table immediately. The command sequence for this instruction is as
follows:

1) CUBIC_RATE
2) CUBIC_SCALE ;if necessary
3) CUBIC_INT

We assume that user has already downloaded the table points to the
cubic spline table location.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not
a CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBIC_INT command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_RATE, CUBIC_SCALE, DOWN_CUBIC

APPLICATION

Refer to Cubic Spline

EXAMPLE

Execute internal cubic spline contouring starting at index 100, 50
points, axes 2 and 3, repeating 5 times.

CUBIC_INT 50, 100, 5, &H6

Function Reference

4-52

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate

SYNTAX CUBIC_RATE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS
m long value parameter coding the value for cubic spline

transfer rate. "m" codes the time interval between the
adjacent position points. Its value ranges between 5 and
511 and when divided by 5, it represents the interval in
ms. For example, m=5 represents the time interval of 1
ms and m=25 is a 5 ms interval.

DESCRIPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent position points in
the cubic spline table. The two adjacent points can be spaced
anywhere between 1.0 to 102.4 ms. Mx4's cubic spline interpolates
between the two adjacent points at 200 µs increments. This means for
example, Mx4 inter-polates 500 points between two adjacent points
100 ms apart.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not
a CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBIC_INT command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_SCALE, DOWN_CUBIC

Function Reference

Mx4 & Windows v4.0 4-53

CUBIC_RATE cont.

APPLICATION

Refer to Cubic Spline Application Notes.

EXAMPLE

Using cubic spline interpolation creates 16, 32, 64, and 128-point
circles.

The following shows the position values for 16 uniformly spaced
points on a circle.

16-point Circle

Point pos_x
x1 2500

x2 2310

: :

x16 2310

Point pos_y
x1 0

x2 957

: :

x16 -957

To generate a circle, these points must be written to the Mx4's
memory and CUBIC_RATE must be executed. The CUBIC_RATE argument
determines the interval between two points in the memory. For
comparison, the followingfigures illustrate the circles created by 16,
32, 64, and 128 points in a cubic spline interpolation. It takes 1.28
seconds to complete these circles.

Function Reference

4-54

CUBIC_RATE cont.

16 points; CUBIC_RATE 400; 80ms time space between adjustment
points

Function Reference

Mx4 & Windows v4.0 4-55

32 points; CUBIC_RATE 200; 40ms time space between adjustment
points

Function Reference

4-56

CUBIC_RATE cont.

64 points; CUBIC_RATE 100; 20ms time space between adjustment
points

128 points; CUBIC_RATE 50; 10ms time space between adjustment
points

Function Reference

Mx4 & Windows v4.0 4-57

CUBIC_SCALE

FUNCTION Scales/Shift Position Points

SYNTAX CUBIC_SCALE n, pos_mult, pos_shift

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

pos_mult single precision value position scaling multiplier

-2 ≤ pos_mult < 2

pos_shift double precision value position shift. This value
transfers the position to a new origin.

DESCRIPTION

This command scales those table points involved in a cubic spline
operation. This command also shifts the positions involved by a user-
defined position shift value.

Upon execution of a CUBIC_INT command, the DSPL program flow
will not proceed to a following CUBIC_INT, CUBIC_RATE, or
CUBIC_SCALE command until the current CUBIC_INT motion is
completed. If the command following the CUBIC_INT command is not
a CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBIC_INT command execution.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, DOWN_CUBIC

APPLICATION

See Cubic Spline Application Notes

Function Reference

4-58

CUBIC_SCALE cont.

EXAMPLE

Scale the cubic spline data for axis 5 by a factor of x0.5.

CUBIC_SCALE 5, 0.5, 0

Function Reference

Mx4 & Windows v4.0 4-59

CURRENTCARDADDRESS

FUNCTION Get Current Mx4 Bus Address

SYNTAX CURRENTCARDADDRESS ()

ARGUMENTS

none

DESCRIPTION

This function returns the long value of the pointer to the Mx4 card
residing on the ISA bus.

SEE ALSO CHANGECARDADDRESS

EXAMPLE

Read the current Mx4 card address into the Visual Basic variable
“ADDR”.

ADDR = CURRENTCARDADDRESS ()

Function Reference

4-60

CURR_LIMIT Vx4++ option command

FUNCTION Set Output Drive Current Limit

SYNTAX CURR_LIMIT n, clmt

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
clmt single precision value specifying the current limit

percentage

0 ≤ clmt ≤ 100(%)

DESCRIPTION

This command sets the current limit for the axes specified. The
current limit is defined as a percentage of the maximum desired
current (which in turn is defined by the current feedback mechanism).
In the case that the current in any phase of a specified axis exceeds
the set value, the PWM signals for that axis will turn off for at least
one full period and turn on only if the sensed current is reduced below
the current limit.

Note: Mx4 with Vx4++ will not execute the CURR_LIMIT command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

Function Reference

Mx4 & Windows v4.0 4-61

CURR_LIMIT cont. Vx4++ option command

EXAMPLE

For current feedback designed for full scale at 10 amps, set current
limits of 3 and 4 amps for axes one and two, respectively.

(3/10) * 100% = 30% (4/10) * 100% = 40%

BEGIN_RTC
CURR_LIMIT 1, 30.0
CURR_LIMIT 2, 40.0

END_RTC

Function Reference

4-62

CURR_OFFSET Vx4++ option command

FUNCTION Compensate Current Feedback Offset

SYNTAX CURR_OFFSET n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val long value, offset

-32768 ≤ val ≤ 32767

DESCRIPTION

The CURR_OFFSET command allows the user to compensate for any
offset generated by the current feedback path.

Note: Mx4 with Vx4++ will not execute the CURR_OFFSET

command if the VX4_BLOCK command is active for the axes in
question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Program an offset compensation value of 2500 for axis one

CURR_OFFSET 1, 2500

Function Reference

Mx4 & Windows v4.0 4-63

CURR_PID Vx4++ option command

FUNCTION Current Loop Control Law Parameters

SYNTAX CURR_PID n, par1, par2, par3

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
par1 long unsigned value for Kp gain
par2 long unsigned value for Ki gain
par3 long unsigned value for Kd gain

0 ≤ par1,2,3 ≤ 32767

DESCRIPTION

This command performs a vector control algorithm combined with a
modified PID.

SEE ALSO CTRL

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set the following modified current loop PID gain values for axis three.

Kp = 10000
Ki = 20
Kd = 9500

CURR_PID 3, 10000, 20, 9500

Function Reference

4-64

DDAC

FUNCTION Direct DAC Output

SYNTAX DDAC n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val single precision DAC output voltage

-10.0 ≤ val ≤ 9.9997 volts
DESCRIPTION

The DDAC command places the axis(es) in open loop, with DAC(x)
output voltage determined by the valx command argument. DDAC
specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of approximately 0.3 millivolts.

After execution of a DDAC command, in order to return the axis(es) to
closed loop operation, a closed-loop command such as AXMOVE or
VELMODE must be executed. The following procedure serves as an
example:

1. slow or halt the axis(es) motion:
-execute DDAC with 0v specified

2. minimize built-up following error:
-execute POS_PRESET command

3. return axis(es) to closed loop:
-execute AXMOVE command with target position
specified as that used in the preceding
POS_PRESET command.

SEE ALSO none

Function Reference

Mx4 & Windows v4.0 4-65

DDAC cont.

APPLICATION

This command can be used in applications where the voltage
command provides adequate control. Voltage commands can be
applied to a torque loop (for torque control applications in robotics) or
a velocity loop (to a spindle axis in machine tool applications).

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Output +3.75 volts to the axis 4 and axis 5 DACs.

BEGIN_RTC
DDAC 4, 3.75
DDAC 5, 3.75

END_RTC

Function Reference

4-66

DISABL_INT

FUNCTION Disable Interrupts

SYNTAX DISABL_INT n, mask

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mask long value, interrupt disable mask

The mask is created by ‘OR’ing together any of the
desired interrupt’s defined constants:

IC_MOTION_COMPLETE (EN_MOTCP)
IC_INDEX_PULSE (EN_INDEX)
IC_PROBE_SIGNAL (EN_PROBE)
IC_POSITION_BREAKPOINT (EN_POSBRK)
IC_FOLLOWING_ERROR (EN_ERR)
IC_FOLLOWING_ERROR_AND_HALT (EN_ERRHLT)
IC_BUFFER_BREAKPOINT (EN_BUFBRK)

DESCRIPTION

This command disables some or all of the servo control card
interrupts.

SEE ALSO DISABL2_INT, EN_BUFBRK, EN_PROBE, EN_ERR, EN_ERRHLT,
EN_INDEX, EN_MOTCP, EN_POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

Function Reference

Mx4 & Windows v4.0 4-67

DISABL_INT cont.

EXAMPLE

Disable the previously enabled axis 1 following error and index pulse
interrupts.

TEMP = IC_FOLLOWING_ERROR | IC_INDEX_PULSE
DISABL_INT 1, TEMP

Function Reference

4-68

DISABL2_INT

FUNCTION Disable Interrupts

SYNTAX DISABL2_INT n, mask

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mask long value, interrupt disable mask

The mask is created by ‘OR’ing together any of the
desired interrupt’s defined constants:

IC_ENCODER_FAULT (EN_ENCFLT)

DESCRIPTION

This command disables some or all of the servo control card
interrupts.

SEE ALSO DISABL_INT, EN_ENCFLT

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

Function Reference

Mx4 & Windows v4.0 4-69

DISABL2_INT cont.

EXAMPLE

Disable the previously enabled axis 1 and axis 7 encoder fault
interrupts.

TEMP = IC_ENCODER_FAULT
BEGIN_RTC

DISABL2_INT 1, TEMP
DISABL2_INT 7, TEMP

END_RTC

Function Reference

4-70

DOWNLOAD_DSPL

FUNCTION Download Compiled DSPL Program To Mx4

SYNTAX DOWNLOAD_DSPL filename

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

filename string, name of file to download

DESCRIPTION

This function performs the task of downloading a compiled DSPL
program to the Mx4 controller. The DSPL file must have been
previously compiled (DSPLCxxx.EXE) so that a .LOD file extension
file exists.

SEE ALSO CLEAR_DSPL, START_DSPL, STOP_DSPL

EXAMPLE

Download the compiled DSPL file MYTEST.LOD to Mx4.

Dim sFileName As String
SFileName = “c:\work\mytest.lod”
DOWNLOAD_DSPL sFileName

Function Reference

Mx4 & Windows v4.0 4-71

DOWN_CAM

FUNCTION Download Cam Data Points To Mx4 Cam Table

SYNTAX DOWN_CAM madata, sldata, npts, index

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

madata master position array, single precision
sldata slave position array, single precision
npts long value, number of cam points to download
index long value, starting cam table index to download points

DESCRIPTION

This function performs the task of downloading cam table points to
the Mx4 cam table storage area, beginning at the specified index.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS,
CAM_PROBE

EXAMPLE

Assume that the master / slave position points are stored in the file
CAM_TUT5.DAT. Download this file to the Mx4 cam table
beginning at cam index 100. The file consists of 10 master positions,
10 slave positions.

Dim master(10) As Single
Dim slave(10) As Single
Dim I As Integer
Open “c:\work\cam_tut5.dat” For Input As #1
For I = 0 To 9

Input #1, master(I)
Input #1, slave(I)

Next I
DOWN_CAM master(0), slave(0), 10, 100

Function Reference

4-72

DOWN_CUBIC

FUNCTION Download Cubic Spline Data Points To Mx4

SYNTAX DOWN_CUBIC npts, cudata, index

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

npts long value specifying number of points to be
downloaded

cudata position array, single precision
index long value, starting cubic spline table index to download

points

DESCRIPTION

This function performs the task of downloading cubic spline table
points to the Mx4 internal cubic spline table storage area, beginning at
the specified index.

SEE ALSO CLEAR_CUBIC, CUBIC_INT, CUBIC_RATE, CUBIC_SCALE

EXAMPLE

Assume that the cubic spline position points are stored in the file
CUB_TUT8.DAT. Download this file to the Mx4 cubic spline table
beginning at cubic index 0. The file consists of 350 position points.

Dim cubdata(350) As Single
Dim I As Integer
Open “c:\work\cub_tut8.dat” For Input As #1
For I = 0 To 349

Input #1, cubdata(I)
Next I
DOWN_CUBIC 350, cubdata(0), 0

Function Reference

Mx4 & Windows v4.0 4-73

DOWN_POINTS

FUNCTION Download DSPL Table_p / Table_v Data Points

SYNTAX DOWN_POINTS ptdata, npts, index, posvel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

ptdata data points array, single precision
npts long value specifying number of points to be

downloaded
index long value, starting table index to download points
posvel long value specifying data sent in table_p position

format (0) or table_v velocity format (1)

DESCRIPTION

This function downloads data to the DSPL table_p / table_v storage
areas. The posvel argument selects whether the data is sent in
position format (table_p) or velocity format (table_v).

SEE ALSO none

EXAMPLE

Assume that 200 velocity values are stored in the file TEST.DAT.
Download this file to the Mx4 table_v table beginning at index 50.

Dim ddata(200) As Single
Dim I As Integer
Open “c:\work\test.dat” For Input As #1
For I = 0 To 199

Input #1, ddata(I)
Next I
DOWN_POINTS ddata(0), 200, 50, 1

Function Reference

4-74

DOWN_POS

FUNCTION Download Position Compensation Table

SYNTAX DOWN_POS pdata, npts, table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

pdata data points array, single precision
npts long value specifying number of points to be

downloaded
table long value specifying the table axis (1-8)

DESCRIPTION

This function downloads position compensation tables to the Mx4
controller.

SEE ALSO DOWN_VEL, TABLE_SEL

EXAMPLE

Download the 1024 point position compensation table
POSCOMP.DAT to the axis 6 position compensation table.

Dim compdata(1024) As Single
Dim I As Integer
Open “c:\work\poscomp.dat” For Input As #1
For I = 0 To 1023

Input #1, compdata(I)
Next I
DOWN_POS compdata(0), 1024, 6

Function Reference

Mx4 & Windows v4.0 4-75

DOWN_VEL

FUNCTION Download Velocity Compensation Table

SYNTAX DOWN_VEL vdata, npts, table

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

vdata data points array, single precision
npts long value specifying number of points to be

downloaded
table long value specifying the table axis (1-8)

DESCRIPTION

This function downloads velocity compensation tables to the Mx4
controller.

SEE ALSO DOWN_POS, TABLE_SEL

EXAMPLE

Download the 1024 point velocity compensation table
VELCOMP.DAT to the axis 3 velocity compensation table.

Dim compdata(1024) As Single
Dim I As Integer
Open “c:\work\velcomp.dat” For Input As #1
For I = 0 To 1023

Input #1, compdata(I)
Next I
DOWN_VEL compdata(0), 1024, 3

Function Reference

4-76

ENCOD_MAG Vx4++ option command

FUNCTION Define Encoder Line Count, Motor Poles, Commut. Option

SYNTAX ENCOD_MAG n, p1, p2, p3

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
p1 long value, number of encoder lines/rev

0 ≤ p1 ≤ 65535

p2 long value, number of motor poles

0 ≤ p2 ≤ 256

p3 long value, brushless DC commutation option

p3 = 0 : brushtype DC or AC induction motor tech
p3 = 0 : comm option 0
p3 = 1 : comm option 1

DESCRIPTION

The Vx4++ option card interfaces to the motors with any number of
magnetic poles and encoders with any number of encoder pulse
numbers. An example of this is a brushless DC machine with eight
poles, 1,000 line encoder and hall sensors mounted in a special
configuration. This command allows the user to define the encoder,
commutation, and motor pole parameters for the specified axis(es).

Note: Mx4 with Vx4++ will not execute the ENCOD_MAG command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO VX4_BLOCK

Function Reference

Mx4 & Windows v4.0 4-77

ENCOD_MAG cont.

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Axis four is an AC induction motor with a 1024 line encoder and 4
motor poles.

ENCOD_MAG 4, 1024, 4, 0

Function Reference

4-78

END_RTC

FUNCTION End Multi-Axis Command

SYNTAX END_RTC

ARGUMENTS

None

DESCRIPTION

A number of RTCs have a large and variable number of arguments.
These are mostly motion control RTCs which permit the desired
motion for several axes to be specified at once. All of the motion
control functions in the DLL are single axis. The BEGIN_RTC and
END_RTC functions permit a multi-axis RTC to be built-up from
multiple calls to a single axis RTC function. The AXMOVE function
illustrates this. A call to AXMOVE by itself will generate an AXMOVE RTC
for the specified axis. To generate a two-axis AXMOVE RTC, two calls
to AXMOVE would be bracketed between calls to BEGIN_RTC and
END_RTC.

SEE ALSO BEGIN_RTC

APPLICATION

Multi-axis commands are needed when the trajectories of two or more
axes must be synchronized.

EXAMPLE

This example illustrates how BEGIN_RTC and END_RTC can be used to
issue a two axis AXMOVE command to Mx4. Assuming current positions
of zero for axes 1 and 2, we want to move axis 1 to the target position
of 234567 and axis 2 to the target position of -3000 counts. Let's also
assume that we want this move to be accomplished with the slew rate
velocity of 4.0 counts/200µs for axis 1 and -3.50 counts/200µs for axis
2, and an acceleration of 0.005 counts/(200 µs)2 for both axes.

BEGIN_RTC
AXMOVE 1, 0.005, 234567, 4.00
AXMOVE 2, 0.005, -3000, -3.50

END_RTC

Function Reference

Mx4 & Windows v4.0 4-79

EN_BUFBRK

FUNCTION Enable Buffer Breakpoint Interrupt

SYNTAX EN_BUFBRK buffbrk

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

buffbrk positive long value which represents the delta position
for the remaining number of bytes in the ring buffer.
Since each contouring point requires 8 bytes, this
number must be multiplied by 8 to indicate the real
number of bytes left in the ring buffer.

1 ≤ buffbrk ≤ 84 contouring data points

DESCRIPTION

This command will cause an interrupt when the number of contouring
data points in the contouring ring buffer falls below a preset
breakpoint. The buffer breakpoint interrupt status will appear in bit 0
of the DPR interrupt flag location [Mx4:7FEh] [Mx4 Octavia:1FFEh].
This bit gets set if a buffer breakpoint interrupt occurs.

SEE ALSO DISABL_INT

APPLICATION

This command must be used in both 2nd order and cubic spline
contouring applications. To maintain continuity in a contouring
application, Mx4 must be constantly updated by the host processor
with a set of new (position/velocity) points on the contour. Since no
application can afford to run out of points, the host must set the buffer
breakpoint interrupt to a value such that running the remaining points
(what is left in the ring buffer) will give the host enough time to
update the buffer. For slower hosts, the argument for this command
must be relatively larger.

Function Reference

4-80

EN_BUFBRK cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

. ;load the ring buffer with contouring points,

. ;(position and speed)
BTRATE () ;set the 2nd order contouring block transfer rate to 5,

10, 15 or 20 ms
EN_BUFBRK () ;set the breakpoint in buffer
.
.
START (n) ;start contouring

EXAMPLE

Enable a contouring ring buffer’s breakpoint interrupts for the case
that the number of segment move commands in the ring buffer falls
below 30.

EN_BUFBRK 30

Function Reference

Mx4 & Windows v4.0 4-81

EN_ENCFLT

FUNCTION Encoder Fault Interrupt

SYNTAX EN_ENCFLT n, m, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value, bit coding of the axes interrupt condition (see

Description)
fer double precision, unsigned following error value

0 <= fer <= 65535 counts

DESCRIPTION

This command enables the encoder fault interrupt for the specified
axes.

With the respective axis bit of argument m equal to 0, the encoder
fault interrupt is triggered for the axis in question if,

1. abs[following error] > ferr threshold
2. and, hardware encoder status bit is set

With the respective axis bit of argument m equal to 1, the encoder
fault interrupt is triggered for the axis in question if,

1. abs[following error] > ferr threshold

If an encoder fault interrupt condition is present for an axis, the axis
will be put into open loop with DAC output of 0 volts, and an
interrupt will be generated. If, however, the axis in question is
already in open

Function Reference

4-82

EN_ENCFLT cont.

loop prior to the interrupt condition, an interrupt will be generated but
no action will be taken (ie: DAC voltage is unaffected).

The encoder fault interrupt is sustained until the EN_ENCFLT command
is reissued to the Mx4. Reissuing the EN_ENCFLT command also
allows the affected axis(es) to be put back into closed loop following
the execution of the command.

The hardware encoder status bits are reported to the lower nibble of
DPR location 113h (see Mx4 DPR Organization). A set bit indicates
that Mx4 has detected an encoder hardware failure. Mx4 reports an
“encoder status” error if for the axis in question,

1. the encoder feedback to Mx4 is losing encoder pulses or
one of the encoder signals (A or B) actively toggles while
the other one is inactive.

The DPR interrupt status locations 009h (bit 4) and 00Eh record the
occurrence and source of this interrupt, respectively. Bit 6 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

SEE ALSO DISABL2_INT

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the encoder fault interrupt for axis 3. Set the following error
threshold at 500 counts, using the encoder hardware status bits in the
interrupt condition.

EN_ENCFLT 3, 0, 500

Function Reference

Mx4 & Windows v4.0 4-83

EN_ERR

FUNCTION Enable Following Error Interrupt

SYNTAX EN_ERR n, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fer double precision, unsigned following error value

0 ≤ fer ≤ 65535 counts

DESCRIPTION

Upon the execution of this command, if at any time the following
error for a specified axis exceeds its programmed value, the servo
control card will generate an interrupt. This condition is recorded in
DPR interrupt status register location 000h. The DPR status register
location 02h will identify the axis(es) responsible. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERR_REG
bit register.

Note: EN_ERR is not disabled after it occurs. The host is responsible
for disabling the interrupt.

SEE ALSO DISABL_INT, EN_ERRHLT

APPLICATION

This command may be used in all applications for two reasons. First,
EN_ERR reports a run-away or any other out-of-control condition.
Second, it makes sure that position error is within a specified
tolerance (i.e. the value in argument ferx).

Function Reference

4-84

EN_ERR cont.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Set a EN_ERR interrupt value of 200 encoder counts for axis 1.

EN_ERR 1, 200

Function Reference

Mx4 & Windows v4.0 4-85

EN_ERRHLT

FUNCTION Enable Following Error Interrupt and Halt

SYNTAX EN_ERRHLT n, fer

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fer double precision, unsigned following error value

0 ≤ fer ≤ 65535 counts

DESCRIPTION

Upon execution of this command, if at any time the following error
for a specified axis exceeds its programmed value, the system will
halt and generate an interrupt. The halt brings the motion of the axis
in question to a stop using the programmed maximum acceleration
rate. This interrupt condition is recorded in DPR interrupt status
register location 000h. The DPR status register location 001h reveals
the axis(es) responsible. Bit 1 of DPR location [Mx4:7FEh] [Mx4
Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERRH_REG
bit register.

Note 1: EN_ERRHLT will be ignored if the respective axis abort
maximum acceleration is zero.

Note 2: EN_ERRHLT is not disabled after it occurs. The host is
responsible for disabling the interrupt.

Function Reference

4-86

EN_ERRHLT cont.

SEE ALSO DISABL_INT, EN_ERR, ESTOP_ACC

APPLICATION

Applications of this command are similar to EN_ERR. However, as a
result of this command's interrupt, the system will come to a stop.
Stop trajectory uses the programmed abort maximum acceleration.
Please see ESTOP_ACC. Please note that this command is not
appropriate to prevent system run-away in case of encoder loss, since
in the absence of encoder, the system cannot be stopped reliably.

Command Sequence Example
ESTOP_ACC () ;set the maximum accel. so system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT () ;set gains
.
.
EN_ERRHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 1, 2 and 3 with a
threshold of 100, 120, and 200 counts, respectively.

BEGIN_RTC
EN_ERRHLT 1, 100
EN_ERRHLT 2, 120
EN_ERRHLT 3, 200

END_RTC

Function Reference

Mx4 & Windows v4.0 4-87

EN_INDEX

FUNCTION Enable Index Pulse Interrupt

SYNTAX EN_INDEX n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

Upon the execution of this command, the servo control card will
search for the first index pulse edge from the specified axis. The pulse
edge generates an interrupt and registers the actual position for all
axes in DPR locations 103h - 112h. The DPR interrupt status register
locations 000h and 003h record the occurrence and source of this
interrupt. Bit 1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is
also set.

The interrupt condition is also axis bit-coded in the DSPL INDEX_REG
bit register.

Note 1: Only one index pulse can generate an interrupt at any given
time. The EN_INDEX command enables the index pulse
interrupt for the axis specified and automatically disables the
previous one (if any).

Note 2: The EN_INDEX and EN_PROBE commands CAN BE
ENABLED simultaneously.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

Function Reference

4-88

EN_INDEX cont.

APPLICATION

This command is used in homing applications. As a result of this
instruction, Mx4 will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. This instruction must be used in conjunction
with POS_PRESET to perform homing for linear table (or other index-
based) position calibration.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.

EN_INDEX 4

Function Reference

Mx4 & Windows v4.0 4-89

EN_MOTCP

FUNCTION Enable Motion Complete Interrupt

SYNTAX EN_MOTCP n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any
closed loop motion other than ring buffer 2nd order or ring buffer
cubic spline contouring comes to a stop. The DPR interrupt status
register locations 000h and 005h record the occurrence and source of
this interrupt. Bit 1 of DPR location [Mx4:7FEh] [Mx4
Octavia:1FFEh] is also set.

The interrupt condition is also bit-coded in the DSPL MOTCP_REG bit
register.

Note: EN_MOTCP is not disabled after it occurs. The host is
responsible for disabling the interrupt.

SEE ALSO DISABL_INT

APPLICATION

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z-
axes will start moving only when the x-y table has moved to a target
position.

Command Sequence Example
See AXMOVE and STOP

Function Reference

4-90

EN_MOTCP cont.

EXAMPLE

Enable the motion complete interrupt for all four axes.

BEGIN_RTC
EN_MOTCP 1
EN_MOTCP 2
EN_MOTCP 3
EN_MOTCP 4

END_RTC

Function Reference

Mx4 & Windows v4.0 4-91

EN_POSBRK

FUNCTION Enable Position Breakpoint Interrupt

SYNTAX EN_POSBRK n, pos

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

pos double precision, position breakpoint value

-2147483648 ≤ pos ≤ 2147483647 counts

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position for a specified axis passes the programmed breakpoint.
The DPR interrupt status register locations 000h and 004h record the
occurrence and source of this interrupt. Bit 1 of DPR location
[Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL POSBRK_REG
bit register.

Note 1: The position breakpoint is calculated as the absolute distance
from the present position (position at the moment at which
the EN_POSBRK RTC is interpreted) to the position breakpoint
value entered. The breakpoint interrupt is set when the axis
in question travels (in either direction) a distance equal to the
calculated absolute distance.

Function Reference

4-92

EN_POSBRK cont.

Note 2: EN_POSBRK is automatically disabled after the breakpoint
interrupt is generated. To activate this interrupt again, the
host must issue a new EN_POSBRK command.

Note 3: POS_PRESET and POS_SHIFT will automatically disable the
position breakpoint interrupt. The user is responsible to re-
enable the interrupt.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

APPLICATION

This instruction may be used in applications such as robotics,
indexing machine tools, etc. The CPU must be notified that the
system has passed an intermediate position. Based on this interrupt,
the CPU will execute a task. For example, in a robotics painting
application, the paint mixture may have to change based on the robot's
arm location.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Enable a breakpoint interrupt with a value of 60,000 counts for axis 1
and 500,000 for axis 2.

BEGIN_RTC
EN_POSBRK 1, 60000
EN_POSBRK 2, 500000

END_RTC

Function Reference

Mx4 & Windows v4.0 4-93

EN_PROBE

FUNCTION Enable General Purpose External Interrupt

SYNTAX EN_PROBE m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the probe

[Mx4]
m=1 : from *EXT1
m=2 : from *EXT2

[Mx4 Octavia]
m=1 : from *EXT1
m=2 : from *EXT2
m=3 : from *EXT3
m=4 : from *EXT4

DESCRIPTION

Upon the execution of this command, the servo control card will
search for the first *EXTx pulse edge. The pulse edge generates an
interrupt and registers the actual position for all axes in DPR locations
0A7h-0B6h. (The hand shaking bytes are 0C8h and 0D0h for Mx4 and
host, respectively.) DPR interrupt status register locations 000h and
006h record the occurrence and source of this interrupt. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL PROBE_REG
bit register.

Function Reference

4-94

EN_PROBE cont.

Note 1: Only one general purpose external interrupt can generate an
interrupt at any given time. The EN_PROBE command
enables the external interrupt specified and automatically
disables the previous one (if any).

Note 2: The EN_PROBE and EN_INDEX can be enabled
simultaneously.

SEE ALSO DISABL_INT, ESTOP_ACC

APPLICATION

This instruction is useful in probing applications. Since EN_PROBE
registers all positions when an interrupt occurs (falling pulse edge is
detected), it can be used in accurate recording of surface dimensions
by a probe.

 Command Sequence Example
CTRL () ;these instructions enable system to stop motion
KILIMIT ()

.

.
EN_PROBE ()
END

EXAMPLE

Enable the *EXT2 external interrupt.

EN_PROBE 2

Function Reference

Mx4 & Windows v4.0 4-95

ESTOP_ACC

FUNCTION Abort Motion Maximum Acceleration

SYNTAX ESTOP_ACC n, acc

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision, unsigned value specifying the

maximum halting acceleration (deceleration)

0 ≤ acc ≤ 1.999969 counts/(200µs)2

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

DESCRIPTION

This command specifies the maximum halting acceleration
(deceleration) for the axes specified. The maximum acceleration
values are used in the following cases: EN_ERRHLT, and ESTOP_ACC.

Note: ESTOP_ACC will be ignored if the specified argument is zero.

SEE ALSO EN_ERRHLT, MAXACC, STOP, VELMODE

Function Reference

4-96

ESTOP_ACC cont.

APPLICATION

This command sets the maximum possible deceleration for a
mechanical actuator. This RTC is used to set the deceleration rate for
an emergency case. In contrast to MAXACC, ESTOP_ACC provides a
sharper deceleration such that the entire system comes to a stop as
rapidly as possible. Please remember that the STOP and VELMODE RTCs
use MAXACC for their acceleration/deceleration.

Command Sequence Example
ESTOP_ACC () ;set the abort maximum acceleration
CTRL () ;make sure the system is in closed loop
EN_ERRHLT () ;set the maximum tolerance for the following error

;if the following error exceeds the ABORTACC
;parameter, the system will stop immediately

EXAMPLE

Set an abort motion maximum acceleration for axes 2 and 3 of 0.5
encoder counts/(200 µsec)2.

BEGIN_RTC
ESTOP_ACC 2, 0.5
ESTOP_ACC 3, 0.5

END_RTC

Function Reference

Mx4 & Windows v4.0 4-97

FERR

FUNCTION Get Following Error State Variable

SYNTAX FERR n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the following error for
the axis specified.

SEE ALSO POS, VEL

EXAMPLE

Read the following error of axis 3.

Dim Temp As Double
Temp = FERR (3)

Function Reference

4-98

FLUX_CURRENT Vx4++ option command

FUNCTION Set Field Compensation Or Flux Value

SYNTAX FLUX_CURRENT n, fval

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
fval long value, for AC induction motor, defines a bipolar

flux value for the field producing component of the
current

-32768 ≤ fval ≤ 32767

for brushless DC motor, defines a unipolar field
compensation parameter

0 ≤ fval ≤ 65535

DESCRIPTION

The FLUX_CURRENT command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines a bipolar flux value for the field-producing
component of the current. If the axis is a brushless DC motor, the
command sets a unipolar field compensation parameter.

Note: The FLUX_CURRENT command does not need to be
programmed for brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide

Function Reference

Mx4 & Windows v4.0 4-99

FLUX_CURRENT cont.

EXAMPLE

Set a flux value or -5000 for axis one (AC induction motor) and a
field compensation value of 1300 for axis two (brushless DC motor).

BEGIN_RTC
FLUX_CURRENT 1, -5000
FLUX_CURRENT 2, 1300

END_RTC

Function Reference

4-100

GEAR

FUNCTION Electronics Gear On

SYNTAX GEAR n, m, ratio

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
ratio single precision, gear ratio between master and slave

-256 ≤ ratio < 255.999

minimum gear ratio is +/- 1/128

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by ratio. Upon
receiving this command, the electronic gearing is engaged at once.

SEE ALSO GEAR_OFF, GEAR_POS, GEAR_PROBE

APPLICATION

See Application Notes

EXAMPLE

Axis 2 is a slave axis to axis 1 with a gear ratio of 2.5.

GEAR 1, 2, 2.5

Function Reference

Mx4 & Windows v4.0 4-101

GEAR_OFF

FUNCTION Electronics Gear Off

SYNTAX GEAR_OFF n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to disengage

DESCRIPTION

This command disengages the specified slave axis(es) at once.

SEE ALSO GEAR, GEAR_POS, GEAR_PROBE

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF 4

Function Reference

4-102

GEAR_OFF_ACC

FUNCTION Turns Electronic Gearing Off and Halt Slave(s)

SYNTAX GEAR_OFF_ACC n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the slave axis to disengage

DESCRIPTION

This command disengages the system that was under master/slave
control. The slave axes will come to a complete stop at the maximum
acceleration rate specified by MAXACC command.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS, GEAR_PROBE

APPLICATION

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF_ACC 4

Function Reference

Mx4 & Windows v4.0 4-103

GEAR_POS

FUNCTION Electronics Gear On at a Specified Leader Position

SYNTAX GEAR_POS n, m, ratio, tp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
ratio single precision, gear ratio between master and slave

-256 ≤ ratio < 255.999

minimum gear ratio is +/- 1/128

tp double precision, master axis position value at which the
electronic gearing engages for the specified axis

-2147483648 ≤ tp ≤ 2147483647

DESCRIPTION

This command emulates a mechanical gear function. The slave
follows the master with the gear ratio specified by ratio. Upon
receiving this command, the electronic gearing starts engaging at the
specified master position (tp).

SEE ALSO GEAR, GEAR_OFF, GEAR_PROBE

APPLICATION

See DSPL Application Notes

Function Reference

4-104

GEAR_POS cont.

EXAMPLE

Axes 3 and 4 should follow axis 2 with gear ratios 2.0 and 4.0,
respectively. Both axes three and four should “engage” when axis 2
position is equal to 10,500 counts.

BEGIN_RTC
GEAR_POS 2, 3, 2.0, 10500
GEAR_POS 2, 4, 4.0, 10500

END_RTC

Function Reference

Mx4 & Windows v4.0 4-105

GEAR_PROBE

FUNCTION Electronics Gear On After Probe Input

SYNTAX GEAR_PROBE n, m, q, ratio

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the master axis
m long value specifying the slave axis
q long value, the *EXTx probe input to be used

[Mx4]
q = 1 : *EXT1
q = 2 : *EXT2

[Mx4 Octavia]
q = 1 : *EXT1
q = 2 : *EXT2
q = 3 : *EXT3
q = 4 : *EXT4

ratio single precision, gear ratio between master and slave

-256 ≤ ratiox < 255.999

minimum gear ratio is +/- 1/128

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by rx. The GEAR_PROBE
command engages the mechanical gear function for selected master
and slave axes after the specified external signal (*EXTx) is activated.

Function Reference

4-106

GEAR_PROBE cont.

Note 1: Execution of the GEAR_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe (*EXT1,2,3,4)
activation does not generate an interrupt with the GEAR_PROBE
command.

Note 2: Activation of *ESTOP during a GEAR operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in GEAR mode after the input-triggered
halt.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 8 is the leader, axis 1 is the follower with a gear ratio of 4.0.
Axis 1 should “engage” at the occurrence of probe interrupt *EXT2.

GEAR_PROBE 8, 1, 2, 4.0

Function Reference

4-106

GETCOMMINSTCOUNT

FUNCTION Get Number of Serial Communication Instances Connected

SYNTAX GETCOMMINSTCOUNT (port)

ARGUMENTS

Port long value specifying comm port (1-4)

DESCRIPTION

This function is used with serial communication applications. The
function returns (long value) the number of instances of the DLL
during serial communication which have been successfully connected.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMTYPE,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Read the number of instances connected over comm port 2 into Visual
Basic variable Temp.

Dim Temp As Long
Temp = GETCOMMINSTCOUNT (2)

Function Reference

Mx4 & Windows v4.0 4-107

GETCOMMTYPE

FUNCTION Get Communication Type

SYNTAX GETCOMMTYPE ()

ARGUMENTS

none

DESCRIPTION

This function is used to determine the current communication type.
The function returns (byte value) the type as follows,

0 bus
1 comm1
2 comm2
3 comm3
4 comm4
5 none

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT,
GETCURRENTNODEADDRESS, RESETCOMMUNICATIONS

EXAMPLE

Query the type of communication which is active.

Dim Temp As Byte
Temp = GETCOMMTYPE ()

Function Reference

4-108

GETCURRENTNODEADDRESS

FUNCTION Get Current Serial Communication Node Address

SYNTAX GETCURRENTNODEADDRESS ()

ARGUMENTS

none

DESCRIPTION

This function returns (byte value) the current value of the node
address for serial communication applications.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE,
RESETCOMMUNICATIONS

EXAMPLE

Query the serial communication node address.

Dim Temp As Byte
Temp = GETCURRENTNODEADDRESS ()

Function Reference

Mx4 & Windows v4.0 4-109

INP_STATE

FUNCTION Configure Logic State of Inputs

SYNTAX INP_STATE inp, state

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

inp long value, specifying the input

[Mx4] 0 <= inp <= 21
[Mx4 Octavia] 0 <= inp <= 31

state long value, specifying the logic state of the input

state = 0 : active LOW input
state = 1 : active HIGH input

DESCRIPTION

This command allows the user to define the logic state of the
[Mx4:22] [Mx4 Octavia:32] inputs. Each input may be configured as
active LOW or active HIGH (TTL logic levels) (the Mx4 inputs are
level sensitive).

Note: At power-up and reset, Mx4 inputs default as active LOW.

SEE ALSO none

EXAMPLE

Configure the IN0 and IN5 inputs as active HIGH.

BEGIN_RTC
INP_STATE 0, 1
INP_STATE 5, 1

END_RTC

Function Reference

4-110

INT5MS

FUNCTION Enable / Disable the 5msec Interrupt

SYNTAX INT5MS m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the enable/disable status of the
interrupt

m = 0 disable the 5msec interrupt
m = 1 enable the 5msec interrupt

DESCRIPTION

The 5msec interrupt is useful in sampling applications where the host
may need to sample data from the Mx4 controller at timed intervals.
When enabled, the Mx4 controller issues a hardware interrupt to the
host every 5msec. The interrup is coded in DPR location 009h. Bit 6
of DPR location [Mx4:7Feh] [Mx4 Octavia:1FFEh] is also set.

SEE ALSO none

EXAMPLE

Enable the 5msec interrupt.

INT5MS 1

Function Reference

Mx4 & Windows v4.0 4-111

KILIMIT

FUNCTION Integral Gain Limit

SYNTAX KILIMIT n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val long value setting the limit of the integral action

Note: 0 ≤ val ≤ 14

val = 0 indicates no limit on integration channels
val = 14 indicates maximum limit on integration channels

For example,

Kilimit val = 0 +/- 10v DAC action from Ki control law parameter
Kilimit val = 1 +/- 5v DAC action from Ki control law parameter
Kilimit val = 2 +/- 2.5v DAC action from Ki control law parameter
Kilimit val = 3 +/- 1.25v DAC action from Ki control law parameter
 :
 :

DESCRIPTION

This command is used to set the limit for integral action related to the
choice of parx1 in the CTRL RTC. Integral limit is specified for each
axis. Default valx are set to zero (i.e., no limit on integration
channels).

SEE ALSO CTRL

Function Reference

4-112

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the
channel's depletion time. Using this instruction is essential where
large integral gain is required. Clamping the integral channel will let
the system zero position error without a lengthy "creeping motion" to
its target position.

Command Sequence Example
CTRL () ;set the gains
KILIMIT () ;this instruction may be used before or after CTRL

EXAMPLE

Set a maximum limit on the integral action of axis 2, 3, and 4.

BEGIIN_RTC
KILIMIT 2, 14
KILIMIT 3, 14
KILIMIT 4, 14

END_RTC

Function Reference

Mx4 & Windows v4.0 4-113

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output

SYNTAX LOW_PASS n, freq

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
freq long value specifying the low pass filter cut-off

frequency

0 ≤ freq ≤ 1850

DESCRIPTION

This command implements a low pass filter at the controller output
for the specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

K Limiti

to DAC
Output

Loop Gain
Low Pass

Filter

Mx4 Block Diagram with Low Pass Filter

Function Reference

4-114

LOW_PASS cont.

The low pass filter implements the following transfer function:

G s
s s

n

n n
() =

+ ⋅ +

ω
ζω ω

2

2 22

where, ω πn nf= 2 , fn = cut-off frequency, and ζ = 0 6.

The frequency and bandwidth of the low pass filter is programmable.

Note: By programming a cut-off frequency of 0, the low pass filter
for the specified axis is disabled.

SEE ALSO none

EXAMPLE

1) Set a low pass filter at 250 Hz for axis 2 (see below).

LOW_PASS 2, 250

2) Disable the low pass filter of axis 1.

LOW_PASS 1, 0

Note: Mx4 default setting for low pass filter is no filter (or filter
disabled.

Function Reference

Mx4 & Windows v4.0 4-115

LOW_PASS cont.

Magnitude Diagram

Phase Diagram of 250 Hz Low Pass Filter

Function Reference

4-116

MAXACC

FUNCTION Maximum Acceleration

SYNTAX MAXACC n, acc

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precesion, unsigned value specifying the

maximum acceleration / deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

DESCRIPTION

This command specifies the maximum acceleration / deceleration for
the axes specified. The maximum acceleration values are used in the
STOP and VELMODE commands.

Note: MAXACC will be ignored if the specified argument is zero.

SEE ALSO ESTOP_ACC, STOP, VELMODE

Function Reference

Mx4 & Windows v4.0 4-117

MAXACC cont.

APPLICATION

This command sets the maximum acceleration affordable by the servo
drive and motor combination. It is useful to program this parameter
such that the system will not go to control saturation during VELMODE
or STOP.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

.

.
AXMOVE () ;run system in axis move
VELMODE () ;run system in velocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200µs)2.

BEGIN_RTC
MAXACC 2, 0.25
MAXACC 3, 0.25

END_RTC

Function Reference

4-118

MONITOR_VAR

FUNCTION Select DSPL Variables To Monitor

SYNTAX MONITOR_VAR m, var

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the DPR variable monitoring
window

1 <= m <= 4

var long value specifying the DSPL variable to monitor in
the selected DPR monitoring window

1 <= var <= 128

DESCRIPTION

The MONITOR_VAR function selects which of the 128 DSPL variables to
report to the DPR variable monitoring windows (there are 4 windows,
for a maximum of 4 variables at one time).

SEE ALSO CHANGE_VAR, VAR

EXAMPLE

Select DSPL variable VAR67 to be reported to DPR monitor window
4.

MONITOR_VAR 4, 67

Function Reference

Mx4 & Windows v4.0 4-119

MOTOR_PAR Vx4++ option command

FUNCTION Motor Parameter

SYNTAX MOTOR_PAR n, mpar

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mpar long value, for AC induction motor, defines the motor

slip gain

-32768 ≤ fval ≤ 32767

for brushless DC motor, defines the commutation angle

-32768 ≤ fval ≤ 32767

DESCRIPTION

The MOTOR_PAR command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines the motor slip gain. If the axis is a brushless DC
motor, the command defines the commutation angle (in encoder
counts).

Note: The MOTOR_PAR command does not need to be programmed
for brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide
EXAMPLE

Program a slip gain equal to 5500 for axes two (the motoris an AC
induction motor).

MOTOR_PAR 2, 5500

Function Reference

4-120

MOTOR_TECH Vx4++ option command

FUNCTION Motor Technology

SYNTAX MOTOR_TECH n, mtech

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
mtech long value,

AC induction, mtech = MT_AC_INDUCTION
brushless DC, mtech = MT_BRUSHLESS_DC
brushtype DC, mtech = MT_BRUSHTYPE_DC

DESCRIPTION

Mx4 with the Vx4++ drive control option is capable of controlling
brushtype DC, AC induction, and brushless DC motors. This
command allows the motor technology of each axis to be
programmed.

Note: Mx4 with Vx4++ will not execute the MOTOR_TECH command
if the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Select brushless DC technology for axis one.

MOTOR_TECH 1, MT_BRUSHLESS_DC

Function Reference

Mx4 & Windows v4.0 4-121

MX4_CLEAR

FUNCTION Clear Interrupt Conditions

SYNTAX MX4_CLEAR mask, n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

mask long value, mask specifying the interrupt condition to
clear. Each bit in the mask corresponds to a specific
interrupt condition. If a bit is set, the corresponding
interrupt condition is cleared.

bit 0: following error & halt [EN_ERRHLT]
bit 1: following error [EN_ERR]
bit 2: index pulse [EN_INDEX]
bit 3: position breakpoint [EN_POSBRK]
bit 4: motion complete [EN_MOTCP]
bit 5: probe [EN_PROBE]
bit 6: conflicting commands
bit 7: RTC ignored, stop in progress
bit 8: encoder fault [EN_ENCFLT]
bit 9: <reserved>
bit 10: offset cancel finished [OFFSET]
bit 11: <reserved>
bit 12: DSPL host interrupt [INT_HOST, dspl]
bit 13: DSPL program running error
bit 14: 5 msec [INT5MS]
bit 15: <reserved>

n long value specifying the axis

Function Reference

4-122

MX4_CLEAR cont.

DESCRIPTION

The source of interrupts are recorded in the Mx4 controller’s Dual
Port RAM (DPR). When a specific interrupt occurs a bit is set in the
DPR. The MX4_ISTAT function can be used to test these bits. Mx4
never clears these bits, this must be done by the host program via the
MX4_CLEAR function.

SEE ALSO DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE,
INT5MS, MX4_ISTAT

APPLICATION

EXAMPLE

Clear the axis 3 following error and halt interrupt.

MX4_CLEAR &H1, 3

Function Reference

Mx4 & Windows v4.0 4-123

MX4_INPUT

FUNCTION Return State Of Digital Input

SYNTAX MX4_INPUT inp

ARGUMENTS

inp long value, specifying the input

Mx4 : 0 <= inp <= 21
Mx4 Octavia : 0 <= inp <= 31

DESCRIPTION

This function returns (long value) the on / off status of the specified
input. If the input is on, the function returns a non-zero value. If the
input is off, the function returns 0.

SEE ALSO INP_STATE, OUTP_OFF, OUTP_ON

APPLICATION

EXAMPLE

Read the state of each of Mx4 Octavia’s 32 inputs into the local array
Temp.

For I=0 To 31
Temp[I]=MX4_INPUT (I)

Next I

Function Reference

4-124

MX4_ISTAT

FUNCTION Test State Of Interrupt Conditions

SYNTAX MX4_ISTAT mask, n

ARGUMENTS

mask long value, mask specifying the interrupt condition to
check. Each bit in the mask corresponds to a specific
interrupt condition. If a bit is set, the corresponding
interrupt condition is checked.

bit 0: following error & halt [EN_ERRHLT]
bit 1: following error [EN_ERR]
bit 2: index pulse [EN_INDEX]
bit 3: position breakpoint [EN_POSBRK]
bit 4: motion complete [EN_MOTCP]
bit 5: probe [EN_PROBE]
bit 6: conflicting commands
bit 7: RTC ignored, stop in progress
bit 8: encoder fault [EN_ENCFLT]
bit 9: <reserved>
bit 10: offset cancel finished [OFFSET]
bit 11: <reserved>
bit 12: DSPL host interrupt [INT_HOST, dspl]
bit 13: DSPL program running error
bit 14: 5 msec [INT5MS]
bit 15: <reserved>

n long value specifying the axis

Function Reference

Mx4 & Windows v4.0 4-125

MX4_ISTAT cont.

DESCRIPTION

The source of interrupts are recorded in the Mx4 controller’s Dual
Port RAM (DPR). When a specific interrupt occurs a bit is set in the
DPR. The MX4_ISTAT function can be used to test these bits (the
function returns a long value, non-zero if any of the interrupt
conditions in the mask is true). Mx4 never clears these bits, this must
be done by the host program via the MX4_CLEAR function.

SEE ALSO DISABL_INT, DISABL2_INT, EN_BUFBRK, EN_ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK, EN_PROBE,
INT5MS, MX4_CLEAR

APPLICATION

EXAMPLE

Poll for an axis 1 index pulse interrupt. The timer event procedure is
used to poll for the interrupt condition. When it is detected, a counter
is incremented and the interrupt bit is cleared.

Sub Timer_T()
.
.
 If MX4_ISTAT(IC_INDEX_PULSE, 1) Then

InterruptCount = InterruptCount + 1
MX4_CLEAR IC_INDEX_PULSE, 1

 End If
.
.
End Sub

Function Reference

4-126

NOTCH (option)

FUNCTION Implement Notch Filter at Controller Output

SYNTAX NOTCH n, freq, q

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
freq long value specifying the notch filter frequency

0 ≤ freq ≤ 1650 Hz

q long value specifying the notch filter quality factor

q = 1 ~25% bandwidth filter
q = 2 ~10% bandwidth filter

DESCRIPTION

This command implements a notch filter at the controller output for
the specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

nV̂

K f

K p

Kalman
Filter

K Limiti

to DAC
Output

Loop Gain
Notch
Filter

Mx4 Block Diagram with Notch Filter

Function Reference

Mx4 & Windows v4.0 4-127

NOTCH cont.

The notch filter implements the transfer function:

G s
s

s s
n

n
Q n

() =
+

+ +

2 2

2 2

ω

ωω

where, ω πn nf= 2 and fn = notch frequency

The frequency and bandwidth of the notch is programmable.

Note: By programming a notch frequency of 0, the notch filter for
the specified axis is disabled.

SEE ALSO none

EXAMPLE

1) Set a notch filter at 750 Hz with a narrow bandwidth (q = 2) for
axis 2 (see Fig. 4-3 below).

NOTCH 2, 750, 2

2) Disable the notch filter of axis 1.

NOTCH 1, 0, 1

Note: The Mx4 default setting for notch filter is no notch (or notch
disabled).

Function Reference

4-128

NOTCH cont.

(a)

(b)

Frequency Response of Discrete 750 Hz, Q=2 Notch Filter

Function Reference

Mx4 & Windows v4.0 4-129

OFFSET

FUNCTION Amplifier Offset Cancellation

SYNTAX OFFSET n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command minimizes the offset generated by the D/A Converter
(DAC). Upon completion of offset tuning, an interrupt is generated to
the host. The condition is recorded in DPR interrupt status register
location 009h. DPR status register location 00Ch will identify the axis
responsible. Bit 6 of DPR locations [Mx4:7FEh] [Mx4
Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in bits 0-3 of the DSPL
OFFSET_REG bit register.

Note: OFFSET may be run with only one axis at a time. The status
of the remaining three axes is not affected by running
OFFSET.

To run OFFSET, the following steps should be followed for the
corresponding axis:

1. The axis should be in closed loop with optimal gains set.
2. Ki must be non zero for the axis.
3. The axis should be 'stopped', with no motion commands in

progress.
4. Start OFFSET with the specified axis.
5. Offset adjust is complete when a host interrupt is generated.

SEE ALSO CTRL

Function Reference

4-130

OFFSET cont.

APPLICATION

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET, you may neutralize amplifier offset. To make this
happen, you must:

1. enable OFFSET for the axis whose offset is to be
neutralized, and

2. use a non-zero Ki gain that maintains stability and zeros
position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel until position error
is forced to zero. In the absence of amplifier offset, the DAC voltage
that would have achieved zero position error is zero. Any non-zero
DAC value is due to an error caused by amplifier offset voltage. Mx4
measures the voltage, reports satisfactory completion of the OFFSET
command (generates an interrupt), and uses this measured voltage
value to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine is turned on.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT () ;put system in a position loop, make sure integral

;gain is non-zero
.
.
OFFSET ()

EXAMPLE

After verifying that OFFSET Steps 1-3 (see DESCRIPTION, above)
have been followed, do offset tuning for axis 3.

OFFSET 3

Function Reference

Mx4 & Windows v4.0 4-131

OUTGAIN

FUNCTION Output Loop Gain

SYNTAX OUTGAIN n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value specifying the output gain,

m=0 gain=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gain=16

DESCRIPTION

This command is used to set the gain for the output of the position
loops. The default m is set to zero (gain = 1).

Note: Please see block diagram with CTRL command.

SEE ALSO CTRL

APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself as a low gain. This may be
compensated for by a loop gain adjustment. In practice, this command
may use an argument greater than 1 if the encoder line number is less
than 1000.

Function Reference

4-132

OUTGAIN cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Program output loop gains of eight for axis 3 and two for axis 4.

BEGIN_RTC
OUTGAIN 3, 3
OUTGAIN 4, 1

END_RTC

Function Reference

Mx4 & Windows v4.0 4-133

OUTP_OFF

FUNCTION Set Output to 'Off' State

SYNTAX OUTP_OFF outp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

outp long value specifying the single output to turn ‘Off’

[Mx4] 0 <= outp <= 12
[Mx4 Octavia] 0 <= outp <= 31

DESCRIPTION

This command allows the 'Off' status of an [Mx4:13] [Mx4
Octavia:32] output to be set.

SEE ALSO OUTP_ON, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Turn 'Off' the OUT0, OUT5, OUT6, and OUT12 outputs.

BEGIN_RTC
OUTP_OFF 0
OUTP_OFF 5
OUTP_OFF 6
OUTP_OFF 12

END_RTC

Function Reference

4-134

OUTP_ON

FUNCTION Set Output to 'On' State

SYNTAX OUTP_ON outp

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

outp long value specifying the single output to turn ‘On’

[Mx4] 0 <= outp <= 12
[Mx4 Octavia] 0 <= outp <= 31

DESCRIPTION

This command allows the 'On' status of an [Mx4:13] [Mx4
Octavia:32] output to be set.

SEE ALSO OUTP_OFF, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Turn 'On' the OUT5, OUT22, and OUT30 Mx4 Octavia outputs.

BEGIN_RTC
OUTP_OFF 5
OUTP_OFF 22
OUTP_OFF 30

END_RTC

Function Reference

Mx4 & Windows v4.0 4-135

OVERRIDE

FUNCTION Feedrate override for CIRCLE/LINEAR

SYNTAX OVERRIDE val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

val double precision, feedrate override multiplier

0.1 ≤ Val ≤ 10

DESCRIPTION

This command is used to set the feedrate override for the CIRCLE and
LINEAR related commands.

SEE ALSO CIRCLE, LINEAR_MOVE, LINEAR_MOVE_S, LINEAR_MOVE_T

APPLICATION

EXAMPLES

Set a feedrate override of 4x.

OVERRIDE 4.0

Function Reference

4-136

PARREAD

FUNCTION Parameter Readback

SYNTAX PARREAD m, sbuf

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value which indicates the parameters to echo.
m=10h axis 1, 5 position loop gain values [CTRL]
m=11h axis 2, 6 position loop gain values [CTRL]
m=12h axis 3, 7 position loop gain values [CTRL]
m=13h axis 4, 8 position loop gain values [CTRL]
m=14h Kilimit value [KILIMIT]
m=15h position loop output gain values [OUTGAIN]
m=16h maximum acceleration [MAXACC]
m=17h enabled interrupt
m=18h mode of operation
m=19h following error and halt interrupt setpoint [EN_ERRHLT]
m=1Ah following error interrupt setpoint [EN_ERR]
m=1Bh axis 1, 5 and 2, 6 position breakpoint interrupt setpoint

[EN_POSBRK]
m=1Ch axis 3, 7 and 4, 8 position breakpoint interrupt setpoint

[EN_POSBRK]
m=1Dh buffer breakpoint interrupt setpoint and contouring block

transfer rate [EN_BUFBRK, BTRATE, CUBIC_RATE]
m=1Eh axis 1, 5 and 2, 6 position breakpoint output mask

[POSBRK_OUT]
m=1Fh axis 3, 7 and 4, 8 position breakpoint output mask

[POSBRK_OUT]
m=20h abort maximum acceleration [ESTOP_ACC]
m=21h master/slave status
m=22h output status [OUTP_ON, OUTP_OFF]
m=23h input state
m=24h encoder fault interrupt setpoint [EN_ENCFLT]
m=25h not used
m=26h acceleration feedforward gain value [CTRL_KA]
m=27h torque limit value [TRQ_LIMIT]

Function Reference

Mx4 & Windows v4.0 4-137

PARREAD cont.

Sbuf byte array of length 16, used by function to pass data back to
the user

DESCRIPTION

Upon the execution of this command, [Mx4][Mx4 Octavia]
echoes the desired parameters to the DPR. The function
picks up the [Mx4 : 8] [Mx4 Octavia : 16] bytes and places
them in the array Sbuf. The data from the DPR is copied to
the array as follows:

Sbuf[0] : 0B8h Sbuf[8] : 0B8h
Sbuf[1] : 0B9h Sbuf[9] : 0B8h
Sbuf[2] : 0Bah Sbuf[10] : 0B8h
Sbuf[3] : 0BBh Sbuf[11] : 0B8h
Sbuf[4] : 0BCh Sbuf[12] : 0B8h
Sbuf[5] : 0BDh Sbuf[13] : 0B8h
Sbuf[6] : 0Beh Sbuf[14] : 0B8h
Sbuf[7] : 0BFh Sbuf[15] : 0B8h

DATA FORMAT

For each type of parameter, DPR locations 0B8h - 0BFh / 8B8h -
8BFh are interpreted differently. Axis 1-4 data is echoed to DPR
locations 0B8h – 0BFh. Axis 5-8 data [Mx4 Octavia] is echoed to
DPR locations 8B8h – 8BFh. The following shows the format for each
type of parameter (shown only for axes 1-4):

1. Position loop gains (m=10h - m=13h)

0B8h Ki low byte
0B9h Ki high byte
0BAh Kp low byte
0BBh Kp high byte
0BCh Kf low byte
0BDh Kf high byte
0BEh Kd low byte
0BFh Kd high byte

Function Reference

4-138

PARREAD cont.

2. Kilimit (m=14h)

0B8h Kilimit for axis 1
0B9h Kilimit for axis 2
0BAh Kilimit for axis 3
0BBh Kilimit for axis 4
0BCh
 : not used
0BFh

Note: 0 ≤ Kilimit ≤ 14

3. Position loop output gain (m=15h)

0B8h m specified gains for axis 1
0B9h m specified gains for axis 2
0BAh m specified gains for axis 3
0BBh m specified gains for axis 4
0BCh

 : not used
0BFh

Note: 0 ≤ m ≤ 4

4. Maximum acceleration (m=16h)

0B8h low byte acceleration for axis 1
0B9h high byte acceleration for axis 1
0BAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2
0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
0BEh low byte acceleration for axis 4
0BFh high byte acceleration for axis 4

Function Reference

Mx4 & Windows v4.0 4-139

PARREAD cont.

5. Enabled interrupt (m=17h)

0B8h bit 0 codes buffer breakpoint interrupt
0B9h low nibble bit codes the following error and

halt interrupts, high nibble bit codes the
following error interrupts

0BAh low nibble bit codes the index pulse
interrupts, high nibble bit codes the position
breakpoint interrupts

0BBh low nibble bit codes the motion complete
interrupts, high nibble bit codes the probe
interrupts

0BCh
 : not used
0BFh

6. Mode of operation (m=18h)

0B8h low nibble bit codes the axes in axis move
operation

0B9h low nibble bit codes the axes in stop
operation

0BAh low nibble bit codes the axes in velmode
operation

0BBh low nibble bit codes the axes in contouring
operation

0BCh
 : not used
0BFh

Function Reference

4-140

PARREAD cont.

7. Following error and halt interrupt setpoint (m=19h)

0B8h low byte setpoint for axis 1
0B9h high byte setpoint for axis 1
0BAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2
0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
0BEh low byte setpoint for axis 4
0BFh high byte setpoint for axis 4

8. Following error interrupt setpoint (m=1Ah)

0B8h low byte setpoint for axis 1
0B9h high byte setpoint for axis 1
0BAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2
0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
0BEh low byte setpoint for axis 4
0BFh high byte setpoint for axis 4

9. Position breakpoint setpoint (m=1B for axes 1 and 2,
1Ch for axes 3 and 4)

0B8h low word low byte setpoint for axis 1 or 3
0B9h low word high byte setpoint for axis 1 or 3
0BAh high word low byte setpoint for axis 1 or 3
0BBh high word high byte setpoint for axis 1 or 3
0BCh low word low byte setpoint for axis 2 or 4
0BDh low word high byte setpoint for axis 2 or 4
0BEh high word low byte setpoint for axis 2 or 4
0BFh high word high byte setpoint for axis 2 or 4

Function Reference

Mx4 & Windows v4.0 4-141

PARREAD cont.

10. Buffer breakpoint interrupt setpoint and contouring
block transfer rate (m=1Dh)

0B8h buffer breakpoint interrupt setpoint
0B9h = 00h : 2nd order contouring

= FFh : cubic spline contouring
0BAh low byte, block transfer rate
0BBh high byte, block transfer rate

 (for cubic spline only)
0BCh
 : not used
0BFh

11. Position breakpoint output masks (m=1E for axes 1
and 2, 1Fh for axes 3 and 4)

0B8h low byte output mask ON for axis 1 or 3
0B9h high byte output mask ON for axis 1 or 3
0BAh low byte output mask OFF for axis 1 or 3
0BBh high byte output mask OFF for axis 1 or 3
0BCh low byte output mask ON for axis 2 or 4
0BDh high byte output mask ON for axis 2 or 4
0BEh low byte output mask OFF for axis 2 or 4
0BFh high byte output mask OFF for axis 2 or 4

12. Abort maximum acceleration (m=20h)

0B8h low byte acceleration for axis 1
0B9h high byte acceleration for axis 1
0BAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2
0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
0BEh low byte acceleration for axis 4
0BFh high byte acceleration for axis 4

Function Reference

4-142

PARREAD cont.

13. Master/Slave status (m=21h)

0B8h =00h, configured as Master
=11h, configured as Slave

0B9h
 : not used
0BFh

14. Output status (m=22h)

0B8h bit 7 : OUT5
bit 6 : OUT7
bit 5 : OUT9
bit 4 : OUT11
bit 3 : OUT6
bit 2 : OUT8
bit 1 : OUT10
bit 0 : OUT12

0B9h not used
0BAh bit 7 : OUT3

bit 6 : OUT2
bits 5-4 : not used
bit 3 : OUT4
bits 2-0 : not used

0BBh not used
0BCh bit 7 : OUT0

bit 6 : OUT1
bits 5-0 : not used

0BDh
 not used
0BFh

Function Reference

Mx4 & Windows v4.0 4-143

PARREAD cont.

15. Logic state of inputs (m=23h)

0B8h echo inp1 byte of INP_STATE
0B9h echo inp2 byte of INP_STATE
0BAh bit 7 echo inp3 bit 5

bit 6 echo inp3 bit 4
bit 5 0
bit 4 0
bit 3 echo inp3 bit 3
bit 2 echo inp3 bit 2
bit 1 echo inp3 bit 1
bit 0 echo inp3 bit 0

0BBh
not used

0bfh

16. Encoder fault interrupt setpoint (m=24h)

0B8h low byte setpoint for axis 1
0B9h high byte setpoint for axis 1
0BAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2
0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
0BEh low byte setpoint for axis 4
0BFh high byte setpoint for axis 4

17. Not Used (m=25h)

18. Acceleration feedforward gain value (m=26h)

0B8h low byte Ka for axis 1
0B9h high byte Ka for axis 1
0BAh low byte Ka for axis 2
0BBh high byte Ka for axis 2
0BCh low byte Ka for axis 3
0BDh high byte Ka for axis 3
0BEh low byte Ka for axis 4
0BFh high byte Ka for axis 4

Function Reference

4-144

PARREAD cont.

19. Torque limit value (m=27h)

0B8h low byte trq limit value for axis 1
0B9h high byte trq limit value for axis 1
0BAh low byte trq limit value for axis 2
0BBh high byte trq limit value for axis 2
0BCh low byte trq limit value for axis 3
0BDh high byte trq limit value for axis 3
0BEh low byte trq limit value for axis 4
0BFh high byte trq limit value for axis 4

SEE ALSO none

APPLICATION

This command can be used as a diagnostic tool to monitor all system
parameters.

EXAMPLE

Verify the gains settings for axis 2.

Dim Temp[16] As Byte
PARREAD &H11, Temp[0]

After the above lines of code are executed, the gains for axis 2 are
located in the Temp array as follows:

Temp[0], Temp[1] contain the Ki gain
Temp[2], Temp[3] contain the Kp gain
Temp[4], Temp[5] contain the Kf gain
Temp[6], Temp[7] contain the Kd gain

Function Reference

Mx4 & Windows v4.0 4-145

POS

FUNCTION Get Actual Position State Variable

SYNTAX POS n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the actual position for
the axis specified.

SEE ALSO FERR, VEL

EXAMPLE

Read the actual position of axis 5.

Dim Temp As Double
Temp = POS (5)

Function Reference

4-146

POSBRK_OUT

FUNCTION Set Outputs After Position Breakpoint Interrupt

SYNTAX POSBRK_OUT n, outpon, outpoff

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
outpon long value, bit coding the outputs to turn ‘on’ upon

occurrence of position breakpoint interrupt (EN_POSBRK)
for specified axis.

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 0 OUT0 output
bit 1 OUT1 output
bit 2 OUT2 output
bit 3 OUT3 output
bit 4 OUT4 output
bit 5 OUT5 output
bit 6 OUT6 output
bit 7 OUT7 output
bit 8 OUT8 output
bit 9 OUT9 output
bit 10 OUT10 output
bit 11 OUT11 output
bit 12 OUT12 output
bit 13 OUT13 output
bit 14 OUT14 output
bit 15 OUT15 output
bit 16 OUT16 output
bit 17 OUT17 output
bit 18 OUT18 output
bit 19 OUT19 output
bit 20 OUT20 output

Function Reference

Mx4 & Windows v4.0 4-147

POSBRK_OUT cont.

bit 21 OUT21 output
bit 22 OUT22 output
bit 23 OUT23 output
bit 24 OUT24 output
bit 25 OUT25 output
bit 26 OUT26 output
bit 27 OUT27 output
bit 28 OUT28 output
bit 29 OUT29 output
bit 30 OUT30 output
bit 31 OUT31 output

outpoff long value, bit coding the outputs to turn ‘off’ upon
occurrence of position breakpoint interrupt (EN_POSBRK)
for specified axis.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 0 OUT0 output
bit 1 OUT1 output
bit 2 OUT2 output
bit 3 OUT3 output
bit 4 OUT4 output
bit 5 OUT5 output
bit 6 OUT6 output
bit 7 OUT7 output
bit 8 OUT8 output
bit 9 OUT9 output
bit 10 OUT10 output
bit 11 OUT11 output
bit 12 OUT12 output
bit 13 OUT13 output
bit 14 OUT14 output
bit 15 OUT15 output
bit 16 OUT16 output
bit 17 OUT17 output
bit 18 OUT18 output

Function Reference

4-148

POSBRK_OUT cont.

bit 19 OUT19 output
bit 20 OUT20 output
bit 21 OUT21 output
bit 22 OUT22 output
bit 23 OUT23 output
bit 24 OUT24 output
bit 25 OUT25 output
bit 26 OUT26 output
bit 27 OUT27 output
bit 28 OUT28 output
bit 29 OUT29 output
bit 30 OUT30 output
bit 31 OUT31 output

DESCRIPTION

This command enables the output status of selected outputs to be
activated by the occurrence of a position breakpoint interrupt
(EN_POSBRK) for a specified axis. The POSBRK_OUT need only be
executed once (ie: during initialization) unless the on/off output status
desired changes. The specified outputs will change state as
programmed through the outpon and outpoff arguments when the
specified axis generates a position breakpoint interrupt. The position
breakpoint interrupt (EN_POSBRK) must be enabled for the output status
changes to occur.

SEE ALSO EN_POSBRK, OUTP_OFF, OUTP_ON

APPLICATION

This command can be used for an output operation where the output
status must be tightly coupled to the position of one or more axes.

Command Sequence Example
EN_POSBRK ;enable the pos breakpoint int for specified axis(es)
POSBRK_OUT ;set the desired output status changes

Function Reference

Mx4 & Windows v4.0 4-149

POSBRK_OUT cont.

EXAMPLE

If a position breakpoint interrupt occurs on axis 1, turn on OUT0-
OUT3 and turn off OUT4.

POSBRK_OUT 1, &H0000000F, &H00000010

Function Reference

4-150

POSITION_UNIT

FUNCTION User-Specified Position Unit

SYNTAX POSITION_UNIT val

ARGUMENTS

val double precision, position unit specified in multiples of 1
count

DESCRIPTION

This function allows a user-specified position unit to be programmed.
The default unit of time is one count. The position unit affects the
interpretation of position, velocity, and acceleration arguments in
subsequent calls to the DLL.

SEE ALSO TIME_UNIT

APPLICATION

The POSITION_UNIT and TIME_UNIT functions allow the application
programmer to use whatever units are natural for the application.

EXAMPLE

Program the position and time unit so that the position, velocity, and
acceleration arguments use the units revolutions, revolutions/msec,
and revolutions/msec2. There are 4096 counts/revolution.

POSITION_UNIT 4096
TIME_UNIT 1# / 1000#

Function Reference

Mx4 & Windows v4.0 4-151

POS_PRESET

FUNCTION Preset Position Counter

SYNTAX POS_PRESET n, pset

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
pset double precision, position counter preset value

-2147483648 ≤ pset ≤ 2147483647 counts

DESCRIPTION

This command will define the present position point for the axes
specified.

Note: POS_PRESET will automatically disable the position
breakpoint interrupt (if enabled). POS_PRESET should be
executed only when the axes specified are not in motion.

SEE ALSO POS_SHIFT, EN_POSBRK

APPLICATION

This command is useful when the position counter must be forced to a
new value. POS_PRESET may be used in the establishment of a new
reference position.

EXAMPLE

Preset the axis 1 and axis 8 positions to 20000 and -45999 counts,
respectively.

BEGIN_RTC
POS_PRESET 1, 20000
POS_PRESET 8, -45999

END_RTC

Function Reference

4-152

POS_SHIFT

FUNCTION Position Reference Shift

SYNTAX POS_SHIFT n, psft

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
psft double precision, position reference value

-2147483648 ≤ psft ≤ 2147483647

DESCRIPTION

This command will shift the present position point for the axes
specified.

Note: POS_SHIFT will automatically disable the position breakpoint
interrupt (if enabled) of the specified axes.

SEE ALSO POS_PRESET, EN_POSBRK

APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new
value without losing position integrity (i.e., no counter information is
lost).

EXAMPLE

The current axis one position is 45000 counts. Shift the axis 1 position
to 50000 counts. The current axis 3 position is 55000 counts. Shift the
axis 3 position to 50000 counts.

BEGIN_RTC
POS_SHIFT 1, 5000
POS_SHIFT 3, -5000

END_RTC

Function Reference

Mx4 & Windows v4.0 4-153

PWM_FREQ Vx4++ option command

FUNCTION Set Pulse Width Modulation (PWM) Frequency

SYNTAX PWM_FREQ m, pwmfreq

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the axis group

m = 1 set axes one, two PWM frequency
m = 2 set axes three, four PWM frequency

pwmfreq single precision PWM frequency

1.0 ≤ pwmfreq ≤ 31.0 kHz

DESCRIPTION

The frequency of the Vx4++ pulse width modulation outputs may be
programmed via the PWM_FREQ command. The outputs may be
programmed in axis pairs.

Note: Mx4 with Vx4++ will not execute the PWM_FREQ command if
the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set a PWM frequency of 15.4 kHz for axes three and four.

PWM_FREQ 2, 15.4

Function Reference

4-154

REL_AXMOVE

FUNCTION Relative Position Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE n, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the

maximum halting acceleration (deceleration)

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision incremental position

-805306367 ≤ pos ≤ 805306367 counts

vel double precision unsigned target velocity

0 ≤ vel ≤255.99998 counts/200µs

DESCRIPTION

The REL_AXMOVE command is similar to the AXMOVE command with the
exception that relative (or incremental) position is specified, rather
than an end position as with AXMOVE.

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2

and a target slew rate of -3.5 counts/200µs.

REL_AXMOVE 2, 1.0, -8000, 3.5

Function Reference

Mx4 & Windows v4.0 4-155

REL_AXMOVE_S

FUNCTION Relative S-Curve Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE_S n, acc, pos, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the

acceleration/deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision relative position

-2147483648 ≤ pos ≤ 2147483647 counts

vel double precision unsigned target velocity

0 ≤ vel ≤ 255.99998 counts/200µs

DESCRIPTION

The REL_AXMOVE_S RTC allows for s-curve command generation
with relative (to current position) endpoint position, slew rate
velocity, and acceleration for each axis. This command is suitable for
linear moves where s-curve acceleration is desired.

Function Reference

4-156

REL_AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the
REL_AXMOVE_S along with the linear velocity ramp of the
REL_AXMOVE command. With REL_AXMOVE_S, the acceleration
will reach a value of 2*accx for a maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2

and a target velocity of (unsigned) 3.5 counts/200µs.

REL_AXMOVE_S 2, 1.0, -8000, 3.5

Function Reference

Mx4 & Windows v4.0 4-157

REL_AXMOVE_T

FUNCTION Time-Based Relative Axis Move with Trapezoidal Trajectory

SYNTAX REL_AXMOVE_T n, acc, pos, tm

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision unsigned value specifying the

acceleration/deceleration

0 ≤ acc ≤ 1.999969 counts/(200µs)2

pos double precision relative position

-2147483648 ≤ pos ≤ 2147483647 counts

tm double precision motion time

0 ≤ tm ≤ 5000000 (200µs)

Note: The time argument, tm, is an unsigned value with a unit of
200µsec.

DESCRIPTION

The REL_AXMOVE_T RTC allows for trapezoidal command
generation with relative (to current position) endpoint position,
acceleration, and time to complete the move for each axis. This

Function Reference

4-158

REL_AXMOVE_T cont.

command is suitable for linear moves where relative endpoint position
and motion time are the specifying parameters.

The REL_AXMOVE_T command is similar to REL_AXMOVE, with the
exception that the velocity argument is replaced with a time
argument. REL_AXMOVE_T will automatically calculate a suitable
slew rate velocity to achieve the programmed relative endpoint
position in the programmed amount of time, following a trapezoidal
velocity profile (similar to REL_AXMOVE).

SEE ALSO REL_AXMOVE, REL_AXMOVE_S, AXMOVE, AXMOVE_S,
AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 4 is unknown. It is known,
however, that we want to move axis 4 10000 counts in the negative
direction (that is, -10000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2

and be completed in 350msec (1750*200µsec).

REL_AXMOVE_T 4, 1.0, -10000, 1750

Function Reference

Mx4 & Windows v4.0 4-159

REL_AXMOVE_SLAVE

FUNCTION Superimposes a Relative Axis Move onto a Slave Engaged in
Gearing

SYNTAX REL_AXMOVE_SLAVE n, acc, rel_pos, rel_vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
acc double precision relative move acceleration
rel_pos double precision position value relative to current

position
rel_vel double precision velocity value relative to current

velocity

DESCRIPTION

This command is similar to AXMOVE with two exceptions. First, it is
relative, not absolute; and second, it works only on the slave axis(es)
involved in electronically geared or cam applications. This command
allows the slave to momentarily disengage from the gearing process
and compensate for its positional short comings.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, GEAR,
GEAR_OFF, GEAR_OFF_ACC, GEAR_POS, GEAR_PROBE

APPLICATION

General master/slaving, in particular flying shear applications, can
benefit from this instruction. Flying shear with registration marks is
handled similarly to that of synchronous cutting. That is, the measured
cutting error is used in the next cycle as an added function to
compensate for the motion's shortcomings.

Function Reference

4-160

Slave Accel.

Slave Jerk

Number of Points

Time

Time

Master Speed

Slave Speed

Gear Ratio

One Full CAM Cycle

REL_AXMOVE

REL_AXMOVE_SLAVE cont.

EXAMPLE

Axis 7 is a slave axis engaged in GEAR with the master axis. Add a
trapezoidal profile “on top” of the gearing which adjusts the slave
+1000 counts.

REL_AXMOVE_SLAVE 7, 1.0, 1000, 1

Function Reference

Mx4 & Windows v4.0 4-161

RESET_MX4

FUNCTION Reset Mx4

SYNTAX RESET_MX4

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This command brings the servo controller card back to power-up
state. Upon Mx4's reset completion, a host interrupt is generated via
bit 4 of DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh].

SEE ALSO none

APPLICATION

From time to time all systems may have to be software reset to allow
for an initialization.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Reset the Mx4 controller card.

RESET_MX4

Function Reference

4-162

RESETCOMMUNICATIONS

FUNCTION Reset Serial Communication

SYNTAX RESETCOMMUNICATIONS ()

ARGUMENTS

none

DESCRIPTION

This function resets the host – Mx4 serial communication. It returns
(long value) a 1 if successful, 0 otherwise.

SEE ALSO CHANGECOMMPORTSETTING, CHANGESLAVENODEADDRESS,
COMMUNICATIONSLOST, GETCOMMINSTCOUNT, GETCOMMTYPE,
GETCURRENTNODEADDRESS

EXAMPLE

Reset serial communications, monitor the result.

Dim Temp As Long
Temp = RESETCOMMUNICATIONS ()

Function Reference

Mx4 & Windows v4.0 4-163

R_1BYTE

FUNCTION Read Single Byte From Dual Port RAM

SYNTAX R_1BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads a single byte from the Mx4 Dual Port RAM from
the address (DPR base + offset). The function returns a byte value.

SEE ALSO R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR address 3C2h (RTC command code location).

Dim Temp As Byte
Temp = R_1BYTE (&H3C2)

Function Reference

4-164

R_2BYTE

FUNCTION Read Two Bytes From Dual Port RAM

SYNTAX R_2BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads two bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function returns a long
value.

SEE ALSO R_1BYTE, R_4BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR addresses 3C3h, 3C4h (RTC argument locations).

Dim Temp As Long
Temp = R_2BYTE (&H3C3)

Function Reference

Mx4 & Windows v4.0 4-165

R_4BYTE

FUNCTION Read Four Bytes From Dual Port RAM

SYNTAX R_4BYTE (offset)

ARGUMENTS

Offset long value, offset into DPR from base address

DESCRIPTION

This function reads four bytes from the Mx4 Dual Port RAM, starting
from the address (DPR base + offset). The function returns a long
value.

SEE ALSO R_1BYTE, R_2BYTE, W_1BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Read Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h (RTC argument
locations).

Dim Temp As Long
Temp = R_4BYTE (&H3C3)

Function Reference

4-166

SIGNAL_DSPL

FUNCTION Send A Real-Time ‘Signal’ to the DSPL Program

SYNTAX SIGNAL_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function sends a real-time software ‘signal’ to the running DSPL
program. In order for the signal to be received, the DSPL program
must be waiting at a WAIT_UNTIL_RTC command while the
SIGNAL_DSPL command is executed. The SIGNAL_DSPL –
WAIT_UNTIL_RTC pair is used for timing or synchronization purposes
between a DSPL program and the host computer.

SEE ALSO WAIT_UNTIL_RTC (DSPL Programmer’s Guide)

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Send a signal to the waiting DSPL program.

SIGNAL_DSPL

Function Reference

Mx4 & Windows v4.0 4-167

SIGNATURE

FUNCTION Read Mx4 Controller Signature

SYNTAX SIGNATURE sbuf

ARGUMENTS

Sbuf string, used to write the signature in

DESCRIPTION

Each Mx4 controller has an 11-byte signature which identifies the
controller and its firmware versions. This command requires a string
as an argument, and returns the string with format as follows:

Byte 1 ASCII “M”
Byte 2 ASCII “X”
Byte 3 ASCII “4”
Byte 4 integer portion of DSP1 firmware version
Byte 5 fraction portion of DSP1 firmware version
Byte 6 ASCII “+”
Byte 7 integer portion of DSP2 firmware version
Byte 8 fraction portion of DSP2 firmware version
Byte 9 ASCII “+”
Byte 10 integer portion of Vx4++ firmware version (if present)
Byte 11 integer portion of Vx4++ firmware version (if present)

SEE ALSO none

APPLICATION

This function can be used to test for the presence of Mx4 in a system.

EXAMPLE

Test for presence of Mx4.

Dim sBuffer As String
SBuffer = Space(11)
If Left$(SIGNATURE(sBuffer), 3) <> “MX4” Then

MsgBox “Mx4 Not Found”
End

End If

Function Reference

4-168

START

FUNCTION Start Contouring Motion

SYNTAX START n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command starts the motion (simultaneously) for the specified
axes included in 2nd order and cubic spline contouring. START applies
to contouring only.

Note: START will be ignored if contouring is in progress.

SEE ALSO STOP, VECCHG

APPLICATION

This command must be used in all 2nd order and ring buffer cubic
spline contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only
This command can be overwritten by VECCHG which redefines the axes
involved in the contouring process. For example, START starts the
contouring of axes 1, 3, and 4. If in the course of contouring, a VECCHG
is received (with argument) specifying axes 1, 2, and 3, the new
contouring points in the ring buffer will be used for the newly defined
axes. Please also see VECCHG.

Function Reference

Mx4 & Windows v4.0 4-169

START cont.

Command Sequence Example
. ;load ring buffer with positions and velocities
.
MAXACC () ;make sure system can stop
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
START () ;start contouring

EXAMPLE

Start contouring motion in axes 2, 3 and 4.

BEGIN_RTC
START 2
START 3
START 4

END_RTC

Function Reference

4-170

START_DSPL

FUNCTION Initiate DSPL Program Code Execution

SYNTAX START_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function initiates the execution of the previously downloaded
DSPL program.

SEE ALSO AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC,
SIGNAL_DSPL, STOP_DSPL

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Initiate DSPL program execution.

START_DSPL

Function Reference

Mx4 & Windows v4.0 4-171

STEPPER_ON Stp4 option command

FUNCTION Select Servo/Stepper Axes

SYNTAX STEPPER_ON n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value indicating stepper or servo for axis

m=0 servo axis
m=1 stepper axis

DESCRIPTION

This command requires the Stp4 add-on card. STEPPER_ON allows the
user to select the axes which are stepper control axes. Note that at
power-up / reset, all Mx4 axes are configured as servo axes.

EXAMPLE

Select axes 1 and 2 as stepper control axes.

BEGIN_RTC
STEPPER_ON 1
STEPPER_ON 2

END_RTC

Function Reference

4-172

STOP_AXIS

FUNCTION Stop Motion

SYNTAX STOP_AXIS n

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This command stops the motion of all specified axes simultaneously.
To stop motion, the servo control card uses the programmed values
for maximum acceleration / deceleration. Upon receipt of STOP, the
servo controller aborts the current command. The host is responsible
for clearing the ring buffer of any remaining commands if the axis(es)
stopped was involved in contouring motion.

Note 1: An emergency stop signal, ESTOP_ACC, will perform a
hardware stop. This is an open collector input signal which is
active low and is shared between all of the controller cards.

Note 2: STOP will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

If an axis is halting to a stop from a previously executed STOP RTC or
active ESTOP_ACC input, Mx4 will ignore any motion commands
(AXMOVE, REL_AXMOVE, START or VELMODE) and will report an "RTC
Command Ignored" interrupt to the host. The above motion
commands should not be sent to Mx4 for a halting axis until the axis
motion has come to a stop.

SEE ALSO MAXACC, START

Function Reference

Mx4 & Windows v4.0 4-173

STOP cont.

APPLICATION

For all applications involving bringing speed to zero in the quickest
possible manner.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
STOP () ;stop the motion
. ;upon completion of stop (command) trajectory
. ;Mx4 generates motion complete interrupt

EXAMPLE

Bring the motion of axes 1 and 6 to a halt.

BEGIN_RTC
STOP_AXIS 1
STOP_AXIS 6

END_RTC

Function Reference

4-174

STOP_DSPL

FUNCTION Terminate DSPL Program Code Execution

SYNTAX STOP_DSPL

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

none

DESCRIPTION

This function terminates the execution of the DSPL program. This
command will also halt the motion (if any) of all axes with the
programmed MAXACC acceleration.

SEE ALSO AUTOSTART_DSPL, CLEAR_DSPL, DOWNLOAD_DSPL, MAXACC,
SIGNAL_DSPL, START_DSPL

APPLICATION

See DSPL Programmer’s Guide.

EXAMPLE

Terminate DSPL program execution.

STOP_DSPL

Function Reference

Mx4 & Windows v4.0 4-175

SYNC

FUNCTION Master / Slave Select

SYNTAX SYNC m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value selects the Master / Slave status of the Mx4
card

m=0 Mx4 is configured as a Master
m=1 Mx4 is configured as a Slave

DESCRIPTION

If more than one Mx4 card is to be used in a system and card-to-card
synchronization is required, the SYNC command should be used. SYNC
allows multiple Mx4 cards to operate in synchronization within a
system by specifying a single Master and the remaining card(s) as
Slave(s). If only one Mx4 is used in a host computer system, that Mx4
must be configured as a Master.

Note: Mx4 powers-up and resets to a default Master status.

In addition to configuring the Mx4 cards with SYNC (for multiple card
systems), a cable jumper must be included on the J5 connector of each
of the boards. The cable must be wired such that the MASTER signal
from the Master Mx4 connects to the SLAVE signal of each of the
Slave Mx4(s) (see Mx4 User’s Guide, Installing Your Mx4).

SEE ALSO none

Function Reference

4-176

SYNC cont.

APPLICATION

This command is used in applications where tight coordination of
more than four axes is required. This command essentially slaves
several Mx4 cards to a single Master Mx4. Applications involving
many axes contouring may benefit from this command.

Command Sequence Example
This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e., the card is
initialized as a Master).

EXAMPLE

Configure the Mx4 controller as a slave in a multi-Mx4
synchronized system.

SYNC 1

Function Reference

Mx4 & Windows v4.0 4-177

TABLE_SEL

FUNCTION Select Compensation Table

SYNTAX TABLE_SEL n, tb

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis

tb long value specifies the compensation table to be used

1 ≤ tb ≤ 8

DESCRIPTION

The TABLE_SEL command allows the user to arbitrarily select the
compensation table for the axis(es) in question. More than one axis
may use a compensation table.

SEE ALSO CIRCLE, CLEAR_POS_TABLE, CLEAR_VEL_TABLE,
DOWN_POS, DOWN_VEL

EXAMPLE

Axes 1 and 2 are to use compensation table 2, while axes 3 and 7 use
compensation table 1.

BEGIN_RTC
TABLE_SEL 1, 2
TABLE_SEL 2, 2
TABLE_SEL 3, 1
TABLE_SEL 7, 1

END_RTC

Function Reference

4-178

TIME_UNIT

FUNCTION User-Specified Time Unit

SYNTAX TIME_UNIT val

ARGUMENTS

val double precision, time unit specified in multiples of 1
second

DESCRIPTION

This function allows a user-specified time unit to be programmed.
The default unit of time is one second. The time unit affects the
interpretation of velocity and acceleration arguments in subsequent
calls to the DLL.

SEE ALSO POSITION_UNIT

APPLICATION

The POSITION_UNIT and TIME_UNIT functions allow the application
programmer to use whatever units are natural for the application.

EXAMPLE

Program the time unit so that velocity and acceleration arguments use
the units counts/msec and counts/msec2.

TIME_UNIT 1# / 1000#

Function Reference

Mx4 & Windows v4.0 4-179

TRQ_LIMIT

FUNCTION DAC Output Voltage Limit

SYNTAX TRQ_LIMIT n, val

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
val single precision, DAC output voltage (abs) limit

-10.0 <= val <= 9.9997 volts

DESCRIPTION

The TRQ_LIMIT command specifies a torque limit (by means of output
voltage limiting) value ranging from 0 volts (no output) to +/-10 volts
(full swing) with a resolution of approximately 0.3 millivolts.

The Mx4 controller powers-up and resets to a default torque limit
value allowing full output voltage swing.

SEE ALSO none

APPLICATION

This command can be used in applications where an axis torque needs
to be limited, such as packaging or material handling.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Limit the output voltage swing for axis 2 to +/- 7.5 volts.

TRQ_LIMIT 2, 7.5

Function Reference

4-180

VAR

FUNCTION Get DSPL Variable

SYNTAX VAR m

ARGUMENTS

m long value specifying the monitored var to read

1 <= m <= 4

DESCRIPTION

This function returns a double precision value, the selected monitored
DSPL variable. Remember that Mx4 allows a maximum of four
DSPL variables to be monitored from the DPR at the same time. The
selection of which of the 128 DSPL variables are reported to the DPR
window is made via the MONITOR_VAR command.

SEE ALSO CHANGE_VAR, MONITOR_VAR

EXAMPLE

Read the DSPL variables VAR12, VAR22, VAR44, and VAR59.

Dim Temp1, Temp2, Temp3, Temp4 As Double
MONITOR_VAR 1, 12
MONITOR_VAR 2, 22
MONITOR_VAR 3, 44
MONITOR_VAR 4, 59
Temp1 = VAR (1)
Temp2 = VAR (2)
Temp3 = VAR (3)
Temp4 = VAR (4)

Function Reference

Mx4 & Windows v4.0 4-181

VEC

FUNCTION Get Vx4++ Variable

SYNTAX VEC n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the selected Vx4++
state variable (VIEWVEC) for the axis specified.

SEE ALSO VIEWVEC

EXAMPLE

Read the Vx4++ state variable of axis 3.

Dim Temp As Double
Temp = VEC (3)

Function Reference

4-182

VECCHG

FUNCTION 2nd Order Contouring Vector Change

SYNTAX VECCHG n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value bit coding the axis(es)
m long value which represents the buffer position (in 8 byte

offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include
only those axes coded by n

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

Note: Three buffer levels are used to implement this instruction.

SEE ALSO START

APPLICATION

See START.

Function Reference

Mx4 & Windows v4.0 4-183

VECCHG cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()

BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the buffer breakpoint interrupt
.
.
START () ;start contouring for a selected number of axes
. ;based on buffer breakpoint interrupt transfer more
. ;points
VECCHG () ;use points in ring buffer for a new set of axes

EXAMPLE

Begin 2nd order contouring in axes 1, 2, and 3 after the 23rd segment
move command of the ring buffer.

VECCHG &H7, 23

Function Reference

4-184

VEL

FUNCTION Get Actual Velocity State Variable

SYNTAX VEL n

ARGUMENTS

n long value specifying the axis

DESCRIPTION

This function returns a double precision value, the actual velocity for
the axis specified.

SEE ALSO FERR, POS

EXAMPLE

Read the actual velocity of axis 8.

Dim Temp As Double
Temp = VEL (8)

Function Reference

Mx4 & Windows v4.0 4-185

VELMODE

FUNCTION Velocity Mode

SYNTAX VELMODE n, vel

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
vel double precision target velocity

-256 ≤ vel ≤ 255.99998 counts/200µs

DESCRIPTION

Upon the execution of this command a velocity loop for the specified
axes will be closed. The velocity loop uses the same gains as those
specified using the control law command. VELMODE uses the MAXACC
maximum acceleration / deceleration value to accelerate or decelerate
to the desired velocity.

Note : VELMODE will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

SEE ALSO MAXACC

APPLICATION

This instruction is useful in all general purpose velocity control
applications. Please remember that although VELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, Mx4 continually tries to zero the position error.
Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
.
VELMODE ()

Function Reference

4-186

VELMODE cont.

EXAMPLE
Engage axis 2 in velocity mode with a velocity of 3.71 counts/200 µs.

VELMODE 2, 3.71

Function Reference

Mx4 & Windows v4.0 4-187

VIEWVEC Vx4++ option command

FUNCTION Specify Vx4++ State Variables to View

SYNTAX VIEWVEC n, m

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

n long value specifying the axis
m long value specifying state variable

m=0 Iqs error
m=1 Ids error
m=2 Iqs feedback
m=3 Ids feedback
m=4 Iqs command
m=5 Ir feedback
m=6 Is feedback
m=7 It feedback

DESCRIPTION

This command selects the Vx4++ state variable which is available in
the Mx4 Dual Port RAM and also with the VECT4_PARx DSPL
identifiers. As is evident above, only 1 variable may be “viewed” per
axis at any given time.

SEE ALSO VEC

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Change the Vx4++ state variable selection to Ids feedback for axis 1.
Any subsequent VECT4_PAR1 accesses will yield the axis 1 Ids
feedback value.

VIEWVEC 1, 3

Function Reference

4-188

VX4_BLOCK VX4++ option command

FUNCTION Blocks Vx4++ commands

SYNTAX VX4_BLOCK m, blk

If used as a function, the function will return (long) zero if successful,
nonzero if error.

ARGUMENTS

m long value specifying the axis groups

m = 1 axes one, two
m = 2 axes three, four

blk long value block code

blk = 0 Vx4++ block disabled
blk = 1 Vx4++ block enabled

DESCRIPTION

This command is used to block some of the VX4++ commands so that
those commands may not be accidentally executed. The user is
responsible to disable the block command in order to execute one of
the commands listed below (SEE ALSO).

SEE ALSO CURR_LIMIT, CURR_OFFSET, ENCOD_MAG,
MOTOR_TECH, PWM_FREQ

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Enable the Vx4++ command blocking for axes 3 and 4.

VX4_BLOCK 2, 1

Function Reference

Mx4 & Windows v4.0 4-189

W_1BYTE

FUNCTION Write Single Byte To Dual Port RAM

SYNTAX W_1BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value byte value, byte to write to DPR

DESCRIPTION

This function writes a single byte to the Mx4 Dual Port RAM at the
address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_2BYTE, W_4BYTE

EXAMPLE

Write B6h to Mx4 DPR address 3C2h (RTC command code location).

W_1BYTE (&H3C2, &HB6)

Function Reference

4-190

W_2BYTE

FUNCTION Write Two Bytes To Dual Port RAM

SYNTAX W_2BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value long value, bytes to write to DPR

DESCRIPTION

This function writes two bytes to the Mx4 Dual Port RAM starting at
the address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_4BYTE

EXAMPLE

Write 48B3h to Mx4 DPR address 3C3h, 3C4h (RTC arguments
locations).

W_2BYTE (&H3C3, &H48B3)

Function Reference

Mx4 & Windows v4.0 4-191

W_4BYTE

FUNCTION Write Four Bytes To Dual Port RAM

SYNTAX W_4BYTE (offset, value)

ARGUMENTS

Offset long value, offset into DPR from base address
Value long value, bytes to write to DPR

DESCRIPTION

This function writes four bytes to the Mx4 Dual Port RAM starting at
the address (DPR base + offset).

SEE ALSO R_1BYTE, R_2BYTE, R_4BYTE, W_1BYTE, W_2BYTE

EXAMPLE

Write 11223344h to Mx4 DPR addresses 3C3h, 3C4h, 3C5h, 3C6h
(RTC arguments locations).

W_4BYTE (&H3C3, &H11223344)

Function Reference

4-192

This page intentionally blank.

