
Mx4 cnC++
User's Guide v1.1

Mx4 cnC++

User's Guide

v1.1

This documentation may not be copied, photocopied, reproduced, translated,
modified or reduced to any electronic medium or machine-readable form, in whole
or in part, without the prior written consent of DSP Control Group, Inc.

© Copyright 1991-1995 DSP Control Group, Inc.
PO Box 39331
Minneapolis, MN 55439
Phone: (612) 831-9556
FAX: (612) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for any
accident resulting from misuse of its products.

DSPL, Mx4 cnC++ and VECTOR4 are trademarks of DSP Control Group, Inc.

Other brand names and product names are trademarks of their respective holders.

Mx4 cnC++ User’s Guide v1.1 i

Contents

Read This First .. v

A Quick Overview of This Manual...vi
A Quick Reference..ix

1 Introduction to Mx4 cnC++..1-1

Mx4 cnC++ System Description...1-1
Mx4 cnC++ Programming..1-2
Mx4 cnC++ Computation Power & Servo Update Rate1-3
Mx4 cnC++ Control Law...1-4

Why State Feedback? ..1-4
Notch Filter..1-5
Drive Control Law..1-5

Coordination..1-6
Cubic Spline Contouring...1-7
Synchronization..1-12

2 Installing Your Mx4 cnC++ Hardware......................................2-1

PC/AT Mx4 cnC++ Cabling...2-3
PC/AT Mx4 cnC++ J6 Connector...Motor / System Interfacing......2-4

Servo Command Signals...2-6
Encoder Feedback ...2-7
General Purpose External Interrupt Inputs2-10
Logic Level Voltages / GND Signals2-11

Contents

ii

PC/AT Mx4 cnC++ J3 Connector ... Inputs / Outputs2-12
Inputs...2-13
Outputs ..2-16
General Purpose External Interrupt Inputs2-17

PC/AT Mx4 cnC++ J5 Connector ... Synchronization...................2-18
PC/AT Mx4 cnC++ Jumper Settings ..2-20
PC/AT Mx4 cnC++ Bus Specifications / Settings..........................2-20

Memory Address ...2-21
Memory Space Functionality...2-22
Interrupt Setting..2-22

Verifying the Mx4 cnC++ Hardware Set-Up.................................2-23
Running the Mx4 cnC++Test Software2-24

3 Mx4Pro v3.0..3-1

Running Mx4Pro ..3-3
Using the Keyboard with Mx4Pro...3-3
Starting Mx4Pro...3-4

Overview of Mx4Pro VECTOR4 Support......................................3-5
Motor Technology..3-6
Power Technology..3-8
Sensor Technology...3-9
Summary of VECTOR4 Support ..3-10

4 Methods of Programming Mx4 cnC++.......................................4-1

Host-Based Programming...4-1
Real-Time Commands..4-2
Contouring ...4-3

Contents

Mx4 cnC++ User’s Guide v1.1 iii

5 Mx4 cnC++ Host-Based Instruction Set....................................5-1

Host-Based Programming Command Set ..5-1
Initialization...5-1
Interrupt Control...5-1
Trajectory Control..5-2
System Diagnostic ..5-2
Control Parameter ..5-2
Open Position Loop ...5-3
Contouring ...5-3
Filtering (optional)...5-3
I/O ..5-3
Reset..5-4

Mx4 cnC++ RTC Instruction Set..5-4
Mx4 cnC++ State Variables ...5-5
Mx4 cnC++ Host-Based Programming Command Listing5-6

6 Mx4 cnC++ Host-Based Programming6-1

Mx4 cnC++ - Host Communication..6-1
Host - Mx4 cnC++ Interface ..6-2
Communication Protocols ...6-3

Mx4 cnC++ Dual Port RAM Organization......................................6-5
Status Registers (000h - 08Dh)...6-5
Hardware Signature Window (08Eh - 093h)6-7
Parameter Updates (094h - 114h) ..6-8
Signature Window (115h - 11Fh) ...6-12
2nd Order Contouring Ring Buffer (120h - 3C1h)6-13
Real Time Command (RTC) (3C2h - 3FBh)6-13
Interrupt Registers (3FCh - 3FFh, 7FEh, 7FFh)6-14
Cubic Spline Contouring Ring Buffer (400h - 7F1h)6-16

Communication Protocols Revisited ..6-17
Handling Mx4 cnC++ Software / Hardware Interrupts6-18

Contents

iv

Mx4 cnC++ Host Programming... RTCs & Contouring.................6-19
Mx4 cnC++ Host Programming Using C, C++, Visual Basic or Visual
C++...6-28
Mx4 cnC++ Power-Up / Reset Software Initialization...................6-29

7 Mx4 cnC++ Status & Error Reports..7-1

Mx4 cnC++ Power-Up / Reset State..7-1
Mx4 cnC++ Interrupts, Status Codes & Error Condition Reports
to the Dual Port RAM ..7-1

8 VECTOR4 ..8-1

VECTOR4 Programming Capabilities...8-4
Initialization...8-4
Control Parameter ..8-4
Power Stage...8-5
System Diagnostic ..8-5

9 Mx4 cnC++ Specifications ...9-1

Performance...9-1
Hardware...9-1
Input / Output...9-1
Position Encoder Feedback..9-2
Electrical ..9-2
Power Consumption...9-2
Mechanical...9-2

Mx4 cnC++ User’s Guide v2.0 v

Read This First

Congratulations on purchasing Mx4 cnC++, DSP Control Group's high-speed
multi-DSP based motion controller. You will find Mx4 cnC++ a powerful controller
with an instruction set suitable for all coordinated motion control applications.

In conjunction with this manual, the following four manuals will assist you to
develop and integrate Mx4 cnC++ into your simple or complex machine.
Depending on your application and system integration expertise, you may find
none, one or more of these supplementary manuals necessary.

Mx4Pro: Mx4 Tuning Expert

This manual describes Mx4Pro - a testing and tuning software used with Mx4
cnC++. Mx4Pro includes features such as a signal generator oscilloscope and
live block diagram which make this software useful for testing and performance
optimization.

Mx4 and C Programmer's Guide

This manual is written for those who wish to know about programming Mx4 in
the C environment. Mx4 & C assumes a minimum background in C programming
and in simple words describes efficient programming in the x86 environment.

Mx4 and Windows, Programming Mx4 in C++

This manual contains information on the Mx4 Windows Programming Library
(DLL) which permits C and C++ Windows applications to directly interface with
the Mx4 controller. Using the library applications can issue RTCs to Mx4 and
obtain the values of process variables made available by the controller.

VECTOR4 User's Guide

This manual includes information on the add-on drive control option. VECTOR4
is DSPCG's multi-DSP based drive controller that provides complete drive signal

Read This First

vi

processing for all industrial DC and AC machines. The capabilities of VECTOR4
include that normally offered by servo control amplifiers.

Mx4 Development System User's Guide

This manual describes simple instruction on how DSPCG's full Mx4 development
system works. The development system includes:

One Mx4 PC/AT
One VECTOR4 Add-On Drive Control Card
Three Self-Protected Power Modules for three axes of AC motor control
One Brushless DC Motor (1 hp) with 1000 line incremental encoder
One AC Induction Motor (1 hp) with 1000 line incremental encoder
One Power Cabinet
One Switching DC Power Supply
Set of Cables

A Quick Overview of This Manual

First, we would like to share with you the way this manual is organized, hoping
this knowledge will help you quickly find the information you need.

We feel the first step in using an involved computerized product like Mx4 cnC++
is to understand its definition and topology (the way it is connected to other
subsystems and functions) in a system. Chapter 1 is dedicated to this task. This
chapter contains simple block diagrams that will describe Mx4 cnC++'s
capabilities and functions. Please bear in mind that detailed information on Mx4
cnC++ is provided in the following chapters, and in Chapter 1 we only describe
this product qualitatively.

Once you have learned about the basic functions of Mx4 cnC++, you may want
to test Mx4 cnC++'s strength in your system. Chapter 2 provides you with
information on hardware installation. In this chapter you will find information on
the location of jumpers and DIP switches, wiring Mx4 cnC++ to your amplifier,
I/O and encoder subsystems, Mx4 cnC++ memory space address settings,
interrupt request jumper/DIP switch settings, etc.

Read This First

Mx4 cnC++ User’s Guide v1.1 vii

Note: Please always read the "README" file in the root directory of
the enclosed Mx4 Utilities diskette for the latest updates.

The accompanying 3.5" diskette contains a program called MX4TEST.EXE. This
test program is very useful in initial hardware installation and power-up. In short
you can use this program as a quick "sanity check" on your wiring and switch
settings.

Once you have installed your hardware and made sure that all communications,
switches and jumpers are made and set correctly, you may move onto Chapter 3.
Chapter 3 briefly describes the main features of the Mx4Pro development
software. Mx4Pro is an easy-to-use graphic program that allows for quick system
programming and tuning (useful for single and multi-axis applications). No
programming skills are required to use this program. When running Mx4Pro, all
functions of Mx4 cnC++ are menu selectable; this is done to ensure you will
focus on system tuning and optimization and won't be bogged down with
programming details. Mx4Pro is supported by its independent manual. You
should feel comfortable with all the functions of Mx4 cnC++ and tune the control
gains to your satisfaction before you move onto the next chapter.

Beginning Chapter 4 and beyond, information on Mx4 cnC++ will become more
technical and "lower level". You must deal with Mx4 cnC++ at this level of detail
only when you are ready to write your own customized application program.
Chapter 5 is dedicated to the description of Mx4 cnC++'s low-level instruction
set. For each instruction we describe its function, code, arguments and a few
applications that can benefit from its strength. Please remember that this chapter
explains what each instruction does but not how it can be transmitted to Mx4
cnC++ by the host.

We dedicated Chapter 6 to explain Host-Mx4 cnC++ communication. To
understand the communication between the host computer and Mx4 cnC++,
users are required to know about Mx4 cnC++'s memory organization, the address
space each Mx4 cnC++ card occupies and software communication protocols. In
describing Mx4 cnC++'s memory organization, we have categorized the Mx4
cnC++ commands into two major groups of real time commands (the commands
that receive the DSP's immediate attention) and contouring commands (those
that are executed based on the order they are stored in a special location of the
dual port memory called the ring buffer). You will also learn how Mx4 cnC++

Read This First

viii

reports back to the host (special dual port memory location dedicated to these
parameters) and what situations cause Mx4 cnC++ to interrupt the host.

 In Chapter 7 we describe the sources of errors, how Mx4 cnC++ reports them to
the host, how the user application program must handle them, and finally,
possible ways they may be cured.

Chapter 8 briefly describes VECTOR4, an add-on multi-DSP based card for drive
applications. If you have only purchased a Mx4 cnC++ card, you can skip this
chapter.

Finally, Chapter 9 is devoted to Mx4 cnC++'s specifications. Detailed electrical
and mechanical specifications are listed. On the hardware side we have included
all bus specific information. Numerical values for Mx4 cnC++'s parameters and
variables have been listed in terms of their binary range. Parameters specifying
performance such as sampling period and the maximum encoder speed Mx4
cnC++ can handle have been listed under performance specifications.

Read This First

Mx4 cnC++ User’s Guide v1.1 ix

A Quick Reference

System Description

Hardware Installation

Hardware Troubleshooting

Tuning Mx4 cnC++

Mx4 cnC++ Programming

Mx4 cnC++ Host-Based

Memory Organization

Switch & Jumper Settings

 Methods

VECTOR4

Specifications

Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Seven

Chapter Eight

Chapter Nine

Go To . . .

Error Handling

Chapter Six

Chapter Five
Instruction Set

Host Communication

Read This First

x

This page intentionally blank.

Mx4 cnC++ User’s Guide v1.1 1-1

1 Introduction to Mx4 cnC++

Mx4 cnC++ System Description

Mx4 cnC++ is a fully digital high-performance four-axis position controller. This
multi-DSP based servo controller uses up to four DSPs (including a drive control
option, VECTOR4) in a parallel processing configuration to close tighter, faster
and more robust position and velocity loops. It also utilizes DSPCG's ASIC
technology which provides exceptional hardware versatility and flexibility.

Mx4 cnC++ outputs its control signals (ranging ± 10 volts) via four 16-bit parallel
DACs to any AC/DC industrial servo amplifier. It also incorporates 8 on-board
inputs and 3 outputs for PLC applications. See Fig. 1-1.

Using VECTOR4, the optional add-on drive control card, converts the Mx4
cnC++ to a "complete signal processing unit". The complete unit is capable of
performing all control functions including PWM signals for the power transistors
of an output stage.

Introduction to Mx4 cnC++

1-2

HOST

Bus

Position Encoders

Motors

FourD

A

C

S

Mx4 cnC++

Conventional

Servo Amplifiers

HOST Mx4 cnC++ VECTOR4

DSP Bus

Bus

Switching

Power
Stage

Position Encoders

Motors

Four

Current

Mx4 cnC++ with VECTOR4

PWM
Signals

Fig. 1-1: Top: Mx4 cnC++ with Conventional Servo Amplifiers,
Bottom: Mx4 cnC++ with the VECTOR4 Drive Control Option

Mx4 cnC++ Programming

Mx4 cnC++ incorporates RTC programming. In addition, Mx4 cnC++ supports
contouring commands for complex control applications.

The Real Time Commands, or RTCs, are issued by the host and executed by Mx4
cnC++ immediately after they are transferred. Contouring commands are issued
by the host in the form of transferring a number of widely spaced position and
velocity points to Mx4 cnC++. These commands are stacked up and executed by
Mx4 cnC++ sequentially.

 Introduction to Mx4 cnC++

Mx4 cnC++ User’s Guide v2.0 1-3

Mx4 cnC++ uses a Dual Port RAM (DPR) for communication with the host
processor or computer. The DPR is partitioned into a large ring buffer for
downloading host instructions to Mx4 cnC++ and a number of register
"windows" for bi-directional information transfer. All system states such as
position and velocity are reported in real-time to the DPR for the host to read. In
addition, Mx4 cnC++ supports a debug feature that allows the host to interrogate
internal Mx4 cnC++ parameters through the DPR.

Status Registers

Parameter Updates

Signature Window

Ring Buffer

Real Time Command

Interrupt Registers

(contouring)

Dual Port RAM

I

N

T
E

R

P
O
L

A

T

I
O

N

C

O

N

T

R

O

L

Mx4 cnC++

HOST
Servo
Amps

Fig. 1-2: Mx4 cnC++ Internal Functional Block

Mx4 cnC++ Computation Power & Servo Update Rate

The tremendous power of four DSPs yields 36 MIPS, million instructions per
second, (four axes with 9 MIPS per axis equals 36 MIPS). This speed makes the
Mx4 cnC++ the fastest controller in the world. These ultra-high speed DSPs
implement advanced optimum control algorithms at a 120µs update rate (all axes
included). Despite the control complexity incorporated in Mx4 cnC++, its sample
rate is the fastest in the world making a 1,000 Hz analog control loop completely
replaceable with the Mx4 cnC++. This leaves no practical analog servo out of the
picture.

Introduction to Mx4 cnC++

1-4

Mx4 cnC++ Control Law

The Mx4 cnC++ incorporates a state feedback controller with dual feedback
loops. A single 40 MHz DSP is dedicated to this task because the control law is
important in control quality

V

K
K

P

n

d
i

n
_

+ +

+

+
+

_

Sampling Period

P actual

n
^
V

K f

K p

Kalman
Filter

to DAC

K Limiti

Output
Loop Gain

Fig. 1-3: Mx4 cnC++ Position, Velocity Control Block Diagram
(excluding drive control)

This control includes position and velocity loops. The actual system speed is
estimated by the Kalman filter and fed back to regulate speed. The two states,
position and speed, are constantly commanded by an interpolating algorithm and
maintained by the control law. The control law is closed at 120ms (all axes
included), providing robust operation for all industrial applications demanding
up to a 1,000 Hz position control bandwidth.

Why State Feedback?

The answer is simple: state feedback is easier to tune and provides a combination
of control robustness with high bandwidth. Within this structure, optimum
control algorithms such as LQG, dead beat, bang bang, etc. may be implemented.

 Introduction to Mx4 cnC++

Mx4 cnC++ User’s Guide v2.0 1-5

The Kalman filter provides optimum estimation of speed and acceleration when
environmental noise is present. The Kalman filter's output, velocity, provides the
best feedback information at speeds with a low encoder pulse rate. The Kalman
filter yields the best speed regulation at very low speeds.

In addition to state feedback control, an integration channel with anti-windup
capability is provided to enable users to implement a traditional PID algorithm.

Notch Filter

Mx4 cnC++ includes a [optional] notch filter with programmable notch frequency.
This feature eliminates the mechanical resonance caused by an imperfect
coupling between motor and load or other joint flexibility.

Drive Control Law

Mx4 cnC++ includes a drive control option, VECTOR4, that regulates current
loops. This is essential in robust and high bandwidth control of multi-phase
industrial drives. Two additional DSPs are dedicated to this task.

Field

Velocity

PWM Signal
Generation

Phase
Generator

Observer

Algorithm

Digital

Filter

Velocity

Frequency

ADC

PWM Signals

Phase Currents

Encoder Signals

Ir

Is

Commutation Encoder

Matrix

Transformations INHIBIT

Control

Torque

Control

Field

Control

Matrix

Transformations

Iqs
I ds

Command

Command

Command

Fig. 1-4: Mx4 cnC++ Drive Control Block Diagram

Introduction to Mx4 cnC++

1-6

Coordination

Coordination of four axes requires breaking four dimensional motion vectors
down to the individual axis and interpolating the segment positions. Large
position segments such as circular and elliptic arcs (for four or more axes) are
broken down to smaller position and velocity pieces. These segments are
interpolated down to 200 µs intervals. This provides the tight coordination ideal
for CNC, robotics and other applications demanding high-speed precision
control.

1-100 msec

Host Specifies

Mx4 cnC++ Interpolates

(Position & Velocity Points)

Fig. 1-5: Mx4 cnC++ Interpolation

 Introduction to Mx4 cnC++

Mx4 cnC++ User’s Guide v2.0 1-7

Cubic Spline Contouring

This interpolation provides a path between two user-specified position points
which is smooth in velocity and continuous in acceleration. Cubic spline
interpolation enhances contouring quality especially when the position points
are widely spaced in time.

Fig. 1-6 compares the linear and cubic spline interpolations. The following figure
(Fig. 1-7), shows the significance of cubic spline interpolation over that of linear
when first (velocity) and second (acceleration) derivatives are considered.

Fig. 1-6: Three User-Specified Pos./Vel. Points, Linear Interpolation and Mx4
Cubic Spline Interpolation

Introduction to Mx4 cnC++

1-8

Fig. 1-7: Mx4 Cubic Spline Interpolations vs. Common Linear Interpolation

5000 blocks of position/velocity per second are transferred to four control loops.

 Introduction to Mx4 cnC++

Mx4 cnC++ User’s Guide v2.0 1-9

_
+ +

+
+ +

_

_
+ +

+
+ +

_

_
+ +

+
+ +

_

_
+ +

+
+ +

_

DAC

DAC

DAC

DAC

Vx

Vy

Px

Py

Vz

Pz

Vw
Pw

5000/s

5000/s

5000/s

5000/s

Kalman
Filter

Kalman
Filter

Kalman
Filter

Kalman
Filter

z

x

y

w

Fig. 1-8: Mx4 Cubic Spline Block Transfer

The combination of fast block transfer rate and cubic spline interpolation
improve contouring speed and resolution. This is illustrated by Fig. 1-9, scope
picture of x-axis position.

Introduction to Mx4 cnC++

1-10

2 ms

x-position

16 ms
time

Fig. 1-9: The Mx4 DAC output for x-axis position illustrating cubic spline
 interpolation through 16 points

This picture shows the x-axis share of a circular move performed in 16 ms! The
significance of this graph is not that the Mx4 can finish a circle in 16 ms but that
it can perform sharp edge contours at high feed rates. For example, one can claim
that the x-y scope plot of Fig. 1-10 is a natural benefit of Fig. 1-9.

 Introduction to Mx4 cnC++

Mx4 cnC++ User’s Guide v2.0 1-11

Fig. 1-10: The Mx4 x-y position plot using cubic spline contouring of 32
points.

 i) Total contouring time = 160 ms,
 ii) “+” marks indicate the 32 supplied points,
 iii) Continuous line illustrates the Mx4’s interpolated path.

Introduction to Mx4 cnC++

1-12

Synchronization

In addition, Mx4 cnC++ synchronizes several axes of control using high-speed
(100 ns) position and event captures. In applications such as printing, packaging,
indexing, paper handling, etc., the initial motion in several axes depends on the
position of a master axis or a timing pulse provided by an external event. Proper
timing for the execution of motion is crucial for synchronized applications. The
Mx4 cnC++'s ASICs contain 100 ns position and event captures designed
especially for these applications.

Mx4 cnC++ User’s Guide v1.1 2-1

2 Installing Your Mx4 cnC++
 Hardware

A typical PC/AT Mx4 cnC++ system (Fig. 2-1) consists of:

1. a PC/AT ISA host computer
2. a Mx4 cnC++ card occupying a slot on the host computer
3. one to four motors with incremental position encoder(s)
4. one to four servo amplifiers
5. cabling from Mx4 cnC++ J6 connector to servo amplifier(s)
6. encoder feedback cabling to Mx4 cnC++ J6 connector
7. optional cabling of external inputs to Mx4 cnC++ (J3 or J6) connector
8. optional cabling of user inputs/outputs to Mx4 cnC++ J3 connector
9. optional synchronization cable between multiple Mx4 cnC++ cards

When installing a Mx4 cnC++ card, it is important to follow a procedure so that
the card operates correctly in a given system. The installation guidelines detailed
here incorporate three important topics: cabling to the Mx4 cnC++ card, Mx4
cnC++ jumper settings and bus-related Mx4 cnC++ settings.

Note: If you are impatient to test the communication between your
computer and the Mx4 cnC++ card before completing the
instructions of this chapter, you may do so by running Mx4
Pro software (see Chapter 3, Running Mx4Pro section). The
monitor will display the MAIN MENU screen only if the Mx4
cnC++ card and your computer are communicating.

When you are assured of this communication, come back to
finish this chapter!!

Installing Your Mx4 cnC++ Hardware

2-2

External Interrupts

Logic Level Signals

Servo Command

Encoder Feedback

Synchronization

Inputs

Outputs

Host Computer

Fig. 2-1: PC/AT Mx4 cnC++ System Cable Diagram

Fig. 2-2 is an illustration of a PC/AT Mx4 cnC++ card that details connector,
jumper and DIP switch positions and orientations. This figure will be used as a
reference in the following pages.

J6

J3
J5

JU2

JU1

SW1

VR1-4

JU3

Fig. 2-2: PC/AT Mx4 cnC++ Card Component Side

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-3

PC/AT Mx4 cnC++ Cabling

The PC/AT Mx4 cnC++ card contains three connectors as illustrated in Fig. 2-2.
These connectors are used for interfacing the Mx4 cnC++ card to the
motors/system, optional user-defined inputs and outputs, and for the
synchronization of multiple PC/AT Mx4 cnC++ cards (Fig. 2-3).

Inputs
Outputs

Synchronization

Servo Command Signals
Logic Level Signals

Encoder Feedback
External Interrupts

External Interrupts

J3
J5

J6

Fig. 2-3: PC/AT Connector Signals

Before using a Mx4 cnC++ card in a system application, a cable 'network(s)' must
be built. The following sections provide a reference for designing and building
PC/AT Mx4 cnC++ cables.

Installing Your Mx4 cnC++ Hardware

2-4

PC/AT Mx4 cnC++ J6 Connector
Motor/System Interfacing

The PC/AT Mx4 cnC++ J6 connector is a (50-pin dual row header). This
connector includes the motor and system interfacing signals for four axes. The
signals are divided into four categories: servo command signals, encoder
feedback signals, general purpose external interrupt inputs and logic level
signals.

Table 2-1 specifies the pinout for the PC/AT Mx4 cnC++ 50-pin header. The table
includes signal level (type) and I/O functionality (with respect to the Mx4 cnC++
card).

J6 Connector Pinout

PIN SIGNAL LEVEL I/O DESCRIPTION

1 +12 volts - O -

2 +5 volts - O -

3 +12 volts - O -

4 -12 volts - O -

5 Digital GND - O -

6 Analog GND - O -

7 Shield GND - O -

8 ESTOP/ TTL I Mx4 cnC++ emergency stop input

9 /PR0 TTL I general purpose (probe) external interrupt

10 /PR1 TTL I general purpose (probe) external interrupt

11 DAC(1) -10 to +10v O DAC/motor output for axis 1

12 Analog GND - O -

13 Digital GND - O -

14 A+(1) TTL I differential encoder signal A+ for axis 1

15 A-(1) TTL I differential encoder signal A- for axis 1

16 B+(1) TTL I differential encoder signal B+ for axis 1

17 B-(1) TTL I differential encoder signal B- for axis 1

18 +5 volts - O -

19 IP+(1) TTL I differential encoder index pulse signal IP+ for axis
1

20 IP-(1) TTL I differential encoder index pulse signal IP- for axis
1

21 DAC(2) -10 to +10v O DAC/motor output for axis 2

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-5

Table 2-1: PC/AT Mx4 cnC++ J6 Connector Pinout (continued on next page)

Installing Your Mx4 cnC++ Hardware

2-6

PIN SIGNAL LEVEL I/O DESCRIPTION

22 Analog GND - O -

23 Digital GND - O -

24 A+(2) TTL I differential encoder signal A+ for axis 2

25 A-(2) TTL I differential encoder signal A- for axis 2

26 B+(2) TTL I differential encoder signal B+ for axis 2

27 B-(2) TTL I differential encoder signal B- for axis 2

28 +5 volts - O -

29 IP+(2) TTL I differential encoder index pulse signal IP+ for axis
2

30 IP-(2) TTL I differential encoder index pulse signal IP- for axis
2

31 DAC(3) -10 to +10v O DAC/motor output for axis 3

32 Analog GND - O -

33 Digital GND - O -

34 A+(3) TTL I differential encoder signal A+ for axis 3

35 A-(3) TTL I differential encoder signal A- for axis 3

36 B+(3) TTL I differential encoder signal B+ for axis 3

37 B-(3) TTL I differential encoder signal B- for axis 3

38 +5 volts - O -

39 IP+(3) TTL I differential encoder index pulse signal IP+ for axis
3

40 IP-(3) TTL I differential encoder index pulse signal IP- for axis
3

41 DAC(4) -10 to +10v O DAC/motor output for axis 4

42 Analog GND - O -

43 Digital GND - O -

44 A+(4) TTL I differential encoder signal A+ for axis 4

45 A-(4) TTL I differential encoder signal A- for axis 4

46 B+(4) TTL I differential encoder signal B+ for axis 4

47 B-(4) TTL I differential encoder signal B- for axis 4

48 +5 volts - O -

49 IP+(4) TTL I differential encoder index pulse signal IP+ for axis
4

50 IP-(4) TTL I differential encoder index pulse signal IP- for axis
4

Table 2-1 cont.: PC/AT Mx4 cnC++ J6 Connector Pinout

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-7

Servo Command Signals

The servo command signals are those signals that 'drive' the axis servo amplifiers
or output stage. The PC/AT Mx4 cnC++ card utilizes 16-bit DAC outputs with
+10v to -10v voltage swings to drive any voltage level sensitive output stage.
The PC/AT Mx4 cnC++ servo command signals are listed in Table 2-2:

Partial J6 Connector Pinout

SIGNAL PIN LEVEL I/O DESCRIPTION

DAC(1) 11 -10 to +10v O DAC/motor output for axis 1

DAC(2) 21 -10 to +10v O DAC/motor output for axis 2

DAC(3) 31 -10 to +10v O DAC/motor output for axis 3

DAC(4) 41 -10 to +10v O DAC/motor output for axis 4

Analog GND 12 - O -

Analog GND 22 - O -

Analog GND 32 - O -

Analog GND 42 - O -

Table 2-2: PC/AT Mx4 cnC++ J6 Servo Command Signals

The DAC(x) signals must be routed from the J6 50-pin header connector to the
respective output stage servo drives. The Mx4 cnC++ Analog GND signals are
included as a voltage reference for the DAC(x) signals. Analog GND should be
utilized accordingly in the cabling between Mx4 cnC++ and the output stages.

DAC(x) output offset voltage may be adjusted with the VRx multi-turn
potentiometer (VR1 - DAC(1), VR2 - DAC(2), etc.) The Mx4 cnC++ is shipped
from the factory with minimized offset voltage.

Installing Your Mx4 cnC++ Hardware

2-8

Encoder Feedback

The Mx4 cnC++ card requires the use of incremental position encoders for motor-
Mx4 cnC++ feedback. No velocity feedback (such as a tachometer) is required as
Mx4 cnC++ incorporates a Kalman velocity observer algorithm. The PC/AT Mx4
cnC++ encoder feedback signals are listed in Table 2-3.

Partial J6 Connector Pinout

SIGNAL PIN LEVEL I/O DESCRIPTION

A+(1) 14 TTL I differential encoder signal A+ for axis 1

A-(1) 15 TTL I differential encoder signal A- for axis 1

B+(1) 16 TTL I differential encoder signal B+ for axis 1

B-(1) 17 TTL I differential encoder signal B- for axis 1

IP+(1) 19 TTL I differential encoder index pulse signal IP+ for axis
1

IP-(1) 20 TTL I differential encoder index pulse signal IP- for axis
1

A+(2) 24 TTL I differential encoder signal A+ for axis 2

A-(2) 25 TTL I differential encoder signal A- for axis 2

B+(2) 26 TTL I differential encoder signal B+ for axis 2

B-(2) 27 TTL I differential encoder signal B- for axis 2

IP+(2) 29 TTL I differential encoder index pulse signal IP+ for axis
2

IP-(2) 30 TTL I differential encoder index pulse signal IP- for axis
2

A+(3) 34 TTL I differential encoder signal A+ for axis 3

A-(3) 35 TTL I differential encoder signal A- for axis 3

B+(3) 36 TTL I differential encoder signal B+ for axis 3

B-(3) 37 TTL I differential encoder signal B- for axis 3

IP+(3) 39 TTL I differential encoder index pulse signal IP+ for axis
3

IP-(3) 40 TTL I differential encoder index pulse signal IP+ for axis
3

A+(4) 44 TTL I differential encoder signal A+ for axis 4

A-(4) 45 TTL I differential encoder signal A- for axis 4

B+(4) 46 TTL I differential encoder signal B+ for axis 4

B-(4) 47 TTL I differential encoder signal B- for axis 4

IP+(4) 49 TTL I differential encoder index pulse signal IP+ for axis
4

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-9

IP-(4) 50 TTL I differential encoder index pulse signal IP+ for axis
4

Digital GND 13 - O -

Digital GND 23 - O -

Digital GND 33 - O -

Digital GND 43 - O -

Table 2-3: PC/AT Mx4 cnC++ J6 Encoder Feedback Signals

Installing Your Mx4 cnC++ Hardware

2-10

The PC/AT Mx4 cnC++ allows the use of either differential or single-ended
encoder feedback. The choice is made via the JU2 jumper on the Mx4 cnC++ card
(see PC/AT Mx4 cnC++ Jumper Settings). If a combination of differential and
single-ended encoder feedback is desired, the jumper must be placed in
"differential" mode and the following procedure must be followed. If single-
ended encoders are to be used in "differential" mode, it is necessary to route the
single-ended line to the corresponding "+" Mx4 cnC++ differential input. The "-"
differential input to the corresponding signal must be tied to +2.5v. For example,
to connect a single-ended "A" encoder line to axis 3 of Mx4 cnC++:

A+(3) = single-ended "A" encoder line
A-(3) = +2.5v

The Mx4 cnC++ encoder feedback inputs are TTL-level inputs. The Mx4 cnC++
Digital GND signals are included as voltage references for the differential inputs.
The Digital GND signal(s) available on the J6 connector must be connected to
the appropriate incremental encoder voltage reference points.

When interfacing incremental encoders to Mx4 cnC++, it is important that the
following two conventions are followed:

1. Mx4 cnC++ detects an active-HIGH index pule. If the encoder(s) being
interfaced to Mx4 cnC++ include index pulse signals, it is important to
note that the correct polarity is in effect. To reverse the polarity of an
index pulse signal, simply 'swap' the IP+ and IP- signals to the Mx4
cnC++ card.

2. The incremental encoder signals (A+, A-, B+, B-) should follow the
convention of Fig. 2-4. That is, when the motor shaft is manually turned
in the clockwise direction, a negative velocity should result.

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-11

B+

A+

TIME

VOLTAGE

Fig. 2-4: Mx4 cnC++ Incremental Encoder Signals Polarity ... Clockwise Shaft
Rotation Yields Negative Velocity

If the use of an oscilloscope is not convenient, the encoder signal polarity may
be verified later. In a following section, Verifying Your Mx4 cnC++ Hardware
Set-Up , the encoder signal polarity is checked via software. The check is simple
and does not require the use of an oscilloscope. If the incremental encoder signal
polarity is incorrect, it may be reversed simply by 'swapping' the A and B
encoder signals.

Installing Your Mx4 cnC++ Hardware

2-12

General Purpose External Interrupt Inputs

The PC/AT Mx4 cnC++ external interrupt inputs include an 'Emergency Stop' line
and two general purpose external interrupts. The J6 connector external interrupt
inputs are repeated on the J3 connector. If the user is utilizing these signals, the
signals may be accessed from either the J6 or J3 connector, but not from both.
The external interrupt inputs are listed in Table 2-4:

Partial J6 Connector Pinout

SIGNAL PIN LEVEL I/O DESCRIPTION

ESTOP/ 8 TTL I Mx4 cnC++ emergency stop

/PR0 9 TTL I general purpose (probe) external interrupt

/PR1 10 TTL I general purpose (probe) external interrupt

Digital GND 5 - O -

Table 2-4: PC/AT Mx4 cnC++ J6 External Inputs

These signals are optional for Mx4 cnC++ operation. The definitions of these
signals will be presented in later sections of this manual.

The ESTOP/ and /PRx signals are active-LOW signals. That is, Mx4 cnC++
detects these active conditions when the voltage level on those lines is LOW.
The Mx4 cnC++ Digital GND signal is included as a voltage reference for the
external input signals.

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-13

Logic Level Voltages / GND Signals

The PC/AT Mx4 cnC++ card includes in its connector pin-out the following logic
level / GND signals (Table 2-5) [in addition to the previously mentioned logic
signals included with different signal groups]:

Partial J6 Connector Pinout

SIGNAL PIN LEVEL I/O DESCRIPTION

+12 volts 1 - O -

+12 volts 3 - O -

+5 volts 2 - O -

-12 volts 4 - O -

Analog GND 6 - O -

Digital GND 5 - O -

Shield Gnd 7 - O -

Table 2-5: PC/AT Mx4 cnC++ J6 Logic Level / GND Signals

Installing Your Mx4 cnC++ Hardware

2-14

PC/AT Mx4 cnC++ J3 Connector ... Inputs/Outputs

The PC/AT Mx4 cnC++ J3 connector is a (16-pin dual row header). This
connector includes the Mx4 cnC++ input and output signals as well as a repeat
of the J6 general purpose external interrupt inputs.

Table 2-6 specifies the pinout for the PC/AT Mx4 cnC++ 16-pin header. The table
includes signal level (type) and I/O functionality (with respect to the Mx4 cnC++
card).

J3 Connector Pinout

PIN SIGNAL LEVEL I/O DESCRIPTION

1 OUT3 TTL 0 Gen. purpose output

 2 -O.T. TTL I Axis 4

3 OUT2 TTL 0 Gen. purpose output

4 +O.T. TTL I Axis 4

5 OUT1 TTL 0 Gen. purpose output

6 -O.T. TTL I Axis 3

7 IN5 TTL I general purpose input

8 +O.T. TTL I Axis 3

9 IN4 TTL I general purpose input

10 -O.T. TTL I Axis 2

11 IN3 TTL I Dedicated Input (ESTOP/)

12 +O.T. TTL I Axis 2

13 IN2 TTL I Dedicated input (/PR1)

14 -O.T. TTL I Axis 1

15 IN1 TTL I Dedicated input (/PRO)

16 +O.T. TTL I Axis 1

Table 2-6: PC/AT Mx4 cnC++ J3 Connector Pinout (continued on next page)

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-15

Inputs

Mx4 cnC++ includes 10 user-defined TTL logic inputs. The input signals are
listed in Table 2-7.

Partial J3 Connector Pinout

PIN SIGNAL LEVEL I/O DESCRIPTION

2 -O.T. TTL I Axis 4

4 +O.T. TTL I Axis 4

6 -O.T. TTL I Axis 3

7 IN5 TTL I general purpose input

8 +O.T. TTL I Axis 3

9 IN4 TTL I general purpose input

10 -O.T. TTL I Axis 2

12 +O.T. TTL I Axis 2

14 -O.T. TTL I Axis 1

16 +O.T. TTL I Axis 1

Table 2-7: PC/AT Mx4 cnC++ J3 Input Signals

The Mx4 cnC++ user-defined input signals are TTL logic level inputs. The inputs
are equipped with pull-up resistors which are implemented as current sources
(see Fig. 2-5).

Installing Your Mx4 cnC++ Hardware

2-16

27.9K ohm

263K ohm

(0.17 mA @ON)

(0.02 mA @ON)

actual I-V profile

I

V

worst case V is

0.32 V at 4 mA
OL

Fig. 2-5: Mx4 cnC++ Input (Pull-Up Resistor) Current Source

By default, the inputs are defined as active-LOW. That is, 0v applied to an input
results in an active, or ON, input; +5v applied to an input results in an inactive, or
OFF input. The logic state of the inputs may be individually selected via the
INPSTATE command.

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-17

Fig. 2-6 illustrates two possible configurations for interfacing external input
circuitry to Mx4 cnC++ inputs: optically-isolated input and same-ground input.

Mx4 cnC++ Input

Mx4 cnC++ Input Pull-Up

Resistor / Current Source

Mx4 cnC++ Digital GND

User Switch Opto Isolator

Mx4 cnC++External

Circuits

User Input Mx4 cnC++ Input

TTL Logic

a)

b)

-

+ C

E

Fig. 2-6: Interfacing Input Signals to Mx4 cnC++
a) Optical Isolated Input
b) Same-Ground Input

Installing Your Mx4 cnC++ Hardware

2-18

Outputs

The PC/AT Mx4 cnC++ controller includes 3 programmable outputs. The output
signals are listed in Table 2-8.

Partial J3 Connector Pinout

PIN SIGNAL LEVEL I/O DESCRIPTION

1 OUT3 TTL O general purpose output

3 OUT2 TTL 0 general purpose output

5 OUT1 TTL O general purpose output

Table 2-8: PC/AT Mx4 cnC++ J3 Output Signals

The Mx4 cnC++ output signals are TTL logic level outputs with a fan out of one
(that is, a Mx4 cnC++ output should not be used to drive more than one TTL
logic gate). As an example of interfacing to the Mx4 cnC++ output signals, Fig. 2-
7 illustrates a relay output circuit.

Mx4 cnC++ Output

Mx4 cnC++
External

Circuits

Relay

User
Relay Contacts

7407

Fig. 2-7: Interfacing a Relay to a Mx4 cnC++ Output

The Mx4 cnC++ outputs are active-LOW. That is, an ON output is an output at
0v, an OFF output is an output at +5v. The ON/OFF state of the outputs is
determined by the OUTREL command.

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-19

General Purpose External Interrupt Inputs

The J3 connector includes three external interrupt inputs which are repeated on
the J6 connector. If the user is utilizing these signals, the signals may be
accessed from either the J6 or J3 connector, but not from both. The PC/AT Mx4
cnC++ external interrupt inputs include an 'Emergency Stop' line and two general
purpose external interrupts. The external interrupt inputs are listed in Table 2-9:

Partial J3 Connector Pinout

SIGNAL PIN LEVEL I/O DESCRIPTION

ESTOP/ 11 TTL I Mx4 cnC++ emergency stop

/PR0 15 TTL I general purpose (probe) external interrupt

/PR1 13 TTL I general purpose (probe) external interrupt

Table 2-9: PC/AT Mx4 cnC++ J3 External Inputs

These signals are optional for Mx4 cnC++ operation. The definitions of these
signals will be presented in later sections of this manual.

The ESTOP/ and /PRx signals are active-LOW signals. That is, Mx4 cnC++
detects these active conditions when the voltage level on those lines is LOW.
The Mx4 cnC++ Digital GND signal is included as a voltage reference for the
external input signals.

Installing Your Mx4 cnC++ Hardware

2-20

PC/AT Mx4 cnC++ J5 Connector ... Synchronization

Multiple PC/AT Mx4 cnC++ cards may be time-synchronized to the same DSP
cycle with the J5 synchronization connector. This Mx4 cnC++ feature allows
multi-axis systems which require greater than four axes to be synchronized. The
Mx4 cnC++ synchronization signals are listed in Table 2-11.

J5 Connector Pinout

PIN SIGNAL LEVEL I/O DESCRIPTION

1 nc - - no connection

2 SLAVE TTL I slave Mx4 cnC++ synchronization input

3 SLAVE TTL I slave Mx4 cnC++ synchronization input

4 MASTER TTL O master Mx4 cnC++ synchronization output

Table 2-11: PC/AT Mx4 cnC++ J5 Connector Pinout

Synchronizing multiple Mx4 cnC++ cards only requires cabling between the
MASTER J5 signal from the "master" Mx4 cnC++ to a SLAVE J5 signal (either
pin 2 or pin 3) on the "slave" card(s).

Mx4 cnC++ Synchronization
Cabling Between
Unlimited Number Of Cards

Fig. 2-8: Time Synchronizing Multiple PC/AT Mx4 cnC++ Cards

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-21

The Mx4 cnC++ J5 connector includes dual SLAVE signals in order to simplify
"daisy chaining" between multiple Mx4 cnC++ controllers.

1 2 3 4

J5

1 2 3 4

J5

1 2 3 4

J5

MASTER SLAVE SLAVE

Mx4 cnC++ Mx4 cnC++ Mx4 cnC++

Fig. 2-9: Mx4 cnC++ J5 Connector Daisy Chaining Cabling

Installing Your Mx4 cnC++ Hardware

2-22

PC/AT Mx4 cnC++ Jumper Settings

The PC/AT Mx4 cnC++ card contains three jumpers. The jumpers should be set
according to the following table. The jumper orientation on the PC/AT Mx4
cnC++ card was shown in Fig. 2-2. The three jumpers are listed below in Table 2-
12.

JUMPER # POS. JUMPER ORIENTATION / DESCRIPTION

JU1 3 jumper must be placed in 1-2 position

JU2 3 1-2: Differential encoder operation

2-3: Single-ended encoder operation

JU3 22 interrupt selection jumper, see PC/AT Mx4 cnC++ Bus
Specifications / Settings

Table 2-12: PC/AT Mx4 cnC++ Jumpers

PC/AT Mx4 cnC++ Bus Specifications / Settings

In order for the Mx4 cnC++ card to operate correctly on the host bus (and thus in
the system), the host must be able to address the Mx4 cnC++ card and receive
interrupts from the Mx4 cnC++ card. These are host computer/bus issues that
require proper settings on the Mx4 cnC++ card as well as correct software
routines on the host computer end. The following is a description of how the
PC/AT Mx4 cnC++ card operates on the PC/AT ISA bus as well as outlines for
setting the PC/AT Mx4 cnC++ bus interface parameters.

Note: The software included with the Mx4 cnC++ card (Mx4 Test)
requires specific bus-related settings on the Mx4 cnC++ card
in order to run. That is, these programs require Mx4 cnC++ to
be located (address-wise) in a unique location in the host-bus
address space. The bus-related Mx4 cnC++ settings are
included in this chapter, Verifying Your Mx4 cnC++
Hardware Set-Up .

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-23

The PC/AT Mx4 cnC++ acts as a memory device on the ISA bus. It decodes 20
address bits and communicates via 8-bit data transfers. The PC/AT Mx4 cnC++
contains a jumper to select any one of 11 bus interrupt lines.

Memory Address

The PC/AT ISA bus Mx4 cnC++ decodes 20 address bits. The card can be
positioned on any 2K boundary within the ISA base 1M address space. The
PC/AT Mx4 cnC++ will not respond to any addresses in the upper 15M of
address space. The PC/AT Mx4 cnC++ 10-position DIP switch SW1 is used to
select the start of the boundary (Table 2-13).

ADDRESS MATCHED

POSITION SW OFF SW ON

SW1-1 A19=1 A19=0

SW1-2 A18=1 A18=0

SW1-3 A17=1 A17=0

SW1-4 A16=1 A16=0

SW1-5 A15=1 A15=0

SW1-6 A14=1 A14=0

SW1-7 A13=1 A13=0

SW1-8 A12=1 A12=0

SW1-9 A11=1 A11=0

SW1-10 nc nc

Table 2-13: PC/AT Mx4 cnC++ 2K Boundary Select

Example: A PC/AT Mx4 cnC++ card is to be installed into the host bus
address space at the start of the 0xd, 64K segment.

The SW1 DIP switch is set as follows:

The SW1 DIP switch is set as follows:

OFF

1 2 3 4 5 6 7 8 9 10

Installing Your Mx4 cnC++ Hardware

2-24

Memory Space Functionality

The entire 2K memory space required by the PC/AT Mx4 cnC++ card is for
accessing the Mx4 cnC++ 2K DPR.

Interrupt Setting

The PC/AT Mx4 cnC++ card supports 11 PC/AT ISA bus interrupt lines which
are jumper selectable on the Mx4 cnC++ card (only one jumper is permitted). Mx4
cnC++ will use the selected interrupt line to signal interrupts to the host. The
PC/AT Mx4 cnC++ jumper JU3 is partitioned as follows in Table 2-14 (left to
right, 1-11).

JUMPER
POSITION

INTERRUPT
SELECTED

JU3-1 IRQ15

JU3-2 IRQ14

JU3-3 IRQ12

JU3-4 IRQ11

JU3-5 IRQ10

JU3-6 IRQ9

JU3-7 IRQ7

JU3-8 IRQ6

JU3-9 IRQ5

JU3-10 IRQ4

JU3-11 IRQ3

Table 2-14: PC/AT Mx4 cnC++ Host Bus Interrupt Select

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-25

Verifying the Mx4 cnC++ Hardware Set-Up

Important: The included Mx4Test software is written for PC
based systems running the DOS operating system.
The software requires a minimum of a 80286
processor and a VGA monitor.

The hardware installation of a PC/AT Mx4 cnC++ into a system may be verified
with the use of the Mx4Test software that is located on the Mx4 Utilities diskette
in the MX4 TEST sub directory. Mx4Test is an executable program that allows
the user to progress through a series of tests that help determine whether or not
Mx4 cnC++ is installed correctly.

Before using Mx4Test, it is important that the PC/AT Mx4 cnC++ bus platform-
specific DIP switch SW1 is set according to the following table (Table 2-15).
[Mx4Test requires the PC/AT Mx4 cnC++ to be located at the start of segment
0xd of the first 1M of address space.]

DIP SWITCH
POSITION

SWITCH
STATUS

SW1-1 OFF

SW1-2 OFF

SW1-3 ON

SW1-4 OFF

SW1-5 ON

SW1-6 ON

SW1-7 ON

SW1-8 ON

SW1-9 ON

SW1-10 not used

Table 2-15: PC/AT Mx4 cnC++ SW1 DIP Switch Setting for Mx4Test

Installing Your Mx4 cnC++ Hardware

2-26

Running the Mx4Test Software

Important: Before powering-up Mx4 cnC++ and continuing on
with Mx4Test, the user should have followed the Mx4
cnC++ installation guidelines presented in the
previous sections and set the Mx4 cnC++ switches as
detailed above.

The Mx4Test program incorporates a variety of tests that indicate the
correctness of the Mx4 cnC++ installation. Some of the tests are passive while
others require action on the user's part (for example, turning a motor shaft or
manually generating an external interrupt).

The Mx4Test tests are categorized as follows:

Mx4 cnC++ Addressing Tests Mx4 cnC++ - host computer
communication / interface.

Incremental Position Encoder feedback to Mx4 cnC++ and feedback
polarity checked. Encoder index pulse (marker)
may be tested as well.

Servo Command Mx4 cnC++ digital-to-analog converter outputs are
Signals tested.

External Interrupt Optional Mx4 cnC++ external interrupt inputs
such as emergency stop and external interrupts
/PR0 and /PR1 may be checked.

MX4TEST.EXE is included on the enclosed diskette in the MX4TEST directory.
The program may be executed from the diskette or transferred onto a hard drive
and run from there.

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ User’s Guide v1.1 2-27

Once the Mx4 cnC++ card has been placed into a host-bus slot and the
connector(s) is in place, the host computer (bus) may be powered-up. To run
Mx4Test from the floppy, simply type Mx4Test at the a:\MX4TEST\ DOS
prompt.
The Mx4Test Main Menu selections reflect the four categories of tests (as
previously detailed). The test procedures are simple and are explained in the
Mx4Test program.

If an error in the installation of the Mx4 cnC++ card becomes evident from Mx4
Test, it is advised to consult the respective section in the Installing Mx4 cnC++
Into Your System chapter. Some of the more common problems and related
corrections are included in Table 2-16.

IT
E

M
P

O
S

S
IB

LE
 P

R
O

B
LE

M
C

O
R

R
E

C
TI

V
E

 A
C

TI
O

N
 S

U
G

G
E

S
TI

O
N

S

C
he

ck
 M

x4
 c

nC
+

+
A

dd
re

ss
in

g
-

Fa
ilu

re
 in

di
ca

te
d

by
 M

x4
 c

nC
+

+
Te

st
1.

 M
x4

 c
nC

++
 b

us
-s

pe
ci

fi
c

D
IP

 s
w

it
ch

es
 m

us
t b

e
se

t a
cc

or
di

ng
 to

 th
e

se
tt

in
gs

sp
ec

if
ie

d
in

 V
er

ify
in

g
Yo

ur
 M

x4
 c

nC
+

+
 H

ar
dw

ar
e

Se
tu

p
w

he
n

ru
nn

in
g

M
x4

cn
C

+
+

Te
st

T
es

t
In

cr
em

en
ta

l
P

os
it

io
n

E
nc

od
er

s

-
V

er
if

y
P

os
it

io
n

en
co

de
r

fe
ed

ba
ck

an
d

po
la

ri
ty

-
P

os
it

io
n

va
lu

e
do

es
 n

ot
 c

ha
ng

e
as

 th
e

sh
af

t i
s

tu
rn

ed

1.
 V

er
if

y
th

at
 e

nc
od

er
 is

 p
ow

er
ed

 a
nd

 th
at

 M
x4

 c
nC

+
+

 d
ig

it
al

 G
N

D
 is

 c
on

ne
ct

ed
to

 e
nc

od
er

 G
N

D
 (

vo
lt

ag
e

re
fe

re
nc

e)
.

2.
 V

er
if

y
pr

op
er

 e
nc

od
er

 s
ig

na
l c

on
ne

ct
io

ns
 to

 M
x4

 c
nC

+
+

 a
s

de
ta

il
ed

 in
 p

re
vi

ou
s

ch
ap

te
r.

-
T

he
 p

os
it

io
n

po
la

ri
ty

 i
s

re
ve

rs
ed

1.
 P

ol
ar

it
y

m
ay

 b
e

re
ve

rs
ed

 b
y

"s
w

ap
pi

ng
"

th
e

A
 a

nd
 B

 in
cr

em
en

ta
l e

nc
od

er
si

gn
al

s.

-
C

he
ck

 p
os

it
io

n
en

co
de

r
in

de
x

pu
ls

e

-
N

o
in

de
x

pu
ls

e
de

te
ct

ed
 b

y
M

x4
cn

C
++

1.
 V

er
if

y
th

at
 e

nc
od

er
 is

 p
ow

er
ed

 a
nd

 th
at

 M
x4

 c
nC

+
+

 is
 p

ow
er

ed
 a

nd
 th

at
 M

x4
cn

C
++

 d
ig

it
al

 G
N

D
 is

 c
on

ne
ct

ed
 to

 e
nc

od
er

 G
N

D
 (

vo
lt

ag
e

re
fe

re
nc

e)
.

2.
 V

er
if

y
pr

op
er

 e
nc

od
er

 in
de

x
pu

ls
e

si
gn

al
 c

on
ne

ct
io

ns
 to

 M
x4

 c
nC

+
+

 a
s

de
ta

il
ed

in
 p

re
vi

ou
s

ch
ap

te
r.

-
In

de
x

pu
ls

e
al

w
ay

s
ac

tiv
e,

 r
eg

ar
dl

es
s

of
 s

ha
ft

 p
os

it
io

n
1.

 I
nd

ex
 p

ul
se

 p
ol

ar
it

y
m

ay
 b

e
in

co
rr

ec
t (

M
x4

 c
nC

+
+

 d
et

ec
ts

 o
n

ac
ti

ve
-H

IG
H

in
de

x
pu

ls
e)

. P
ol

ar
it

y
m

ay
 b

e
re

ve
rs

ed
 b

y
"s

w
ap

pi
ng

"
IP

+
 a

nd
 I

P-
 s

ig
na

ls
 to

th
e

M
x4

 c
nC

++
 c

ar
d.

T
ab

le
 2

-1
6:

T
ro

ub
le

sh
oo

ti
ng

 M
x4

 c
nC

++
 In

st
al

la
ti

on
 (c

on
ti

nu
ed

 o
n

ne
xt

 p
ag

e)

IT
E

M
P

O
S

S
IB

LE
 P

R
O

B
LE

M
C

O
R

R
E

C
TI

V
E

 A
C

TI
O

N
 S

U
G

G
E

S
TI

O
N

S

T
es

t S
er

vo
C

om
m

an
d

D
A

C
Si

gn
al

s

-
M

ea
su

re
d

D
A

C
 v

ol
ta

ge
s

no
t c

or
re

ct

1.
 V

er
if

y
th

at
 M

x4
 c

nC
+

+
 A

na
lo

g
G

N
D

 is
 u

se
d

as
 th

e
vo

lt
ag

e
re

fe
re

nc
e.

2.
 W

he
n

be
in

g
m

ea
su

re
d,

 th
e

M
x4

 c
nC

++
 D

A
C

 o
ut

pu
t s

ho
ul

d
be

 d
is

co
nn

ec
te

d
fr

om
 th

e
se

rv
o

am
pl

if
ie

r
or

 o
ut

pu
t s

ta
ge

.

C
he

ck
 E

xt
er

na
l

In
pu

ts

-
C

he
ck

 e
m

er
ge

nc
y

st
op

 i
np

ut
 E

S
T

O
P

/
-

N
o

E
ST

O
P/

 d
et

ec
te

d
by

 M
x4

 c
nC

+
+

1.
E

ST
O

P/
 s

ou
rc

e
m

us
t b

e
co

nn
ec

te
d

to
 M

x4
 c

nC
+

+
 d

ig
it

al
 G

N
D

 r
ef

er
en

ce
.

2.
 V

er
if

y
 E

S
T

O
P

/ c
on

ne
ct

io
n

to
 M

x4
 c

nC
+

+
 c

on
ne

ct
or

.

-
E

ST
O

P/
 is

 a
lw

ay
s

ac
ti

ve
1.

 E
S

T
O

P
/ p

ol
ar

it
y

m
ay

 b
e

in
co

rr
ec

t (
M

x4
 c

nC
+

+
 d

et
ec

ts
 a

n
ac

ti
ve

-L
O

W
E

ST
O

P/
.

-
C

he
ck

 e
xt

er
na

l
in

te
rr

up
ts

 (
/P

R
0

an
d

/P
R

1)

-
/P

R
x

in
te

rr
up

t
no

t
de

te
ct

ed
 b

y
M

x4
cn

C
++

1.
 V

er
if

y
th

at
 /P

R
x

so
ur

ce
 v

ol
ta

ge
 r

ef
er

en
ce

 (
G

N
D

)
is

 c
on

ne
ct

ed
 to

 M
x4

 c
nC

+
+

di
gi

ta
l G

N
D

.

2.
 V

er
if

y
/P

R
x

co
nn

ec
ti

on
 t

o
M

x4
 c

nC
+

+
 c

on
ne

ct
or

.

-
*E

X
T

 in
te

rr
up

t a
lw

ay
s

ac
ti

ve
1.

 /P
R

x
po

la
ri

ty
 m

ay
 b

e
in

co
rr

ec
t (

M
x4

 c
nC

+
+

 d
et

ec
ts

 a
n

ac
ti

ve
-L

O
W

 /P
R

x
in

te
rr

up
t)

.

T
ab

le
 2

-1
6

co
nt

.:
T

ro
ub

le
sh

oo
tin

g
M

x4
 c

nC
++

 In
st

al
la

tio
n

Installing Your Mx4 cnC++ Hardware

2-30

This page intentionally blank.

Mx4 cnC++ User’s Guide v1.1 3-1

3 Mx4Pro Software

Important: The Mx4Pro software is written for PC-based systems
running the DOS operating system. The software
requires a minimum of a 80286 processor and a VGA
monitor.

This chapter briefly overviews the features of Mx4Pro testing and tuning
software. For detailed information on these features, please refer to the Mx4Pro:
Tuning Expert manual.

Mx4 alone controls all servo amplifiers. VECTOR4 is an all-digital AC servo
controller add-on card that enables Mx4 to control any combination of brushless
DC, AC induction and brush-type DC motors. Fig. 3-1 illustrates the two Mx4
configurations:

a) Mx4 with traditional servo amplifiers, and
b) Mx4 with add-on card VECTOR4 and generic switching power stage

Mx4Pro Software

3-2

HOST
Bus

Position Encoders

Motors
FourD

A
C
S

Mx4 cnC++

Conventional
Servo Amplifiers

HOST Mx4 cnC++ VECTOR4
DSP Bus

Bus

Switching
Power
Stage

Position Encoders

Motors
Four

Current

Mx4 cnC++ with VECTOR4
PWM
Signals

Fig. 3-1: Top: Mx4 cnC++ with Conventional Servo Amplifiers,
Bottom: Mx4 cnC++ with VECTOR4 drive control option

Mx4Pro is inclusive of both Mx4 cnC++ and Mx4 cnC++ with VECTOR4
functions and features. The Mx4Pro software package along with Mx4 cnC++
and VECTOR4 provide a powerful system. This combination allows you to
customize the control to almost any combination of motor, encoder and power
technologies, and tune a system for optimum performance.

In this manual, we are concerned with Mx4 cnC++ and the features of Mx4Pro
related to the operation of a traditional servo amplifier Mx4 cnC++ system (Fig. 3-
1, above). In review, Mx4 cnC++ provides the position control for four
coordinated axes. The Mx4 cncC++ outputs (four 16-bit ± 10 volt DACs) must be
applied to the inputs of four (current or velocity loop) servo amplifiers.

Mx4Pro Software

Mx4 cnC++ User’s Guide v1.1 3-3

Running Mx4Pro

Important: Before powering-up Mx4 cnC++ and continuing on with
Mx4Pro , the user should have completed the
verification of their hardware set-up as detailed in the
Mx4 cnC++ User’s Guide.

MX4PRO.EXE is included on the enclosed Mx4 Utilities diskette in the root
directory. The program may be executed from the diskette or transferred onto a
hard drive and run from there. To run Mx4Pro from the floppy, simply type
Mx4Pro at the a:\ DOS prompt. The first Mx4Pro screen is shown in Fig. 3-2.

Fig. 3-2: Mx4Pro Main Menu Screen

Using the Keyboard with Mx4Pro

Before you proceed to the next step, we would like to share with you some key
strokes required in proceeding through the Mx4Pro program. With Mx4Pro , you

Mx4Pro Software

3-4

only need to enter numbers representing parameter values, there is no need for
text entry. However, in order to move the cursor from the current position to a
new position or to select an item you need to know about a few keys.

Arrows The Arrow keys are used to move up and down on a
menu. Arrow keys are also used to increase or decrease a
selected value for a Direct Command (in the VECTOR4
menu) by 0.1 volts.

PgUp/PgDn In a Direct Command (using VECTOR4 menu) and Set
Gains, these keys will add (PgUp) or subtract (PgDn) one
volt increments to or from a selected value.

Esc ESC will either abort your selection or move cursor back to
the previous choice or menu.

Space Bar Selects an item identified by a square. As a result of
pressing the Space Bar a cross sign X will appear on a
selected square.

Home/End Using the Home/End keys in a Direct Command (using
VECTOR4 menu) increases (Home) or decreases (End) the
direct output voltage by 0.01 volts.

Pause Stops the operation of Signal Generator and freezes the
last traced signals on the scope display.

Starting Mx4Pro

The preceding Fig. 3-2 depicts four selectable items on the Main Menu: Motor
Technology, Power Technology, Sensor Technology and Dynamic Move. The
first three selections are relevant only if you have the VECTOR4 drive control
option.

Motor Technology 'Motor Technology' allows the user to choose a
motor technology and set related parameters.
(For VECTOR4 use only.)

Mx4Pro Software

Mx4 cnC++ User’s Guide v1.1 3-5

Power Technology 'Power Technology' allows the VECTOR4-
switching power stage interface parameters to be
defined. (For VECTOR4 use only.)

Sensor Technology 'Sensor Technology' is used to define some
encoder and motor parameters for VECTOR4. (For
VECTOR4 use only.)

Dynamic Move 'Dynamic Move' contains all motion control
functions and features of the Mx4 cnC++ card.

Although this is a manual for the Mx4 cnC++ controller, we have included a brief
description of the first three main menu choices. If you have purchased Mx4
cnC++ only and are not interested in the VECTOR4 aspects of Mx4Pro , you may
skip Overview Of Mx4Pro Mx4 cnC++ Support and go on to the Running Mx4
cnC++ With Mx4Pro .

Overview of Mx4Pro VECTOR4 Support

Mx4 cnC++ with the VECTOR4 option controls any combination of brushless
DC, AC induction and brush-type DC motors. In addition to Mx4 cnC++'s
capabilities, VECTOR4 performs all control functions commonly performed by DC
or AC servo amplifier control boards. VECTOR4 customizes the control to motor,
sensor, and power technologies. These three subjects are the first three
selections of the Mx4Pro Main Menu.

Note: Performing a Mx4 cnC++-VECTOR4 command from one of
these menu options will have no effect on a Mx4-only system.

Mx4Pro Software

3-6

Motor Technology

If you select Motor Technology from the Main Menu, you will see a menu asking
for the axis to be specified. Use the Arrow keys to select the axis number and
press Enter. On the right hand side of the monitor, a picture of three motors
(brushtype DC on the top, AC induction motor in the middle, and brushless DC
on the bottom) will appear (Fig. 3-3).

Fig. 3-3: Motor Technology Selection Screen (For use with VECTOR4 only.)

Mx4Pro Software

Mx4 cnC++ User’s Guide v1.1 3-7

You must use Arrow keys to choose one of the three motor technologies and
press Enter. If you are using an Mx4 cnC++-only system, this selection will have
no effect. As a result of selecting AC Induction or Brushless DC motor
technologies, a menu containing drive parameters will appear. Selecting an item
on this menu will drop a window allowing you to enter the value(s) for a selected
item(s). For example, you are allowed to enter PID gains if you select Torque
Gains on this menu (see Fig. 3-4). To transmit your parameters to VECTOR4 you
must select Done and press Enter. Pressing Enter on Done will take you back to
the Main Menu.

Fig. 3-4: Setting Torque Loop Gains for a Brushless DC Motor (For use with
VECTOR4 only.)

Mx4Pro Software

3-8

Power Technology

Choosing Power Technology from the Main Menu allows you to enter the PWM
frequency. A generic switching power stage merely follows VECTOR4's PWM
command. Here again, to transmit your selected parameters you must select Done
and press Enter.

Fig. 3-4: Power Electronics Technology, PWM Frequency Selection (For use
with VECTOR4 only.)

Mx4Pro Software

Mx4 cnC++ User’s Guide v1.1 3-9

Sensor Technology

Sensor Technology enables the user to characterize the motor and encoder for
VECTOR4. The first item is an entry for the number of encoder pulses per one
turn of a shaft in a rotary application. Next is the number of motor poles.
Industrial AC motors may have any number of poles from 2 to 20. The last item
will inform the control of the mounting angle of the commutation sensors (please
see the Mx4 cnC++ User’s Guide, VECTOR4). To transmit parameters to
VECTOR4, select Done and press Enter. Remember that if the selected
technology is brushtype DC, there is no need for parameter entry in this part.
This is due to the fact that VECTOR4 uses this information in an AC motor
commutation.

Fig. 3-5: Sensor Technology Screen, Setting Encoder Parameters (For use with
VECTOR4 only.)

Mx4Pro Software

3-10

Summary of VECTOR4 Support

The first three Main Menu selections (Motor Technology, Power Technology,
Sensor Technology) are used to program VECTOR4-option parameters. These
parameters are typically programmed only once during the initialization of a Mx4
system. Again, performing a command from one of these menu options will have
no effect on a Mx4-only system. Once these 'VECTOR4' parameters are set, the
operation of a Mx4 system is equivalent to that of a Mx4-only system. That is,
VECTOR4 is a 'transparent' interface between the Mx4 card and a generic
switching power stage, driving AC or DC motors. The Dynamic Move selection
allows us now to begin experimenting with motion control programming.

As a result of choosing Dynamic Move from the Main Menu, a window similar to
Fig. 3-6 will appear on your monitor. At the top of this display you observe a text
field with three columns and four rows. The three columns illustrate values for
position, position error and velocity. The position and position error are
described in "encoder edge counts" (with a quadrature encoder, one encoder
pulse generates four encoder edges). The unit for velocity is "encoder edge
counts per 200 µsec". Each row represents these parameters for one axis.

Fig. 5-1: Dynamic Move Main Menu Screen

Mx4Pro Software

Mx4 cnC++ User’s Guide v1.1 3-11

On the right hand side of the screen you find the Dynamic Move Menu including
these options:

Stop
Axis Move
Vel. Mode
Contouring
VECTOR4
Interrupt
Set Gains
Pos Preset
Direct DAC
Max. Acc.
Options
Reset
DSPL OPT.
DONE

The Mx4Pro: Mx4 cnC++ Tuning Expert manual will walk you through this
menu showing various features of Mx4 cnC++.

Mx4Pro Software

3-12

This page intentionally left blank.

Mx4 cnC++ User’s Guide v1.1 4-1

4 Programming The Mx4 cnC++

DSP Control Group has incorporated years of experience in the motion control
industry developing Mx4 cnC++'s programming platform.

Host-Based Programming

Low-level Host-based programming entails real-time communication between the
host computer and the Mx4 cnC++ card across the host computer bus. The host
computer may read and write to the Mx4 cnC++ card as it would any computer
peripheral. The user may choose the programming language of the host computer
program. This host program includes the facilities to transfer commands to the
Mx4 cnC++ card through the host bus, any conditional program code execution
routines, PLC emulating code, an optional interrupt service routine to handle any
enabled Mx4 cnC++ interrupts, Mx4 cnC++ system parameter readback routines
and any other software features required for the application. With Host-based
programming, an executable host program runs the operation of the Mx4 cnC++
card in real-time.

HOST
COMPUTER

code generation

assembly, C, Pascal, etc.

executable code

executable program running
on host computer

Mx4 cnC++ real-time commands

Mx4 cnC++ executes real-time host commands

host interrupts
system parameter readback

Fig. 4-1: Mx4 cnC++ Host-Based Programming

Methods of Programming Mx4 cnC++

4-2

The Mx4 cnC++ Host-based programming platform includes two types of host-
based commands:

Real Time Commands (RTCs)
Contouring Commands

Any combination of the two types of commands is possible for the four axes of
control.

Real-Time Commands

Real Time Commands (RTCs) are transferred to Mx4 cnC++ through a "window"
in the Mx4 cnC++ Dual Port RAM (DPR). Mx4 cnC++ polls the DPR for RTCs. An
RTC is acted upon as soon as Mx4 cnC++ reads it. Multi-axis commands are
executed simultaneously (not multiplexed), resulting in perfect sychronicity for
multi-axis control. As soon as a new command is detected, Mx4 cnC++ executes
it, possibly altering the effects of any previous commands that were not yet
completed. The Mx4 cnC++ Host-based programming command set consists
entirely of RTCs.

Methods of Programming Mx4 cnC++

Mx4 cnC++ User’s Guide v1.1 4-3

Contouring

Mx4 cnC++ supports two types of contouring: 2nd order contouring and cubic
spline contouring. Contouring commands consist of segment move commands
from which Mx4 cnC++ performs 2nd order or cubic spline interpolation.
Contouring 'data' is transferred from the host to Mx4 cnC++ via a ring buffer in
the DPR. See Fig. 4-1. Each segment move consists of a 32 bit position value and
32 bit velocity value for each axis included in the contouring motion. Mx4 cnC++
interpolates between the [position,velocity] points with programmable intervals.
The 'commands' are executed in sequence, with execution commencing only
when the previously commanded segment move is complete. A more detailed
discussion of contouring commands can be found in Chapter 6 Mx4 cnC++
Host-Based Programming.

Host

Dual Port RAM

Ring Buffer

High Order

Interpolation

P, V Axis 1

P, V Axis 2

P, V Axis 3

P, V Axis 1

Fig. 4-3: Mx4 cnC++ Contouring with Three Axes

Methods of Programming Mx4 cnC++

4-4

This page intentionally blank.

Mx4 cnC++ User’s Guide v1.1 5-1

5 Mx4 cnC++ Host-Based
Instruction Set
Host-Based Programming Command Set

The Mx4 cnC++ Host programming platform includes the following Real Time
Commands (RTCs). These commands along with the previously mentioned
contouring commands, yield a powerful and very flexible motion control
programming platform. The Mx4 cnC++ RTCs are categorized as follows:

Initialization

Commands used to set-up and define system state variables and data reporting
schemes are referred to as initialization commands.

COMMAND DESCRIPTION

ABORTACC specify abort maximum acceleration

HOME preset position counters

HOMESFT position counter reference shift

MAXACC specify maximum acceleration

MTURN define multi-turn position reporting

SYNC configure Mx4 cnC++ as master or slave

Interrupt Control

Mx4 cnC++’s command set includes interrupt control instructions that allow
interrupt conditions to be programmed and the ability to enable and disable Mx4
cnC++- host interrupts.

Mx4 cnC++ Host-Based Instruction Set

5-2

COMMAND DESCRIPTION

BBINT buffer breakpoint interrupt

DISABL disable the interrupts #1

DISABL2 disable the interrupts #2

ENCOLOS encoder fault / loss interrupt

FERHLT following error / halt interrupt

FERINT following error interrupt

INXINT index pulse interrupt

MCENBL motion complete interrupt

POSBRK position breakpoint interrupt

POSFEED positive feedback interrupt

PRBINT general purpose probe interrupt

Trajectory Control

Trajectory control commands are those that specify closed-loop motion control.

COMMAND DESCRIPTION

AXMOVE axis move

STOP stops the motion

System Diagnostic

System diagnostic commands allow the host to examine internal Mx4 cnC++
parameters and also provide debug support.

COMMAND DESCRIPTION

PARREAD parameter readback

Control Parameter

Instructions used to set state variable control parameters and to tune the control
loops are classified as control parameter commands.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-3

COMMAND DESCRIPTION

CTRL control law

KILIMIT integral gain limit

OFFSET amplifier offset cancellation

OUTGAIN position loop output gain

Open Position Loop

Open position loop commands are motion commands based on velocity control
or direct output control.

COMMAND DESCRIPTION

DDAC direct DAC command

VELMODE velocity mode

Contouring

Contouring instructions are those related to the contouring mode of motion.
These commands are used to define contouring parameters such as the
contouring block transfer rate.

COMMAND DESCRIPTION

BTRATE block transfer rate

CUBIC_RATE set cubic spline point transfer rate

CUBIC_SCALE scales position/velocities, also shifts positions

START start contouring motion

VECCHG contouring vector change

Filtering (optional)

COMMAND DESCRIPTION

LOW_PASS implement low pass filter at controller output

NOTCH implement notch filter at controller output

I/O

Mx4 cnC++ Host-Based Instruction Set

5-4

COMMAND DESCRIPTION

DISABORT disable input abort processing

ENABORT enable input abort processing

INPSTATE configure logic state of inputs

OUTREL output relay state

Reset

COMMAND DESCRIPTION

RESET reset Mx4 cnC++ controller card

Mx4 cnC++ RTC Instruction Set

The 38 Real Time Commands are listed in alphabetical order. Some of the
description presented is technical information pertaining to the programming of
the RTCs.

Note: Many instructions include the argument n ("a single byte bit coding the
axes involved"). The format of n is:

n = (0000 axis 4 axis 3 axis 2 axis 1) B, where set bit(s) 3, 2, 1 or 0
specifies 4, 3, 2 or 1 respectively.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-5

Mx4 cnC++ State Variables

Before programming the Mx4 cnC++ controller, knowledge of Mx4 cnC++'s state
variables is necessary. The motion state variables are described below.

Acceleration Specified in encoder edge counts/(200 µs)2. It is
presented by a 16-bit unsigned number with 1 bit
integer and 15 bits fraction.

i.e., acc = 077Bh = 0.0584 counts/(200 µs)2

Following Error Specified in encoder edge counts and is presented by
a 32-bit two's complement number with all 32 bits as
integer.

Position Specified in encoder edge counts and is presented by
a 32-bit two's complement number with all 32 bits as
integer.

Velocity Specified in encoder edge counts/200 µs and is
presented by a 27-bit two's complement number, sign
extended to 32 bits. This value is partitioned as 16 bits
integer and 16 bits fraction.

i.e., vel = 000A8000h = 10.50 counts/200 µs

Mx4 cnC++ Host-Based Instruction Set

5-6

Mx4 cnC++ Host-Based Programming Command Listing

The Mx4 cnC++ Host-based programming RTCs are listed in alphabetical order.
Each command listing follows this format:

FUNCTION indicates the command function

SYNTAX order in which the command arguments must be written
to the DPR Real Time Command buffer1

RTC CODE real time command code

ARGUMENTS command arguments, if any, are defined2

DESCRIPTION explanation of command operation and functionality

SEE ALSO listing of related commands

APPLICATION some helpful suggestions describing which applications
benefit from the command

EXAMPLE an example illustrating the command in use

Note 1: See Chapter 6, Mx4 cnC++ Host Programming ... RTCs &
Contouring for a detailed description of how RTCs are
transmitted to the Mx4 cnC++ controller.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-7

Note 2: Many commands include the argument n ("a single byte, bit
coding the axes involved"). The bit coding is as follows:

n bit 0 axis 1
bit 1 axis 2
bit 2 axis 3
bit 3 axis 4
bit 4-7 unused

For example, 0x3 bit codes axes 1 and 2; 0xE bit codes axes 2, 3,
4, etc.

Mx4 cnC++ Host-Based Instruction Set

5-8

ABORTACC

FUNCTION Abort Maximum Acceleration

SYNTAX ABORTACC(n, acc1, ... , acc4)

RTC CODE 86h

ARGUMENTS

n a single byte, bit coding the axes involved.
accx 16 bit unsigned value specifying the maximum halting

acceleration (deceleration) for axis x

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

DESCRIPTION

This command specifies the maximum halting acceleration (deceleration)
for the axes specified. The maximum acceleration values are used in the
following cases: FERHLT interrupt, ESTOP, probe interrupt and input
abort processing.

Note: ABORTACC command will be ignored if the specified
argument is zero.

SEE ALSO FERHLT, PRBINT, STOP, VELMODE

APPLICATION

This command sets the maximum possible deceleration for a mechanical
actuator. This RTC is to set the deceleration rate for an emergency case.
In contrast to the Mx4 RTC, ABORTACC provides a sharper
deceleration such that the entire system comes to a stop as rapidly as
possible. Please remember that the STOP and VELMODE RTCs use Mx4
for their acceleration/deceleration.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-9

ABORTACC cont.

Command Sequence Example

ABORTACC () ;set the abort maximum acceleration
CTRL () ;make sure the system is in closed loop
FERHLT () ;set the maximum tolerance for the following error

;if the following error exceeds the ABORTACC
;parameter, the system will stop immediately

EXAMPLE

Set an abort maximum acceleration for axes 2 and 3 of 0.5 encoder
counts/200µsec2.

(0.5) x 215 = 4000h

The values of the RTC argument are:

n : 06h
acc2 : 4000h
acc3 : 4000h

Mx4 cnC++ Host-Based Instruction Set

5-10

AXMOVE

FUNCTION Axis Move with Trapezoidal Trajectory

SYNTAX AXMOVE(n, acc1, pos1, vel1, ... , acc4, pos4, vel4)

RTC CODE 60h

ARGUMENTS

n a single byte, bit coding the axes involved.
accx 16 bit acceleration for axis x
posx 32 bit end position for axis x
velx 32 bit slew rate for axis x

Note: Position and velocity are always presented in 2's complement
format, but acceleration is an unsigned value.

Note: Velocity must be presented as a 27 bit 2's complement value
which is sign extended to 32 bits. For example, the maximum
positive velocity is 03FFFFFFh and the maximum negative
velocity is FC000000h.

Note: Velocity is partitioned into 16 bits integer and 16 bits fraction.
Position is a 32 bit integer value, and acceleration is presented
as 1 bit integer, 15 bits fraction.

DESCRIPTION

The AXMOVE RTC allows for trapezoidal command generation with
specified end point position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves.

SEE ALSO STOP

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-11

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time there
is a need for a linear move from point A to point B in a multi-dimensional
space. To name a few applications: pick and place robots (e.g. in
component insertion), rapid traverse (e.g. in machining) and master
slaving (e.g. in paper processing and packaging) applications.

Command Sequence Example

MAXACC () ;set the maximum accel. to make sure system can be
;stopped

CTRL () ;set the gain values
KILIMIT ()
AXMOVE () ;run the system in axis move (linear trapezoidal) ;mode
.
.
MCENBL () ;enable motion complete

;upon the completion of this (command) trajectory
;MX4 generates motion complete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567h and axis 2 to the target position
of 112233h. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 200000h (200000h/216

counts/200µsec) and acceleration of 150h (150h/215 counts/(200µsec)2)
for both axes.

Mx4 cnC++ Host-Based Instruction Set

5-12

AXMOVE cont.

The values of the RTC arguments are:

n : 03h
acc1 : 0150h
pos1 : 00234567h
vel1 : 00200000h
acc2 : 0150h
pos2 : 00112233h
vel2 : 00200000h

EXAMPLE 2

Assuming a current position of 0 for axis 4, we want to move axis 4 to
the (negative) target position of FFAA0000h with a slew rate of
FFE00000h (FFE00000h/216 counts/200µsec)(negative velocity) and
acceleration of 150h (150h/215 counts/(200µsec)2).

The values of the RTC arguments are:

n : 08h
acc4 : 0150h
pos4 : FFAA0000h
vel4 : FFE00000h

EXAMPLE 3

The host can issue a new axis move command before the previous one
is completed. For example, assume the AXMOVE RTC of Example 1 is
issued by the host. Now, the host changes its mind and decides to stop
axis 2 at a new target position of 334455h with a new slew rate of
100000h. 100000h/216 counts/200µsec) and a new acceleration of 200h
(200h/215 counts/(200µsec)2). While the AXMOVE of Example 1 is in
progress, the host issues the new command.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-13

AXMOVE cont.

The values of the RTC arguments are:

n : 02h
acc2 : 0200h
pos2 : 00334455h
vel2 : 00100000h

Mx4 cnC++ Host-Based Instruction Set

5-14

BBINT

FUNCTION Buffer Breakpoint Interrupt

SYNTAX BBINT(buffbrk)

RTC CODE 61h

ARGUMENTS

buffbrk 8 bit positive value which represents delta position for the
remaining number of bytes in the ring buffer. Since each point
requires 8 bytes, this number must be multiplied by 8 to
indicate the real number of bytes left in the DPR ring buffer.

DESCRIPTION

This command will cause an interrupt when the number of instructions
in the ring buffer falls below a preset breakpoint. The buffer breakpoint
interrupt status will appear in bit 0 of the DPR interrupt flag location
03FEh, 7FEh. This bit gets set if the buffer breakpoint interrupt occurs.

SEE ALSO DISABL

APPLICATION

This command must be used in contouring applications. To maintain
continuity in a contouring application, Mx4 must be constantly updated
by the host processor a set of new (position/velocity) points on a
contour. Since no application can afford to run out of points, the host
must set the BBINT to a value such that running the remaining points
(what is left in the ring buffer) will give the host enough time to update
the buffer. For slower hosts, the argument for this command must be
relatively larger.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-15

BBINT cont.

Command Sequence Example

MAXACC () ;make sure that a system can be stopped
CTRL () ;set the gains
KILIMIT ()
. ;load the ring buffer with contouring points,
. ;(position and speed)
BTRATE () ;set the block transfer rate to 5, 10, 15 or 20ms
BBINT () ;set the breakpoint in buffer
.
.
START (n) ;start contouring

EXAMPLE

Enable a ring buffer breakpoint interrupt for the case that the number of
segment move commands in the ring buffer falls below 30.

The value of the RTC argument is:

buffbrk : 1Eh

Mx4 cnC++ Host-Based Instruction Set

5-16

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate

SYNTAX BTRATE(m)

RTC CODE 73h

ARGUMENTS

m a byte which selects the block transfer rate for all of the axes. m
is an integer ranged from 0 to 3.

m=0 block transfer rate is 5ms per point
m=1 block transfer rate is 10ms per point
m=2 block transfer rate is 15ms per point
m=3 block transfer rate is 20ms per point

DESCRIPTION

This command sets the 2nd order contouring block transfer rate for the
system. For example, if the block transfer rate is set at 10ms, the time
interval between each point in the ring buffer is '10ms' (e.g. the DSP will
interpolate each point for 10ms).

Note: Host should not adjust the block transfer rate when contouring
is in process.

Note: The default block transfer rate is set at 5ms per point.

SEE ALSO CUBIC_RATE

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-17

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly, slower
CPUs are capable of breaking down geometries to position and velocity
points that are widely spaced in time. This instruction makes the time
interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15 or 20ms), Mx4 will internally
perform a high-order interpolation of the points breaking them down to
200 µsec.

Command Sequence Example

See BBINT

EXAMPLE

Set a contouring interpolation interval of 10msec.

The value of the RTC argument is:

m : 01h

Mx4 cnC++ Host-Based Instruction Set

5-18

CTRL

FUNCTION Control Law Parameters

SYNTAX CTRL(n, par11, ... , par14, ... , parn1, ... , parn4)

RTC CODE 62h

ARGUMENTS

n a single byte, bit coding the axes involved.
parx1(Ki) 16 bit unsigned value for the first control parameter

for axis x.
parx2(Kp) 16 bit unsigned value for the second control

parameter for axis x.
parx3(Kf) 16 bit unsigned value for the third control parameter

for axis x.
parx4(Kd) 16 bit unsigned value for the fourth control parameter

for axis x.

DESCRIPTION

This command performs a state feedback control algorithm combined
with a modified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide a robust control which is smooth and stable over a wide rage of
servo operation. In addition this algorithm performs a modified PID with
the saturation threshold set for integral action. A common PID includes
two zeros and one pole which may not be suitable for systems with
noisy feedback. Also, the integral part of a common PID algorithm may
saturate the registers creating overshoots or other forms of instability.
A modified PID includes a second pole to solve the latter problem and a
programmable integral limit to solve the former one.

In the modified PID algorithm; par1, par2, par3, and par4 are values
representing the integral, proportional, velocity state feed forward, and
differential gains, respectively.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-19

CTRL cont.

Scaling Factors

The DSP uses an internal scaling factor for each gain. These factors
have been optimally selected for worst case numerical conditions.
These factors are:

GAIN SCALING FACTOR
Kf 215

Kp 27

Ki 1

Kd (17 × 211)

Output Loop
Gain

20 (volts) / 217

For example,

50 counts of position error and Kp of 1 (other gains are zero) will result
in an output voltage of 976 millivolts.

 i.e. 50 × 1 × 27 × 20 / (217) = 0.976

V

K
K

P

n

d
i

n
_

+ +

+

+
+

_

Sampling Period

P ACTUAL

n
^
V

K f

K p

Kalman

Filter

to DAC

K Limiti

Output

Loop Gain

Figure 5-2: Block Diagram of Control Law

SEE ALSO KILIMIT, OFFSET, OUTGAIN

Mx4 cnC++ Host-Based Instruction Set

5-20

CTRL cont.

APPLICATION

This command is used in all position/velocity control tuning
applications. For more information on the effectiveness of each gain on
system dynamic response, please refer to Chapter 3 on Mx4 cnC++Pro .
Running MX4 with Mx4 cnC++Pro of that chapter will help you
understand the significance of gains in tuning. Please read this section
even if you cannot run Mx4 cnC++Pro on your machine because it
lacks the DOS operating system.

Command Sequence Example

See AXMOVE and VELMODE

EXAMPLE

Set the following modified PID gain values for axes 2 and 4:

Ki = 100
Kp = 4000
Kf = 3000
Kd = 2500

Ki = 20
Kp = 8000
Kf = 5500
Kd = 7000

The values of the RTC arguments are:

n : 0Ah
par21 : 0064h
par22 : 0FA0h
par23 : 0BB8h
par24 : 09C4h
par41 : 0014h
par42 : 1F40h
par43 : 157Ch
par44 : 1658h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-21

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate

SYNTAX CUBIC_RATE (m)

RTC CODE 89h

ARGUMENTS

m a 16-bit parameter coding the value for cubic spline
transfer rate. "m" codes the time interval between the
adjacent position/velocity points. Its value ranges
between 5 and 511 and when divided by 5 it represents the
interval in ms. For example, m=5 represents the time
interval of 1 ms and m=25 is a 5 ms interval.

DESCRIPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent points in the
cubic spline ring buffer. The two adjacent points can be spaced
anywhere between 1.0 to 102.4 ms. Mx4's cubic spline interpolates
between the two adjacent points at 200 ms increments. This means for
example, Mx4 interpolates 500 points between two adjacent points 100
ms apart. Position and velocity points in the ring buffer are organized
similar to the way they are in ordinary contouring. That is, every point is
represented by eight bytes - four for position and four for velocity.

Since velocity is numerically presented by a 25-bit two's complement
number (8 bits (absolute) integer, 16 bits fractional) the upper most
significant four bits of 32-bit long velocity are used to code the axes for
which the position/velocity points have been specified. For example, the
following 32-bit number, 30 55 66 77h specifies velocity value 0 55 66
77h in cubic spline interpolation involving axis 1 and axis 2 (i.e., 3 =
0011). Note that the 4-bit axis coding is only used in cubic spline -
ordinary contouring lacks this feature. Mx4's other contouring feature
(i.e., 2nd order) uses the VECCHG RTC to encode the axes involved in a
contouring task.

Mx4 cnC++ Host-Based Instruction Set

5-22

CUBIC_RATE cont.

The contouring strategy can be switched between cubic spline and 2nd
order using CUBIC_RATE and BTRATE, respectively. It may take up to
500 ms to execute a CUBIC_RATE. Once a CUBIC_RATE is issued,
there is no need to re-issue this command.

The ring buffer breakpoint interrupt cannot detect less than 5 ms worth
of points. This imposes a constraint on the minimum number of points
for short block transfer rates such as 1 ms. For example, for 1 ms block
transfer rate, a minimum of 5 points in the ring buffer is required.

buffer_break_point(m) m is number of pos/vel points in ring buffer
for b.t. rate of 1 ms 5 ≤ m < 84 points
for b.t. rate of 5 ms 1 ≤ m < 84 points

SEE ALSO BBINT, BTRATE, CUBIC_SCALE

APPLICATION

Refer to Cubic Spline Application Notes.

EXAMPLE

Using cubic spline interpolation create 16, 32, 64 and 128-point circles.

The following shows the position and velocity values for 16 uniformly
spaced points on a circle.

16-point Circle

Point pos_x actual_vel_x coded_vel_x
x1 2500 (0x000009C4h) 0 (0x00000000h) 0x30000000h

x2 2310 (0x00000906h) -61554 (0xFFFF0F8Eh) 0x3FFF0F8Eh

: : : :

x16 2310 (0x00000906h) +61554 (0x0000F072h) 0x3000F072h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-23

CUBIC_RATE cont.

Point pos_y actual_vel_y coded_vel_y
x1 0 (0x00000000h) 160850 (0x00027452h) 0x30027452h

x2 957 (0x000003BDh) 148610 (0x00024482h) 0x30024482h

: : : :

x16 -957 (0xFFFFFC43h) 148610 (0x00024482h) 0x30024482h

To generate a circle, these points must be written to Mx4's cubic spline
ring buffer and CUBIC_RATE must be executed. The CUBIC_RATE
argument determines the interval between two points of the ring buffer.
If the number of points on a trajectory (i.e., circle) exceeds the size of the
ring buffer, the BBINT (buffer breakpoint interrupt) RTC must be used.
This command, sets the breakpoint where the host must load more
points to the ring buffer. This way the CPU will refresh the ring buffer
on a continuous basis. For comparison, the following figures illustrate
the circles created by 16, 32, 64 and 128 points in a cubic spline
interpolation. It takes 1.28 seconds to complete these circles.

16 points; b.t. rate = 80 ms

Mx4 cnC++ Host-Based Instruction Set

5-24

CUBIC_RATE cont.

32 points; b.t. rate = 40 ms

64 points; b.t. rate = 20 ms

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-25

CUBIC_RATE cont.

128 points; b.t. rate = 10 ms

Mx4 cnC++ Host-Based Instruction Set

5-26

CUBIC_SCALE

FUNCTION Scale Cubic Spline Data Points

SYNTAX CUBIC_SCALE (n, pv_mult1, pos_shift 1, ... , pv_mult4,
pos_shift 4)

RTC CODE 8Bh

ARGUMENTS

n a single byte, bit coding the axes involved

pv_multx position / velocity scaling multiplier for axis x. This is a 16-
bit two’s complement number with one sign bit, one
integer bit, and fourteen bits fraction.

pos_shiftx position shifter for axis x. This is a 32-bit two’s
complement integer number that transfers the position to a
new origin.

DESCRIPTION

This command scales those data points involved in a cubic spline
operation. This command also shifts the positions involved by a user
defined position shift value.

SEE ALSO CUBIC_RATE

APPLICATION See Cubic Spline Application Notes

EXAMPLE

Set a scale of 0.5 for all axis 2 cubic spline data points. No position shift
is desired.

The values of the RTC arguments are:

n : 0x02h
pv_mult2 : 0x2000h
pos_shift 2 : 0x00000000h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-27

DDAC

FUNCTION Direct DAC Output

SYNTAX DDAC(n, val1, ... , val4)

RTC CODE 63h

ARGUMENTS

n a single byte, bit coding the axes involved.
valx 16 bit value specifying the 16 bit DAC output voltage for axis x.

The values range as follows:

FFFFh : -10(1/32768)v output
 :
8000h : -10v output
7FFFh : +10v output
 :
0000h : 0v output

DESCRIPTION

Specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of 0.3 millivolts.

SEE ALSO none

APPLICATION

This command can be used in applications where the voltage command
provides adequate control. Voltage commands can be applied to a
torque loop (for torque control applications in robotics) or a velocity
loop (to a spindle axis in machine tool applications).

Mx4 cnC++ Host-Based Instruction Set

5-28

DDAC cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Output +3.7 volts to the axis 4 DAC (DAC4 MX4 connector signal).

() 7FFFh 2F5Ch3.7
10

+ × =

The values of the RTC arguments are:

n : 08h
val4 : 2F5Ch

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-29

DISABL

FUNCTION Disable Interrupts

SYNTAX DISABL(n, m1, ... , m4)

RTC CODE 64h

ARGUMENTS

n a single byte, bit coding the axes involved.
mx a single byte, bit mapping the interrupts to disable for axis x

(setting a bit to one indicates disabling an interrupt).

bit 7 : -
bit 6 : motion complete
bit 5 : index
bit 4 : probe
bit 3 : position breakpoint
bit 2 : following error
bit 1 : following error / halt
bit 0 : buffer breakpoint

DESCRIPTION

This command disables some or all of the servo control card interrupts.

SEE ALSO BBINT, DISABL2, PRBINT, FERHLT, FERINT, INXINT,

MCENBL, POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Mx4 cnC++ Host-Based Instruction Set

5-30

DISABL cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Disable the previously enabled axis 1 following error and axis 3 index
pulse interrupts.

The values of the RTC arguments are:

n : 05h
m1 : 04h
m3 : 20h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-31

DISABL2

FUNCTION Disable Interrupts

SYNTAX DISABL2(n, m1, ... , m4)

RTC CODE 5Ah

ARGUMENTS

n a single byte, bit mapping the axes involved.
mx a single byte, bit mapping the interrupts to disable axis x

(setting a bit to one indicates disabling an interrupt).

bit 7 : not used
 : : not used
bit 2 : not used
bit 1 : encoder loss
bit 0 : positive feedback

DESCRIPTION

This command disables some of the servo control card interrupts.

SEE ALSO DISABL, ENCOLOS, POSFEED

APPLICATION

In servo applications checking for failures such as encoder loss or
positive feedback loop is a task performed on power-up. Once an
application is assured of proper feedback polarity, the encoder loss and
positive feedback interrupts may be disabled throughout the entire
application.

Mx4 cnC++ Host-Based Instruction Set

5-32

DISABL2 cont.

Command Sequence Example

No preparation is required before running this instruction.
EXAMPLE

Disable the previously enabled axis encoder loss and axes 1 and 4
positive feedback interrupts.

n : 09h
m1 : 03h
m4 : 01h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-33

DISABORT

FUNCTION Disable Input Abort Processing

SYNTAX DISABORT(n, dabort1, ... , dabort4)

RTC CODE 57h

ARGUMENTS

n a single byte, bit coding the axes involved.
dabortx a single byte, bit mapping the input disables for axis x.

bit=0 : no change in enable/disable status
bit=1 : disable the interrupt processing

bit 7 : unused
bit 6 : unused
bit 5 : gen. purpose input 4, gen. purpose input 5 input*
bit 4 : unused
bit 3 : unused
bit 2 : unused
bit 1 : - O.T. input for axis x
bit 0 : + O.T. input for axis x

Note: * Bit 5 is used to select the enable/disable status of inputs
gen. purpose input and gen. purpose input 5. When axis 1 is
selected, bit 5 corresponds to gen. purpose input 4. When
axis 2 is selected, bit 5 corresponds to gen. purpose input 5.
If either axis 3 or axis 4 is selected, bit 5 of the corresponding
bytes is an "unused" bit.

DESCRIPTION

This command allows the user to disable the interrupt and interrupt
processing for the specified inputs.

SEE ALSO DISABL, DISABL2, ENABORT

Mx4 cnC++ Host-Based Instruction Set

5-34

DISABORT cont.

APPLICATION

This RTC is used when one or several inputs of MX4 CNC++000MB-IO
need to be used as general purpose inputs. Using this command
disables an interrupt (as well as interrupt processing) that occurs when
an input signal is set.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Disable inputs + O.T. and - O.T. for axis 1 and 2:

The value of the RTC argument is:

n : 03h
dabort1 : 03h
dabort2 : 03h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-35

ENABORT

FUNCTION Enable Input Abort Processing

SYNTAX ENABORT(n, m1, eabort1, ... , m4, eabort4)

RTC CODE 58h

ARGUMENTS

n a single byte, bit coding the axes involved.
mx a single byte, bit coding the axes to be halted upon receipt of

an active input condition on an enabled input of axis x.
eabortx a single byte, bit mapping the input enables for axis x.

bit=0 : no change in enable/disable status
bit=1 : enable the interrupt processing

bit 7 : unused
bit 6 : unused
bit 5 : gen. purpose input 4, gen. purpose input 5 input*
bit 4 : unused
bit 3 : unused
bit 2 : unused
bit 1 : - O.T. input for axis x
bit 0 : + O.T. input for axis x

Note: * Bit 5 is used to select the enable/disable status of inputs
gen. purpose input 4 and gen. purpose input 5. When axis 1
is selected, bit 5 corresponds to gen. purpose input 4. When
axis 2 is selected, bit 5 corresponds to gen. purpose input 5.
If either axis 3 or axis 4 is selected, bit 5 of the corresponding
bytes is an "unused" bit.

Mx4 cnC++ Host-Based Instruction Set

5-36

ENABORT cont.

DESCRIPTION

This command allows the user to enable the interrupt and interrupt
processing for the specified inputs. If any enabled active input
condition of axis x is received by MX4, the axes specified by the mx
argument will be halted (similar to ESTOP). The interrupt condition is
recorded in DPR interrupt status register location 009h. The DPR status
register location 00Dh will identify the axis or axes responsible. DPR
locations 094h-096h identify the input status in real-time (yielding the
interrupt type and source). Bit 6 of DPR locations 3FEh, 7FEh is also set.

SEE ALSO DISABORT, INPSTATE, PRBINT

APPLICATION

This command in conjunction with limit switches mounted on a machine
may be used to bring a system (or part of a system) to an immediate
stop. Enabling the abort aimed at a particular axis will bring that axis to a
halt. This happens when input(s) selected by this command is (are) set.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable abort for + O.T. input of axis 1 and - O.T. input of axis 2. When
the axis 1 input is set, axes 3 and 4 are to be stopped. When the axis 2
input is set, all of the axes are to be stopped.

n : 03h
m1 : 0Ch
eabort1 : 01h
m2 : 0Fh
eabort2 : 02h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-37

ENCOLOS

FUNCTION Encoder Loss Interrupt

SYNTAX ENCOLOS(n)

RTC CODE 5Ch

ARGUMENTS

n a single byte, bit coding the axes involved.

DESCRIPTION

This command enables the encoder loss interrupt for the specified axes.
Encoder loss interrupt is generated if the following conditions are met
(for the axis in question):

1. Following Error is > 2000 counts
2. If the command position changes, the actual position does

not change.
3. The above 3 conditions hold for 0.3 seconds

The DPR interrupt status locations 009h and 00Bh record the
occurrence and source of this interrupt. Bit 6 of DPR locations 3FEh,
7FEh is also set.

SEE ALSO DISABL2

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the encoder loss interrupt for both axis 3 and axis 4.
The value of the RTC argument is:

n : 0Ch

Mx4 cnC++ Host-Based Instruction Set

5-38

FERHLT

FUNCTION Following Error Interrupt and Halt

SYNTAX FERHLT(n, fer1, ... , fer4)

RTC CODE 66h

ARGUMENTS

n a single byte, bit coding the axes involved.
ferx 16 bit unsigned following error for axis x.

DESCRIPTION

Upon execution of this command, if at any time the following error for a
specified axis exceeds it's programmed value, the system will halt and
generate an interrupt. The halt brings the motion of the axis in question
to a stop using the programmed abort maximum acceleration rate. This
interrupt condition is recorded in DPR interrupt status register location
000h. The DPR status register location 001h reveals the axis(s)
responsible. Bit 1 of DPR locations 3FEh, 7FEh is also set.

Note: FERHLT command will be ignored if the respective axis abort
maximum acceleration is zero.

Note: Following error / halt interrupt is not disabled after it occurs.
The host is responsible for disabling the interrupt.

SEE ALSO DISABL, FERINT, ABORTACC

APPLICATION

Applications of this command are similar to FERINT. However, as a
result of this command's interrupt, the system will come to a stop. Stop
trajectory uses the programmed abort maximum acceleration. Please see
ABORTACC. Please note that this command is not appropriate to
prevent system run-away in case of encoder loss - since in the absence
of encoder, the system cannot be stopped reliably.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-39

FERHLT cont.

Command Sequence Example

ABORTACC () ;make sure system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT () ;set gains
.
.
FERHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 3 with a threshold of 100
encoder counts.

The values of the RTC arguments are:

n : 04h
fer3 : 0064h

Mx4 cnC++ Host-Based Instruction Set

5-40

FERINT

FUNCTION Following Error Interrupt

SYNTAX FERINT(n, fer1, ... , fer4)

RTC CODE 67h

ARGUMENTS

n a single byte, bit coding the axes involved.
ferx 16 bit unsigned following error for axis x.

DESCRIPTION

Upon the execution of this command, if at any time the following error
for a specified axis exceeds it's programmed value, the servo control
card will generate an interrupt. This condition is recorded in DPR
interrupt status register location 000h. The DPR status register location
02h will identify the axis(s) responsible. Bit 1 of DPR locations 3FEh,
7EFh is also set.

Note: Following error interrupt is not disabled after it occurs. The
host is responsible for disabling the interrupt.

SEE ALSO DISABL, FERHLT

APPLICATION

This command may be used in all applications for two main reasons.
First, FERINT reports a run-away or any other out-of-control condition.
Second, it makes sure that position error is within a specified (a
programmed argument for FERINT) tolerance.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-41

FERINT cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Set a FERINT interrupt value of 200 encoder counts for axis 1.

The values of the RTC arguments are:

n : 01h
fer1 : 00C8h

Mx4 cnC++ Host-Based Instruction Set

5-42

HOME

FUNCTION Preset Position Counter

SYNTAX HOME(n, pset1, ... , pset4)

RTC CODE 68h

ARGUMENTS

n a single byte, bit coding the axes involved.
psetx 32 bit two's complement value to preset the axis x position

counter.

DESCRIPTION

This command will define the present position point for the axes
specified.

Note: HOME command will automatically disable the position
breakpoint interrupt (if enabled). HOME can be executed only
when the axes specified are not in motion.

SEE ALSO HOMESFT, POSBRK

APPLICATION

This command is useful when the position counter must be forced to a
new value. This command may be used in the establishment of a new
reference potion. Please also see HOMESFT.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-43

HOME cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Set the present position of axis 4 to 50,000 counts.

The values of the RTC arguments are:

n : 08h
pset4 : 0000C350h

Mx4 cnC++ Host-Based Instruction Set

5-44

HOMESFT

FUNCTION Home Reference Shift

SYNTAX HOMESFT(n, psft1, ... , psft4)

RTC CODE 5Dh

ARGUMENTS

n a single byte, bit coding the axes involved.
psftx 32 bit two's complement value to add to the axis x position

counter.

DESCRIPTION

This command will shift the present position point for the axes
specified.

Note: HOMESFT command will automatically disable the position
breakpoint interrupt (if enabled) of the specified axes.

SEE ALSO HOME, POSBRK

APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new value
without losing position integrity (i.e. no counter information is lost). See
also INXINT and HOME.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-45

HOMESFT cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

The current axis 1 position is 100h. Shift the axis 1 position to 20100h.
The current axis 3 position is 1010h. Shift the axis 3 position to 1000h.

The values of the RTC arguments are:

n : 05h
psft1 : 00020000h
psft3 : FFFFFFF0h

Mx4 cnC++ Host-Based Instruction Set

5-46

INPSTATE

FUNCTION Configure Logic State of Inputs

SYNTAX INPSTATE(inp1, inp2, inp3)

RTC CODE 88h

ARGUMENTS

inp1 a single byte, coding the logic state of inputs.

bit=0 : active LOW input
bit=1 : active HIGH input

bit 7 : axis 4 -O.T. input
bit 6 : axis 3 -O.T. input
bit 5 : axis 2 -O.T. input
bit 4 : axis 1 -O.T. input
bit 3 : axis 4 +O.T. input
bit 2 : axis 3 +O.T. input
bit 1 : axis 2 +O.T. input
bit 0 : axis 1 +O.T. input

inp2 a single byte, unused (i.e., set to 00h)

inp3 a single byte, coding the logic state of inputs.

bit=0 : active LOW input
bit=1 : active HIGH input

bit 6-7 : unused
bit 5 : general purpose input 5
bit 4 : general purpose input 4
bit 0-3 : unused

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-47

INPSTATE cont.

DESCRIPTION

This command allows the user to define the logic state of the Mx4
cnC++ inputs. Each input may be configured as active LOW or active
HIGH (TTL logic levels) (the Mx4 cnC++ inputs are level sensitive).

Note: At power-up and reset, Mx4 cnC++ inputs default as active
LOW.

SEE ALSO ENABORT

EXAMPLE

Configure the +O.T. inputs of axes 1-4 as active HIGH inputs. The
remaining inputs are to be configured as active LOW.

The value of the RTC arguments is:

inp1 : 0Fh
inp2 : 00h
inp3 : 00h

Mx4 cnC++ Host-Based Instruction Set

5-48

INXINT

FUNCTION Index Pulse Interrupt

SYNTAX INXINT(n)

RTC CODE 69h

ARGUMENTS

n a single byte, bit coding the only axis involved.

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first index pulse edge from the specified axis. The pulse edge
results in the generation of an interrupt and registration of the actual
position for all axes in DPR locations 103h - 112h. The DPR interrupt
status register locations 000h and 003h record the occurrence and
source of this interrupt. Bit 1 of DPR locations 3FEh, 7EFh is also set.

Note: Only one index pulse can generate an interrupt at any given
time. The INXINT command enables the index pulse interrupt
for the axis specified and automatically disables the previous
one (if any).

Note: The index pulse interrupt and general purpose external
interrupt CAN BE ENABLED simultaneously.

SEE ALSO DISABL, HOME, HOMESFT

APPLICATION

This command is used in homing applications. As a result of this
instruction, Mx4 cnC+ will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. This instruction must be used in conjunction with
HOME to perform homing for linear table (or other index-based) position
calibration.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-49

INXINT cont.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.

The value of the RTC argument is:

n : 08h

Mx4 cnC++ Host-Based Instruction Set

5-50

KILIMIT

FUNCTION Integral Gain Limit

SYNTAX KILIMIT(n, val1, ... , val4)

RTC CODE 74h

ARGUMENTS

n a single byte, bit coding the axes involved.
valx a single byte value specifying the limit of the integral action for

each axis.

Note: 0 <= val <= 14

val = 0 indicates no limit on integration channels
val = 14 indicates maximum limit on integration channels

For example,

Kilimit val = 0 +/- 10v DAC action from Ki control law parameter
Kilimit val = 1 +/- 5v DAC action from Ki control law parameter
Kilimit val = 2 +/- 2.5v DAC action from Ki control law parameter
Kilimit val = 3 +/- 1.25v DAC action from Ki control law parameter
 :
 :

DESCRIPTION

This command is used to set the limit for integral action related to the
choice of parx1 in the CTRL RTC. Integral limit is specified for each axis.
Default valx are set to 0 (i.e. no limit on integration channels).

SEE ALSO CTRL

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-51

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the channel's
depletion time. Using this instruction is essential where large integral
gain is required. Clamping the integral channel will let the system zero
position error without a lengthy "creeping motion" to its target position.

Command Sequence Example

CTRL () ;set gains
KILIMIT () ;this instruction may be used before or after CTRL

EXAMPLE

Set a maximum limit on the integral action of axis 2.

The values of the RTC arguments are:

n = 02h
val2 = 0Eh

Mx4 cnC++ Host-Based Instruction Set

5-52

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output

SYNTAX LOW_PASS (n, Freq1,, Freq4)

RTC CODE 8Eh

Note: This RTC code (8Eh) is the same as the one used with
NOTCH, therefore one option (either LOW_PASS or NOTCH)
can be used at any time.

ARGUMENTS

n bit coding of the only specified axis
freqx unsigned value specifying the low pass filter cut-off

frequency for axis x

0 ≤ freqx ≤1850

DESCRIPTION

This command implements a low pass filter at the controller output for
the specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

n
^
V

K f

K p

Kalman
Filter

K Limiti

to DAC
Output

Loop Gain

Low Pass

Filter

Fig. 4-2: Mx4 Block Diagram with Low Pass Filter

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-53

LOW_PASS cont.

The low pass filter implements the following transfer function:

G s
s s

n

n n
() =

+ ⋅ +

ω

ζω ω

2

2 22

where, ω πn nf= 2 , fn = cut-off frequency, and ζ= 0 6.

The frequency and bandwidth of the low pass filter is programmable.

Note: By programming a cut-off frequency of 0, the low pass filter for
the specified axis is disabled.

SEE ALSO none

LOW_PASS cont.

Mx4 cnC++ Host-Based Instruction Set

5-54

EXAMPLE: RTC Programming Low Pass

The LOW_PASS RTC uses the coded values for low pass frequency.
Table 4-1 shows these coded values. Use of the index table is only
necessary with RTCs.

Set a low pass filter at 275 Hz for axis 3.

The following shows the DPR's byte stream:

3c2 xxh ;command code
3c3 xxh ;axis 3
3c4 0Ah ;index to element 10 of frequency table (275 Hz)

FREQ (Hz) FREQ Index FREQ (Hz) FREQ Index

disable filter 0 750 24
50 1 800 25
75 2 850 26

100 3 900 27
125 4 950 28
150 5 1000 29
175 6 1050 30
200 7 1100 31
225 8 1150 32
250 9 1200 33
275 10 1250 34
300 11 1300 35
325 12 1350 36
350 13 1400 37
375 14 1450 38
400 15 1500 39
425 16 1550 40
450 17 1600 41
475 18 1650 42
500 19 1700 43
550 20 1750 44
600 21 1800 45
650 22 1850 46
700 23

Low Pass Filter Frequency Index

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-55

MAXACC

FUNCTION Maximum Acceleration

SYNTAX MAXACC(n, acc1, ... , acc4)

RTC CODE 71h

ARGUMENTS

n a single byte, bit coding the axes involved.
accx 16 bit unsigned value specifying the maximum acceleration /

deceleration for axis x.

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

DESCRIPTION

This command specifies the maximum acceleration / deceleration for the
axes specified. The maximum acceleration values are used with the
VELMODE and STOP RTCs.

Note: MAXACC command will be ignored if the specified argument
is zero.

SEE ALSO STOP, VELMODE

APPLICATION

This command sets the maximum acceleration affordable by servo drive
and motor combination. It is useful to program this parameter such that
the system will not go to control saturation during the VELMODE or
STOP command.

Mx4 cnC++ Host-Based Instruction Set

5-56

MAXACC cont.

Command Sequence Example

MAXACC () ;make sure system can be stopped
CTRL () ;set gains
KILIMIT ()
.
.
AXMOVE () ;run system in axis move
VELMODE () ;run system in velocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200µsec)2.

(0.25) × 215 = 2000h

The values of the RTC arguments are:

n : 06h
acc2 : 2000h
acc3 : 2000h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-57

MCENBL

FUNCTION Motion Complete Interrupt

SYNTAX MCENBL(n)

RTC CODE 65h

ARGUMENTS

n a single byte, bit coding the axes involved.

DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any motion
comes to a stop. The DPR interrupt status register locations 000h and
005h record the occurrence and source of this interrupt. Bit 1 of DPR
locations 3FEh, 7FEh is also set.

Note: Motion complete interrupt is not disabled after it occurs. The
host is responsible for disabling the interrupt.

SEE ALSO DISABL

APPLICATION

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z axes
will start moving only when the x-y table has moved to a target position.

Mx4 cnC++ Host-Based Instruction Set

5-58

MCENBL cont.

Command Sequence Example

See AXMOVE and STOP

EXAMPLE

Enable the motion complete interrupt for all four axes.

The value of the RTC argument is:

n : 0Fh

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-59

MTURN

FUNCTION Multi-Turn Position Reporting

SYNTAX MTURN(n, m1, ... , m4)

RTC CODE 82h

ARGUMENTS

n a single byte, bit coding the axes involved.
mx a positive 16 bit value specifying the multi-turn base in

encoder counts.

0 ≤ mx ≤ 32768

DESCRIPTION

Multi-turn position reporting for each axis is available in DPR locations
097h - 0A6h (see Parameter Updates, Dual Port RAM Partitioning).
This command allows the multi-turn base for specified axes to be
programmed.

Multi-turn positions are calculated as offsets from position 0 described
in terms of the number of turns and fraction of complete turn (described
in terms of encoder counts) to reach the current actual position value.
The multi-turn base is defined as the number of encoder counts per one
'multi-turn' turn.

For example, with a multi-turn base of 1000 encoder counts and an
actual position of -32,555 counts, the multi-turn position values in the
DPR will yield:

MTURN : -32
MFRAC : -555

SEE ALSO none

Mx4 cnC++ Host-Based Instruction Set

5-60

MTURN cont.

APPLICATION

This command will change the numerical base for the position of an axis
to a programmable value. For example, in spindle applications, the
number of turns (integer as well as fractional part) can be recorded. That
is, position may be monitored as a function of the shaft's angular
position.

Command Sequence Example

MAXACC () ;make sure system can be stopped
CTRL () ;set gains
KILIMIT ()
.
.
AXMOVE () ;run system in axis move (linear trapezoidal) mode
MTURN ()

EXAMPLE

Set a multi-turn base of 1000 encoder counts for axis 2.

The values of the RTC arguments are:

n : 02h
m2 : 03E8h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-61

NOTCH (option)

FUNCTION Implement Notch Filter at Controller Output

SYNTAX NOTCH(n, freq1, q1,, freq4, q4)

RTC CODE 8Eh

Note: This RTC code (8Eh) is the same as the one used with
LOW_PASS, therefore one option (either NOTCH or
LOW_PASS) can be used at any time.

ARGUMENTS

n bit coding of the only specified axis
freqx unsigned value specifying the notch filter frequency for

axis x

0 ≤freqx ≤ 1650 Hz

qx unsigned value specifying the notch filter quality factor
for axis x

qx = 1 ~25% bandwidth filter
qx = 2 ~10% bandwidth filter

Mx4 cnC++ Host-Based Instruction Set

5-62

NOTCH cont.

DESCRIPTION

This command implements a notch filter at the controller output for the
specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

n
^
V

K f

K p

Kalman
Filter

K Limiti

to DAC
Output

Loop Gain

Notch

Filter

Mx4 Block Diagram with Notch Filter

The notch filter implements the transfer function:

G s
s

s s

n
n

Q n

() =
+

+ +

2 2

2 2

ω

ωω

where, ω πn nf= 2 and fn = notch frequency

The frequency and bandwidth of the notch is programmable.

Note: By programming a notch frequency of 0, the notch filter for the
specified axis is disabled.

SEE ALSO none

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-63

NOTCH cont.

EXAMPLE: RTC Programming Notch

The NOTCH RTC uses the coded values for both notch frequency and
notch quality factor, q. Table 4-1 shows these coded values. Use of the
index table is only necessary with RTCs.

Set a notch filter at 290 Hz with a wide bandwidth for axis 3.

The following shows the DPR's byte stream:

3c2 8Eh ;command code
3c3 04h ;axis 3
3c4 2Bh ;index to element 43 of freq table (290 Hz)
3c5 0 ;index to wide bandwidth notch filter

Mx4 cnC++ Host-Based Instruction Set

5-64

NOTCH cont.
FREQ (Hz) FREQ Index FREQ (Hz) FREQ Index

Disable notch 0 410 40
20 1 420 41
30 2 430 42
40 3 440 43
50 4 450 44
60 5 460 45
70 6 470 46
80 7 480 47
90 8 490 48

100 9 500 49
110 10 510 50
120 11 520 51
130 12 530 52
140 13 540 53
150 14 550 54
160 15 560 55
170 16 570 56
180 17 580 57
190 18 590 58
200 19 600 59
210 20 610 60
220 21 620 61
230 22 630 62
240 23 640 63
250 24 650 64
260 25 660 65
270 26 670 66
280 27 680 67
290 28 690 68
300 29 700 69
310 30 710 70
320 31 720 71
330 32 730 72
340 33 740 73
350 34 750 74
360 35 760 75
370 36 770 76
380 37 780 77
390 38 790 78
400 39 800 79

Notch Filter Frequency Index (continued on next page)

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-65

NOTCH cont.
FREQ (Hz) FREQ Index FREQ (Hz) FREQ Index

810 80 1210 120
820 81 1220 121
830 82 1230 122
840 83 1240 123
850 84 1250 124
860 85 1260 125
870 86 1270 126
880 87 1280 127
890 88 1290 128
900 89 1300 129
910 90 1310 130
920 91 1320 131
930 92 1330 132
940 93 1340 133
950 94 1350 134
960 95 1360 135
970 96 1370 136
980 97 1380 137
990 98 1390 138

1000 99 1400 139
1010 100 1410 140
1020 101 1420 141
1030 102 1430 142
1040 103 1440 143
1050 104 1450 144
1060 105 1460 145
1070 106 1470 146
1080 107 1480 147
1090 108 1490 148
1100 109 1500 149
1110 110 1510 150
1120 111 1520 151
1130 112 1530 152
1140 113 1540 153
1150 114 1550 154
1160 115 1560 155
1170 116 1570 156
1180 117 1580 157
1190 118 1590 158
1200 119 1600 159

Notch Filter Frequency Index (continued on next page)

Mx4 cnC++ Host-Based Instruction Set

5-66

NOTCH cont.

FREQ (Hz) FREQ Index

1610 160
1620 161
1630 162
1640 163
1650 164

Notch Filter Frequency Index

Quality Factor Quality Index

1 0
2 1

Notch Filter Quality Factor Index

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-67

OFFSET

FUNCTION Amplifier Offset Cancellation

SYNTAX OFFSET(n)

RTC CODE 5Fh

ARGUMENTS

n a single byte, bit coding the ONLY axis involved.

DESCRIPTION

This command minimizes the offset generated by the D/A converter.
Upon completion of offset tuning, an interrupt is generated to the host.
The condition is recorded in DPR interrupt status register location 009h.
The DPR status register location 00Ch will identify the axis responsible.
Bit 6 of DPR locations 3FEh, 7FEh is also set.

Note: OFFSET may be run with only one axis at a time. The status of
the remaining three axes is not affected by running OFFSET.

To run OFFSET, the following steps should be followed for the
corresponding axis:

1. The axis should be in closed loop with optimal gains set.
2. Ki must be non zero for the axis.
3. The axis should be 'stopped', with no motion commands in

progress.
4. Start OFFSET with the specified axis.
5. Offset adjust is complete when a host interrupt is

generated.

SEE ALSO CTRL

Mx4 cnC++ Host-Based Instruction Set

5-68

OFFSET cont.

APPLICATION

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET you may neutralize amplifier offset. To make this
happen, you must:

1. enable OFFSET for the axis whose offset is to be
neutralized.

2. use a non-zero Ki gain that maintains stability and zeros
position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel to the point that
position error is forced to zero. In absence of amplifier offset, the DAC
voltage that would have achieved zero position error is zero. Any non-
zero DAC value is due to an error caused by amplifier offset voltage.
MX4 measures the voltage, reports satisfactory completion of OFFSET
command (generates an interrupt) and uses this measured voltage value
to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine is turned on.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT () ;put system in a position loop, make sure integral

;gain is non-zero
.
.
OFFSET ()

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-69

OFFSET cont.

EXAMPLE

After verifying that OFFSET Steps 1-3 (see DESCRIPTION, above) have
been followed, do offset tuning for axis 3.

The value of the RTC argument is:

n : 04h

Mx4 cnC++ Host-Based Instruction Set

5-70

OUTGAIN

FUNCTION Output Loop Gain

SYNTAX OUTGAIN(n, m1, ... , m4)

RTC CODE 81h

ARGUMENTS

n a single byte, bit coding the axes involved.
mx a single byte to specify the gains.

m=0 gain=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gain=16

DESCRIPTION

This command is used to set the gain for the output of the position
loops. The default m is set to 0 (gain = 1).

Note: Please see block diagram on Page 4-19.

SEE ALSO CTRL

APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself as low gain. This may be compensated
for by a loop gain adjustment. In practice, this command may use an
argument greater than one if the encoder line number is less than 1000.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-71

OUTGAIN cont.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Program output loop gains of eight for axis 3 and two for axis 4.

The values of the RTC arguments are:

n = 0Ch
m3 = 03h
m4 = 01h

Mx4 cnC++ Host-Based Instruction Set

5-72

OUTREL

FUNCTION Output Relay

SYNTAX OUTREL(n, rl1, ... , rl4)

RTC CODE 59h

ARGUMENTS

n a single byte, bit coding the axes involved.
rlx a single byte, bit mapping the outputs for axis x.

bit=0 active-LOW output
bit=1 active-HIGH output

bit 7 unused
bit 6 unused
bit 5 unused
bit 4 unused
bit 3 unused
bit 2 OUT2 output for axis x general purpose output 3
bit 1 OUT1 output for axis x general purpose output 2
bit 0 OUT0 output for axis x general purpose output 1

Note: The general purpose outputs (1-3) are mapped to axis 4 (i.e.,
n=08h).

DESCRIPTION

This command allows the status of all outputs to be set.

SEE ALSO DISABORT, ENABORT

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-73

OUTREL cont.

APPLICATION

This command can be used for general purpose logical output
operation.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Generate an active-HIGH signal on general purpose output 1.

The arguments for this instruction will be:

n : 08h
rl3 : 01h

Mx4 cnC++ Host-Based Instruction Set

5-74

PARREAD

FUNCTION Parameter Readback

SYNTAX PARREAD(m)

RTC CODE 5Eh

ARGUMENTS

m a byte which indicates the parameters to echo.

m=10h axis 1 position loop gain values
m=11h axis 2 position loop gain values
m=12h axis 3 position loop gain values
m=13h axis 4 position loop gain values
m=14h Ki limit value
m=15h position loop output gain values
m=16h maximum acceleration
m=17h enabled interrupt
m=18h mode of operation
m=19h following error and halt interrupt setpoint
m=1Ah following error interrupt setpoint
m=1Bh axis 1 and 2 position breakpoint interrupt setpoint
m=1Ch axis 3 and 4 position breakpoint interrupt setpoint
m=1Dh buffer breakpoint interrupt setpoint and contouring

block transfer rate
m=1Eh enabled limit switch interrupt
m=1Fh multi-turn base values
m=20h abort maximum acceleration
m=21h master/slave status
m=22h output relay status
m=23h logic state of inputs

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-75

PARREAD cont.

DESCRIPTION

Upon the execution of this command, Mx4 cnC++ echoes the
desired parameters to DPR locations 0B8h - 0BFh. "m" is
echoed to DPR location 0B7h if the parameters are ready in the
DPR. Parameters may take more than 5ms to echo back to the
DPR. Host can use the following algorithm:

1. write m to DPR location 3C3h
2. write 0 to DPR location 0B7h
3. write RTC command code to DPR location 3C2h
4. poll DPR location 0B7h until m is echoed
5. read the data from DPR location 0B8h - 0BFh

DATA FORMAT

For each type of parameter, DPR locations 0B8h - 0BFh are interpreted
differently. The following shows the format for each type of parameter:

1. Position loop gains (m=10h - m=13h)

0B8h Ki low byte
0B9h Ki high byte
0BAh Kp low byte
0BBh Kp high byte
0BCh Kf low byte
0BDh Kf high byte
0BEh Kd low byte
0BFh Kd high byte

Mx4 cnC++ Host-Based Instruction Set

5-76

PARREAD cont.

2. Ki limit (m=14h)

0B8h Ki limit for axis 1
0B9h Ki limit for axis 2
0BAh Ki limit for axis 3
0BBh Ki limit for axis 4
0BCh
 : not used
0BFh

Note: 0 ≤ Kilimit ≤ 14

3. Position loop output gain (m=15h)

0B8h m specified gains for axis 1
0B9h m specified gains for axis 2
0BAh m specified gains for axis 3
0BBh m specified gains for axis 4
0BCh
 : not used
0BFh

Note: 0 ≤ m ≤ 4

4. Maximum acceleration (m=16h)

0B8h low byte acceleration for axis 1
0B9h high byte acceleration for axis 1
0BAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2
0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
0BEh low byte acceleration for axis 4
0BFh high byte acceleration for axis 4

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-77

PARREAD cont.

5. Enabled interrupt (m=17h)

0B8h bit 0 codes buffer breakpoint interrupt
0B9h low nibble bit codes the following error and

halt interrupts, high nibble bit codes the
following error interrupts

0BAh low nibble bit codes the index pulse
interrupts, high nibble bit codes the position
breakpoint interrupts

0BBh low nibble bit codes the motion complete
interrupts, high nibble bit codes the probe
interrupts

0BCh low nibble bit codes the positive feedback
interrupts, high nibble bit codes the encoder
lost interrupts

0BDh
 : not used
0BFh

6. Mode of operation (m=18h)

0B8h low nibble bit codes the axes in axis move
operation

0B9h low nibble bit codes the axes in stop
operation

0BAh low nibble bit codes the axes in velmode
operation

0BBh low nibble bit codes the axes in contouring
operation

0BCh
 : not used
0BFh

Mx4 cnC++ Host-Based Instruction Set

5-78

PARREAD cont.

7. Following error and halt interrupt setpoint (m=19h)

0B8h low byte setpoint for axis 1
0B9h high byte setpoint for axis 1
0BAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2
0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
0BEh low byte setpoint for axis 4
0BFh high byte setpoint for axis 4

8. Following error interrupt setpoint (m=1Ah)

0B8h low byte setpoint for axis 1
0B9h high byte setpoint for axis 1
0BAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2
0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
0BEh low byte setpoint for axis 4
0BFh high byte setpoint for axis 4

9. Position breakpoint setpoint (m=1B for axes 1 and 2,
1Ch for axes 3 and 4)

0B8h low word low byte setpoint for axis 1 or 3
0B9h low word high byte setpoint for axis 1 or 3
0BAh high word low byte setpoint for axis 1 or 3
0BBh high word high byte setpoint for axis 1 or 3
0BCh low word low byte setpoint for axis 2 or 4

0BDh low word high byte setpoint for axis 2 or 4
0BEh high word low byte setpoint for axis 2 or 4
0BFh high word high byte setpoint for axis 2 or 4

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-79

PARREAD cont.

10. Buffer breakpoint interrupt setpoint and contouring
block transfer rate (m=1Dh)

0B8h buffer breakpoint interrupt setpoint
0B9h = 00h : 2nd order contouring

= FFh : cubic spline contouring
0BAh low byte, block transfer rate
0BBh high byte, block transfer rate

(for cubic spline only)
0BCh
 : not used
0BFh

11. Enabled limit switch interrupt (m=1Eh)

(bit=1 indicates the corresponding interrupt is
enabled.)
0B8h echo m byte of ENABORT RTC for axis 1
0B9h byte bit-mapping the input enables for axis 1
0BAh echo m byte of ENABORT RTC for axis 2
0BBh byte bit-mapping the input enables for axis 2
0BCh echo m byte of ENABORT RTC for axis 3
0BDh byte bit-mapping the input enables for axis 3
0BEh echo m byte of ENABORT RTC for axis 4
0BFh byte bit-mapping the input enables for axis 4

12. Multi-turn base values (m=1Fh)

0B8h low byte base value for axis 1
0B9h high byte base value for axis 1
0BAh low byte base value for axis 2
0BBh high byte base value for axis 2
0BCh low byte base value for axis 3
0BDh high byte base value for axis 3
0BEh low byte base value for axis 4
0BFh high byte base value for axis 4

Mx4 cnC++ Host-Based Instruction Set

5-80

PARREAD cont.

13. Abort maximum acceleration (m=20h)

0B8h low byte acceleration for axis 1
0B9h high byte acceleration for axis 1
0BAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2
0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
0BEh low byte acceleration for axis 4
0BFh high byte acceleration for axis 4

14. Master/Slave status (m=21h)

0B8h =00h, configured as Master
=11h, configured as Slave

0B9h
 : not used
0BFh

15. Output relay status (m=22h)

0B8h low nibble : bit codes OUT0
high nibble : bit codes OUT1

0B9h not used
0BAh bit 7 : OUT3(4)

bit 6 : OUT4(4)
bit 5-4 : not used
bit 3 : OUT2(4)
bit 2-0 : not used

0BBh not used
0BCh bit 7 : RL2

bit 6 : RL1
bit 5-0 : not used

0BDh
 : not used
0BFh

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-81

PARREAD cont.

16. Logic state of inputs (m=23h)

0B8h not used
0B9h echo inp1 byte of INPSTATE RTC
0BAh not used
0BBh echo inp2 byte of INPSTATE RTC
0BCh not used
0BDh bit 7 : echo bit 5 of inp3 byte of

INPSTATE RTC
bit 6 : echo bit 4 of inp3 byte of

INPSTATE RTC
bit 0-5 : not used

0BEh not used
0Bfh not used

SEE ALSO none

APPLICATION

This command can be used as a diagnostic tool to monitor all system
parameters.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Verify the gains settings for axis 2 by instructing Mx4 cnC++ to echo
the values to the DPR with a PARREAD command.

The value of the RTC argument is:

m = 11h

Mx4 cnC++ Host-Based Instruction Set

5-82

POSBRK

FUNCTION Position Breakpoint Interrupt

SYNTAX POSBRK(n, pos1, ... , pos4)

RTC CODE 6Bh

ARGUMENTS

n a single byte, bit coding the axes involved.
posx 32 bit 2's complement position breakpoint value for axis x.

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position, for a specified axis, passes the programmed breakpoint.
The DPR interrupt status register locations 000h and 004h record the
occurrence and source of this interrupt. Bit 1 of DPR locations 3FEh,
7EFh is also set.

Note: The position breakpoint is calculated as an absolute distance
from the present position (position at the moment at which the
POSBRK RTC is interpreted) to the position breakpoint value
entered. The breakpoint interrupt is set when the axis in
question travels (in either direction) a distance equal to the
calculated absolute distance.

Note: Position breakpoint interrupt is automatically disabled after the
breakpoint interrupt is generated. To activate this interrupt
again, the host must issue a new POSBRK command.

Note: HOME and HOMESFT commands will automatically disable
the position breakpoint interrupt. The user is responsible to re-
enable the interrupt again.

SEE ALSO DISABL, HOME, HOMESFT

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-83

POSBRK cont.

APPLICATION

This instruction may be used in applications such as robotics, indexing
machine tools, etc. The CPU must be notified that the system has
passed an intermediate position. Based on this interrupt, the CPU will
execute a task. For example, in a robotics painting application, the paint
mixture may have to change based on the robot's arm location.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Enable a breakpoint interrupt with a value of 60,000 counts for axis 1 and
500,000 for axis 2.

The values of the RTC arguments are:

n : 03h
pos1 : 0000EA60h
pos2 : 0007A120h

Mx4 cnC++ Host-Based Instruction Set

5-84

POSFEED

FUNCTION Enable Positive Feedback Interrupt

SYNTAX POSFEED(n)

RTC CODE 5Bh

ARGUMENTS

n a single byte, bit coding the axes involved.

DESCRIPTION

This command enables the positive feedback loop interrupt for the
specified axes. Positive feedback interrupt is generated if the following
conditions are met (for the axis in question):

1. following error is > 2000 counts
2. one of the possible error cases listed below is met
3. the above two conditions hold for 0.3 seconds

Possible Error Cases:

A. command position values increasing, actual position
values decreasing

B. command position values decreasing, actual position
values increasing

Note: The following cases are allowed due to possible friction-related
motion characteristics:

A. command position values increasing, actual position
values unchanged

B. command position values decreasing, actual position
values increasing

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-85

POSFEED cont.

The DPR interrupt status locations 009h and 00Ah record the
occurrence and source of this interrupt. Bit 6 of DPR locations 3FEh,
7EFh is also set.

SEE ALSO DISABL2

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the positive feedback loop interrupt for all four axes.

The value of the RTC argument is:

n : 0Fh

Mx4 cnC++ Host-Based Instruction Set

5-86

PRBINT

FUNCTION General Purpose Interrupt

SYNTAX PRBINT(n, m)

RTC CODE 6Ch

ARGUMENTS

n a single byte, bit coding the \PRx echoed back to the DPR.
m byte which indicates the ONLY source of the interrupt signal.

m=1 : from \PR0
m=2 : from \PR1

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first \PRx pulse edge. The pulse edge results in the generation of
an interrupt, stop ALL the axes and registration of the actual position
for all axes in DPR location 0A7h-0B6h. (The hand shaking bytes are
0C8h and 0D0h for Mx4 cnC++ and host respectively.) An interrupt is
generated after an axis is stopped. The DPR interrupt status register
locations 000h and 006h record the occurrence and source (echo of
values n and m) of this interrupt. Bit 1 of DPR locations 3FEh, 7EFh is
also set.

Note: Only one general purpose probe interrupt can generate an
interrupt at any given time. The PRBINT command enables the
probe interrupt specified and automatically disables the
previous one (if any).

Note: General purpose probe interrupt and index pulse CAN BE
ENABLED simultaneously.

Note: Abort maximum acceleration must be set non-zero.

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-87

PRBINT cont.

SEE ALSO DISABL, ABORTACC

APPLICATION

This instruction is useful in probing applications. Since PRBINT
registers all positions when an interrupt occurs (falling pulse edge is
detected) and brings all axes to a stop, it can be used in accurate
recording of surface dimensions by a probe.

Command Sequence Example

ABORTACC () ;make sure that system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT ()
.
.
PRBINT ()

EXAMPLE

Enable the \PR2 probe interrupt.

The values of the RTC arguments are:

n : 02h
m : 02h

Mx4 cnC++ Host-Based Instruction Set

5-88

RESET

FUNCTION Reset MX4

SYNTAX RESET(AAh, AAh)

RTC CODE 72h

ARGUMENTS

AAh reset signature byte.

DESCRIPTION

This command brings the servo controller card back to power-up state.
Upon Mx4 cnC++'s reset completion, a host interrupt is generated via
bit 4 of DPR locations 3FEh, 7FEh.

SEE ALSO none

APPLICATION

From time to time all systems may have to be software reset to allow for
an initialization.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Reset the Mx4 cnC++ controller card.

The arguments of RESET are AAh, AAh (2 bytes).

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-89

START

FUNCTION Start Contouring Motion

SYNTAX START(n)

RTC CODE 6Dh

ARGUMENTS

n a single byte, bit coding the axes involved.

DESCRIPTION

This command starts the motion (simultaneously) for the specified axes
included in 2nd order and cubic spline contouring. START applies to
contouring only.

Note: START RTC will be ignored if contouring is in progress.

SEE ALSO STOP, VECCHG

APPLICATION

This command must be used in all 2nd order and ring buffer cubic spline
contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only
This command can be overwritten by VECCHG which redefines the
axes involved in the contouring process. For example, START starts
the contouring of axes 1, 3, and 4. If in the course of contouring, a
VECCHG is received (with argument) specifying axes 1, 2, and 3, the
new contouring points in the ring buffer will be used for the newly
defined axes. Please also see VECCHG.

Mx4 cnC++ Host-Based Instruction Set

5-90

START cont.

Command Sequence Example

. ;load ring buffer with positions and velocities

.
MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
BTRATE () ;set block transfer rate
BBINT () ;set the breakpoint in the ring buffer
.
.
START () ;start contouring

EXAMPLE

Start contouring motion in axes 2 and 3.

The values of the RTC argument is:

n : 06h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-91

STOP

FUNCTION Stop Motion

SYNTAX STOP(n)

RTC CODE 6Eh

ARGUMENTS

n a single byte, bit coding the axes involved.

DESCRIPTION

This command stops the motion of all specified axes simultaneously. To
stop motion, the servo control card uses the programmed values for
maximum acceleration / deceleration. Upon receipt of this command the
servo controller aborts the current command. The host is responsible
for clearing the ring buffer of any remaining commands if the axis(es)
stopped was involved in contouring motion.

Note: An emergency stop signal, ESTOP/, will perform a hardware
stop. This is an open collector input signal which is active low
and is shared between all of the controller cards.

Note: STOP command will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g. MAXACC not issued).

If an axis is halting to a stop via a previously executed STOP RTC or
active ESTOP input, MX4 will ignore any motion commands (AXMOVE,
START or VELMODE) and will report an "RTC Command Ignored"
interrupt to the host if such a command is received by Mx4 cnC++ for an
axis that is not yet halted. The above motion commands should not be
sent to Mx4 cnC++ for a halting axis until the axis motion has come to a
stop.

Mx4 cnC++ Host-Based Instruction Set

5-92

STOP cont.

SEE ALSO AXMOVE, MAXACC, START

APPLICATION

For all applications involving bringing speed to zero (0) in the quickest
possible manner.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
BTRATE () ;set block transfer
BBINT () ;set the breakpoint in the ring buffer
.
.
STOP () ;stop the motion
. ;upon completion of stop (command) trajectory
. ;Mx4 cnC++ generates motion complete interrupt

EXAMPLE

Bring the motion of axes 1 and 4 to a halt.

The value of the RTC argument is:

n : 09h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-93

SYNC

FUNCTION Master / Slave Select

SYNTAX SYNC(m)

RTC CODE 87h

ARGUMENTS

m a byte that selects the Master / Slave status of the Mx4 cnC++
board.

m=0 : Mx4 cnC++ is configured as a Master
m≠0 : Mx4 cnC++ is configured as a Slave

DESCRIPTION

If more than one Mx4 cnC++ card is to be used in a system and card-to-
card synchronization is required, the SYNC RTC should be used. The
SYNC RTC allows multiple Mx4 cnC++ cards to operate in
synchronization within a system by specifying a single Master and the
remaining card(s) as Slaves. SYNC establishes the Mx4 cnC++ card as
either a Master or Slave in a multiple card system. If only one (1) Mx4
cnC++ is used in a host computer system, that Mx4 cnC++ must be
configured as a Master.

Note: Mx4 cnC++ powers-up and resets to a default Master status.

In addition to configuring the Mx4 cnC++ cards via the SYNC RTC (for
multiple card systems), a cable jumper must be included on the J5
connector of each of the boards. The cable must be wired such that the
MASTER signal from the Master Mx4 cnC++ connects to the SLAVE
signal of each of the Slave Mx4 cnC++(s).

Mx4 cnC++ Host-Based Instruction Set

5-94

SYNC cont.

SEE ALSO none

APPLICATION

This command is used in applications where tight coordination of more
than four axes is required. This command essentially slaves several
MX4 cnC++ MB-IO cards to a single master MX4 cnC++ MB-IO.
Applications involving many axes contouring may benefit from this
command.

Command Sequence Example

This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e., the card is
initialized as a Master).

EXAMPLE

To initialize a card as Slave

m : 01h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-95

VECCHG

FUNCTION 2nd Order Contouring Vector Change

SYNTAX VECCHG(n, m)

RTC CODE 6Fh

ARGUMENTS

n a single byte, bit coding the axes involved.
m 8 bit positive value which represents the buffer position (in 8

byte offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include only
those axes coded by n.

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

Note: 3 buffer levels are used to implement this instruction.

SEE ALSO START

APPLICATION

See START.

Mx4 cnC++ Host-Based Instruction Set

5-96

VECCHG cont.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
BTRATE () ;set the block transfer rate
BBINT () ;set the buffer breakpoint interrupt
.
.
START () ;start contouring for a selected number of axes
. ;based on buffer breakpoint interrupt transfer more
. ;points
VECCHG () ;use points in ring buffer for a new set of axes

EXAMPLE

Begin contouring in axes 1, 2, and 3 after the 23rd segment move
command of the ring buffer.

The values of the RTC arguments are:

n : 07h
m : 17h

Mx4 cnC++ Host-Based Instruction Set

Mx4 cnC++ User’s Guide v1.1 5-97

VELMODE

FUNCTION Velocity Mode

SYNTAX VELMODE(n, vel1, ... , vel4)

RTC CODE 70h

ARGUMENTS

n a single byte, bit coding the axes involved.
velx 32 bit 2's complement velocity value for axis x.

Note: Velocity is represented by a 27 bit 2's complement number
which is sign extended to 32 bits. Velocity is partitioned as 16
bits integer, 16 bits fraction.

DESCRIPTION

Upon the execution of this command a velocity loop for the specified
axes will be closed. The velocity loop uses the same gains as those
specified using the control law command. Velocity mode uses the
maximum acceleration / deceleration value to accelerate or decelerate to
the desired velocity.

Note: VELMODE command will be ignored if the maximum
acceleration / deceleration is equal to zero (e.g. MAXACC not
issued).

Note: In order to obtain units of encoder edge counts / 200µsec, the
host must use a division factor as specified:

Mx4 cnC++ 816
VECTOR4 installed 840

SEE ALSO MAXACC

Mx4 cnC++ Host-Based Instruction Set

5-98

VELMODE cont.

APPLICATIONS

This instruction is useful in all general purpose velocity control
applications. Please remember that although VELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, MX4 continually tries to zero the position error.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()
.
.
VELMODE ()

EXAMPLE

Engage axis 2 in velocity mode with a velocity of 3.71 counts/200µsec.

The values of the RTC arguments are:

n : 02h
vel2 : 0003B5C3h

Mx4 cnC++ User’s Guide v1.1 6-1

6 Mx4 cnC++ Host-Based
Programming

Mx4 cnC++ - Host Communication

The host communicates with the PC/AT Mx4 cnC++ through the host computer
ISA bus. The communication takes place across a Dual Port RAM (DPR) buffer
on the Mx4 cnC++ card (see Fig. 6-1). Through this buffer, the host may read
system state variables such as position and velocity, interrupt internal Mx4
cnC++ parameters, write real time instructions to the Mx4 cnC++ card, monitor
the interrupt status of Mx4 cnC++ and much more.

Host

Computer

Mx4 cnC++

Dual Port

RAM

Mx4 cnC++

Algorithms

ISA Bus

Fig. 6-1: Host - Mx4 cnC++ Dual Port RAM Interface

Mx4 cnC++ Host-Based Programming

6-2

Host - Mx4 cnC++ Interface

The host communicates with Mx4 cnC++ via a 2048 byte Dual Port RAM (DPR_.
This DPR is functionally split into seven blocks which are described below in
Table 6-1.

DPR
BLOCK

ADDRESS RANGE
DESCRIPTION

Status
Registers

000h - 08Dh The status register block includes Mx4 cnC++ card
status codes as well as interrupt source
information.

Hardware
Signature

08Eh - 093h These bytes code, in ASCII, the hardware
platform (PC/AT, Multibus or VME), hardware
options (with I/O or standard configuration), and
the board's revision number.

Parameter
Updates

094- 114h System parameters such as actual position,
following error and actual velocity are available
for the host to read in this block.

Signature
Window

115h - 11Fh The Mx4 cnC++ card writes a signature using
ASCII codes to the signature window at power-up.
The host may check for this signature to verify
installation of a Mx4 cnC++ card.

2nd Order
Contouring
Ring Buffer

120h - 3C1h This block of the DPR is reserved for 2nd order
contouring motion or coordinated move data
points. The host downloads data to Mx4 cnC++
via this "ring buffer".

Cubic Spline
Contouring
Ring Buffer

400h - 7F1h This block of the DPR is reserved for cubic spline
contouring motion data points. The host
downloads data to Mx4 cnC++ via this “ring
buffer”.

RTC
Window

3FCh - 3FFh
7FEh, 7FFh

This window in the DPR serves as a buffer for the
host to send RTCs to Mx4 cnC++.

Interrupt
Registers

3FCh - 7FFh This block is used in the setting and re-setting of
hardware interrupts to the host.

Table 6-1: Mx4 cnC++ Dual Port RAM Blocks

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-3

Communication Protocols

In order to maintain a healthy communication interface between the host and
Mx4 cnC++, some simple communication protocols must be adhered to by the
host.

Each location in the DPR is labeled (see Mx4 cnC++ Dual Port RAM
Organization) with two read/write access codes. One code for the host, one for
Mx4 cnC++. The access codes are:

RO : read only access
WO : write only access
RW : read and write access

These "restrictions" are enforced only by convention in the host and Mx4 cnC++
software. They are included to help the user understand how the various
locations in the DPR are used by both the host and Mx4 cnC++.

Much of the data in the DPR that the host and Mx4 cnC++ must read or write is
multi-byte data (such as 32-bit actual position values) and thus requires multi-
address accesses to the DPR. In order to ensure that multi-byte values are not
corrupted by unsynchronized accesses, many DPR 'windows' are protected via
'access bytes'. See Fig. 6-3.

Mx4 cnC++ Host-Based Programming

6-4

Mx4 cnC++ Access Byte

Host Access Byte

Mx4 cnC++

Dual Port RAM

"Window"

Fig. 6-3: Mx4 cnC++ Dual Port RAM Access Bytes

Each 'window' includes both a host access byte and a Mx4 cnC++ access byte
which are used to control access to the window. A more detailed explanation of
how to use these bytes is offered in the Mx4 cnC++ Dual Port RAM
Organization section and will be discussed further in Communication Protocols
Revisited.

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-5

Mx4 cnC++ Dual Port RAM Organization

The 2 Kbyte DPR is partitioned as follows in Table 6. (The names given to
individual bytes and groups of data are for reference only.)

Status Registers (locations 000h - 08Dh)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

 The status register bytes indicate the interrupt status of Mx4 cnC++. Mx4 cnC++ updates
or writes to these locations in an OR fashion. Thus, Mx4 cnC++ does not reset interrupt
status bits. The host, after reading or recognizing an interrupt status register must reset
bits at its own discretion.

DSPSTAT1 000h RW RW Mx4 cnC++ status register for
interrupts. Polled by the host to
determine internal Mx4 cnC++
status.

bit 0: following error halt and
interrupt

bit 1: following error interrupt

bit 2: index pulse interrupt

bit 3: position breakpoint
interrupt

bit 4: motion complete
interrupt

bit 5: probe signal interrupt

bit 6: conflicting commands
(ignore the new motion-
related command and
send an interrupt)

bit 7: RTC command is ignored
because STOP is in
progress

Table 6: Dual Port RAM Status Registers (continued on next page)

Mx4 cnC++ Host-Based Programming

6-6

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

DSPSTAT2 009h RW RW Mx4 cnC++ status register for
register for to determine internal
Mx4 cnC++. status.

bit 0: positive feedback
interrupt

bit 1: encoder lost interrupt

bit 2: offset cancel finished

bit 3: inputs (limit switch/fault)
interrupt

bits 4-7: not used

 The INTAXIS bytes code the source(s) of the interrupt(s) by setting a bit(s) (unless
otherwise noted):

bit 0: axis 1

bit 1: axis 2

bit 2: axis 3

bit 3: axis 4

bits 4-7: not used

INTAXIS 001h RW RW source of following error and
halt interrupt

INTAXIS 002h RW RW source of following error
interrupt

INTAXIS 003h RW RW source of index pulse interrupt

INTAXIS 004h RW RW source of position breakpoint
interrupt

INTAXIS 005h RW RW source of motion complete
interrupt

INTAXIS 006h RW RW source of probe signal interrupt
low nibble : echo m
high nibble : echo n

INTAXIS 007h RW RW source of conflicting commands
interrupt

INTAXIS 008h RW RW source of RTC command ignored
because STOP is in progress

INTAXIS 00Ah RW RW source of positive feedback
interrupt

INTAXIS 00Bh RW RW source of encoder loss interrupt

INTAXIS 00Ch RW RW source of offset cancel finished

INTAXIS 00Dh RW RW source of limit switch/fault
interrupt

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-7

reserved 00Eh-08Dh - - unused locations

Table 6 Cont.: Dual Port RAM Status Registers

Hardware Signature Window (locations 08Eh - 093h)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

SIGNATURE 08Eh WO RO Bus designator byte:

ASCII "P" : PC/AT

ASCII "M" : Multibus

ASCII "V" : VME

SIGNATURE 08Fh WO RO Hardware option byte:

ASCII "I" : I/O

integer 0 : standard
configuration

SIGNATURE 090h WO RO Revision byte:

ASCII "A" : revision A

ASCII "B" : revision B

etc.

SIGNATURE 091h - 093h WO RO reserved for future options ...

currently unused

Fig. 7: Dual Port RAM Hardware Signature Window

Mx4 cnC++ Host-Based Programming

6-8

Parameter Updates (locations 094h - 114h)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

LIMSW 094h WO RO limit switch 0, 1 status (real time) A set
bit indicates active:

bit 0: axis 1 + O.T.

bit 1: axis 2 + O.T.

bit 2: axis 3 + O.T.

bit 3: axis 4 + O.T.

bit 4: axis 1 - O.T.

bit 5: axis 2 - O.T.

bit 6: axis 3 - O.T.

bit 7: axis 4 - O.T.

reserved 095h - - unused location

FAULT 096h WO RO fault status (real time). A set bit
indicates active:

bit 0-3: not used

bit 4: Gen. Purpose Input 4

bit 5: Gen. Purpose Input 5

bits 6-7: not used

MFRAC1 097h - 098h WO RO axis 1 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN1 099h - 09Ah WO RO axis 1 multi-turn # turns LSB, MSB (16
but two's complement)

MFRAC2 09Bh - 09Ch WO RO axis 2 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN2 09Dh - 09Eh WO RO axis 2 multi-turn # turns LSB, MSB (16
but two's complement)

MFRAC3 09Fh -0A0h WO RO axis 3 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN3 0A1h - 0A2h WO RO axis 3 multi-turn # turns LSB, MSB (16
but two's complement)

MFRAC4 0A3h - 0A4h WO RO axis 4 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN4 0A5h - 0A6h WO RO axis 4 multi-turn # turns LSB, MSB (16
but two's complement)

PRB10-3 0A7h - 0AAh WO RO axis 1 probe interrupt position
LSB,...,MSB (32 bit two's complement)

PRB20-3 0ABh - 0AEh WO RO axis 2 probe interrupt position
LSB,...,MSB (32 bit two's complement)

Table 8: Dual Port RAM Parameter Updates (cont. on next page)

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-9

PRB30-3 0AFh - 0B2h WO RO axis 3 probe interrupt position
LSB,...,MSB (32 bit two's complement)

PRB40-3 0B3h - 0B6h WO RO axis 4 probe interrupt position
LSB,...,MSB

(32 bit two's complement)

PARACC 0B7h WO RW Parameter readback window m echo

PARRDBK 0B8h - 0BFh WO RO Parameter readback window (see
PARREAD RTC description)

reserved 0C0h - 0C2h - - unused locations

he M4ACC bytes are used as access flags. When the Mx4 cnC++ needs to access a parameter update window, it
sets the corresponding M4ACC byte to 01h. The host must test these flags to see if values can be written to or
read from the parameter window in question.

M4ACC=00h : Mx4 cnC++ is not using window. Host may set corresponding
HOSTACC=01h and may access window.

M4ACC=01h : Mx4 cnC++ is using window. Host must wait until this byte is cleared
before accessing the window in question.

M4ACC 0C3h WO RO Mx4 cnC++ is using 0D3h - 0E2h
window

M4ACC 0C4h WO RO Mx4 cnC++ is using 0E3h - 0F2h
window

M4ACC 0C5h WO RO Mx4 cnC++ is using 0F3h - 102h
window

M4ACC 0C6h WO RO Mx4 cnC++ is using 103h - 112h
window

M4ACC 0C7h WO RO Mx4 cnC++ is using 113h - 114h
window

M4ACC 0C8h WO RO Mx4 cnC++ is using 0A7h - 0B6h
window

M4ACC 0C9h WO RO Mx4 cnC++ is using 097h - 0A6h
window

M4ACC 0CAh WO RO unused location

he HOSTACC bytes are used as access flags. When the host needs to access a parameter update window, it sets
the corresponding HOSTACC byte to 01h. The Mx4 cnC++ will test these flags to see if values can be written
to or read from the parameter window in question.

HOSTACC=00h : Host is not using window. Mx4 cnC++ may set corresponding M4ACC=01h
and may access window.

HOSTACC=01h : Host is using window. Mx4 cnC++ must wait until this byte is cleared
before accessing the window in question.

Table 8 cont.: Dual Port RAM Parameter Updates (cont. on next page)

Mx4 cnC++ Host-Based Programming

6-10

HOSTACC 0CBh RO RW host is using 0D3h - 0E2h window

HOSTACC 0CCh RO RW host is using 0E3h - 0F2h window

HOSTACC 0CDh RO RW host is using 0F3h - 102h window

HOSTACC 0CEh RO RW host is using 103h - 112h window

HOSTACC 0CFh RO RW host is using 113h - 114h window

HOSTACC 0D0h RO RW host is using 0A7h - 0B6h window

HOSTACC 0D1h RO RW host is using 097h - 0A6h window

HOSTACC 0D2h RO RW unused location

See Chapter 4's Modes of Operation, State Variables for details concerning the format of position, velocity and
following error data.

POS10-3 0D3h - 0D6h WO RO axis 1 position LSB,...,MSB (32 bit
two's complete)

POS20-3 0D7h - 0DAh WO RO axis 2 position LSB,...,MSB (32 bit
two's complete)

POS30-3 0DBh - 0DEh WO RO axis 3 position LSB,...,MSB (32 bit
two's complete)

POS40-3 0DFh - 0E2h WO RO axis 4 position LSB,...,MSB (32 bit
two's complete)

In order to obtain units of encoder edge counts/sampling period for velocity, the host must use a division factor
(as specified in the VELMODE RTC description).

VEL10-3 0E3h - 0E6h WO RO axis 1 velocity LSB,...,MSB (32 bit
two's complement)

VEL20-3 0E7h - 0EAh WO RO axis 2 velocity LSB,...,MSB (32 bit
two's complement)

VEL30-3 0EBh - 0EEh WO RO axis 3 velocity LSB,...,MSB (32 bit
two's complement)

VEL40-3 0EFh - 0F2h WO RO axis 4 velocity LSB,...,MSB (32 bit
two's complement)

FE10-3 0F3h - 0F6h WO RO axis 1 following error LSB,...MSB (32
bit two's complement)

Table 8 cont.: Dual Port RAM Parameter Updates (cont. on next page)

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-11

FE20-3 0F7h - 0FAh WO RO axis 2 following error LSB,...MSB (32 bit
two's complement)

FE30-3 0FBh - 0FEh WO RO axis 3 following error LSB,...MSB (32 bit
two's complement)

FE40-3 0FFh - 102h WO RO axis 4 following error LSB,...MSB (32 bit
two's complement)

IND10-3 103h - 106h WO RO axis 1 index position LSB,...MSB (32 bit
two's complement)

IND20-3 107h - 10Ah WO RO axis 2 index position LSB,...MSB (32 bit
two's complement)

IND30-3 10Bh - 10Eh WO RO axis 3 index position LSB,...MSB (32 bit
two's complement)

IND40-3 10Fh - 112h WO RO axis 4 index position LSB,...MSB (32 bit
two's complement)

ENCSTAT 113h WO RO Status of encoders. A set bit indicates a
failure of the corresponding hardware
item:

bit 0: axis 1 encoder

bit 1: axis 2 encoder

bit 2: axis 3 encoder

bit 3: axis 4 encoder

MARKER Real time marker reporting (a set bit
indicates index pulse)

bit 4 : axis 1 index pulse

bit 5 : axis 2 index pulse

bit 6 : axis 3 index pulse

bit 7 : axis 4 index pulse

SERVOCHK 114h RW RO Servo check byte. Bit 0 is set if Mx4
cnC++ DSP internal stack is overflowed.
Then a system reset may be necessary.

Table 8 Cont.: Dual Port RAM Parameter Updates

Mx4 cnC++ Host-Based Programming

6-12

Signature Window (locations 115h - 11Fh)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

 The SIGNATURE bytes contain the ASCII code controller card signature. The signature
will be present if the card is operation correctly.

SIGNATURE 115h WO RO ASCII "M"

SIGNATURE 116h WO RO ASCII "X"

SIGNATURE 117h WO RO ASCII "4"

SIGNATURE 118h WO RO integer part of dsp1 software
version number

SIGNATURE 119h WO RO decimal part of dsp1 software
version number

SIGNATURE 11Ah WO RO ASCII "+"

SIGNATURE 11Bh WO RO integer part of dsp2 software
version number

SIGNATURE 11Ch WO RO decimal part of dsp2 software
version number

SIGNATURE 11Dh WO RO ASCII "+"

SIGNATURE 11Eh WO RO integer part of VECTOR4
version number

SIGNATURE 11Fh WO RO decimal part of VECTOR4
version number

 If VECTOR4 is not installed, DSP location 11Dh - 11Fh will be zero.

Table 9: Dual Port RAM Signature Window

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-13

2nd Order Contouring Ring Buffer
(locations 120h - 3C1h)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

RINGBUF 120h - 3BFh RO WO 672 byte ring buffer which
contains host contouring
commands (4 bytes position, 4
bytes velocity) to be processed
by the DSP .. The length of all
messages deposited by the host in
this buffer must be a multiple of
8 bytes.

INPTR 3C0h RO RW Pointer to the next free location
in RINGBUF that the host will
write to (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

OUTPTR 3C1h RW RO Pointer to the next location in
RINGBUF that Mx4 cnC++ will
read from (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

Table 10: Dual Port RAM Ring Buffer

Real Time Command (RTC) (locations 3C2h - 3FBh)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

RTC 3C2h RW RW Real time command byte. If this byte is
non-zero, Mx4 cnC++ will interpret it as
a command and execute it, using the
following locations as its arguments.
When execution is complete and Mx4
cnC++ is ready for the next command,
RTC will be set to zero.

ARGMNTS 3C3h - 3FBh RO WO 57 bytes of argument storage area. The
usage of this area depends on the real
time command to be executed. The host
must set up the argument area correctly
before writing a command code to RTC,
to ensure that Mx4 cnC++ reads the
arguments properly.

Table 11: Dual Port RAM Real Time Command (RTC)

Mx4 cnC++ Host-Based Programming

6-14

Interrupt Registers (locations 3FCh - 3FFh, 7FEh, 7FFh)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

MINTACC 3FCh RW RO A Mx4 cnC++ access flag byte.
When Mx4 cnC++ needs to
access location 3FEh, 7FEh or
the status registers window (000h
- 08Dh), it sets this byte equal to
01h. The host must test this flag
to see if values can be written to
or read from the window.

 Read accesses to location 3FEh and 7FEh do not require use of the MINTACC access byte
(due to its single byte status). All write accesses to 3FEh must use the MINTACC byte,
however. (See Handling Mx4 cnC++ Software/Hardware Interrupts)

HINTACC 3FDh RO RW A host access flag byte. When
the host needs to access location
3FEh, 7FEh or the status
registers window (000h - 08Dh),
it sets this byte equal to 01h.
Mx4 cnC++ must test this flag to
see if values can be written to or
read from the window.

HOSTINT1 3FEh RW RW HOSTINT1 is a duplicate of
HOSTINT2 (7FEh). Host
hardware interrupt setting and
resetting is done via HOSTINT2
(7FEh).

bit 0: interrupt source is buffer
breakpoint

bit 1: interrupt related to
DSPSTAT1 register

bit 2: ESTOP is detected

bit 3: vector change buffer is
overflown

bit 4: reset finished

bit 5: data run out in ring buffer
(abs[vel]>0)

bit 6: interrupt related to
DSPSTAT2 register

bit 7: unused

reserved 3FFh - - reserved

Table 12: Dual Port RAM Interrupt Registers (continued on next page)

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-15

HOSTINT2 7FEh RW RW When Mx4 cnC++ sets a bit(s) in
this location, a host `hardware'
interrupt will be generated. The
interrupt remains in force until
the host accesses this location.

bit 0: interrupt source is buffer
breakpoint

bit 1: interrupt related to
DSPSTAT1 register

bit 2: ESTOP is detected

bit 3: vector change buffer is
overflown

bit 4: reset finished

bit 5: data run out in ring buffer
(abs[vel]>0)

bit 6: interrupt related to
DSPSTAT2 register

bit 7: unused

DSPINT 7FFh RW WO When the lost sets a bit(s) in this
location, a Mx4 cnC++ interrupt
will be generated. The interrupt
remains in force until Mx4
cnC++ accesses this location.
This register currently not used.

Table 12 Cont.: Dual Port RAM Interrupt Registers

Cubic Spline Contouring Ring Buffer

Mx4 cnC++ Host-Based Programming

6-16

(locations 400h -7F1h)

ACCESS

NAME ADDRESS DSP HOST DESCRIPTION

RINGBUF 400h - 7EF RO WO 672 byte ring buffer which
contains host cubic spline
contouring commands (4 bytes
position, 4 bytes velocity) to be
processed by the DSP. The
length of all messages deposited
by the host in this buffer must be
a multiple of 8 bytes.

INPTR 7F0 RO RW Pointer to the next free location
in INGBUF that the host will
write to (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

OUTPTR 7F1 Rw RO Pointer to the next location in
INGBUF that Mx4 cnC++ will
read from (expressed as an
offset from the start of the
buffer in multiples of 8 bytes).

Table 13: Dual Port RAM Cubic Spline Contouring Ring Buffer

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-17

Communication Protocols Revisited

As is evident in Mx4 cnC++ Dual Port RAM Organization, many "windows" in
the DPR are protected with access bytes. Table 6-11 lists each of the protected
windows and its corresponding access bytes:

WINDOW WINDOW
DESCRIPTION

Mx4
ACCESS

BYTE

HOST
ACCESS

BYTE

000h - 08Dh,
3FEh, 7FEh

Interrupt and Status Registers 3FCh 3FDh

0D3h - 0E2h Actual Position 0C3h 0CBh

0E3h - 0F2h Actual Velocity 0C4h 0CCh

0F3h - 102h Following Error 0C5h 0CDh

103h - 112h Index Position 0C6h 0CEh

113h - 114h Encoder/Servo Status 0C7h 0CFh

0A7h - 0B6h Probe Position 0C8h 0D0h

097h - 0A6h Multi-Turn Position 0C9h 0D1h

Table 6-11: Access Bytes for DPR Windows

(It is noteworthy to remember that single byte values in the DPR are always
protected by the arbitration hardware built into the DPR.)

A typical protocol that a host would use to access a 'protected' window would
be:

1. Host writes 01h to the host access byte
2. Host polls the DSP access byte until it reads 00h
3. Host accesses window
4. When the host is finished with the window, host writes 00h to the host

access byte.

Following this convention when accessing the windows listed in the above table
ensures data integrity.

The RTC Window of the DPR is not protected with the access byte scheme,
however it does use a different access protocol. As will become evident in later
sections, Mx4 cnC++ checks for RTCs by looking for a host-written command
code in location 3C2h. If Mx4 detects a command code, it interrupts the RTC data

Mx4 cnC++ Host-Based Programming

6-18

and when finished, writes a zero to the RTC command code register (3C2h).
Therefore, the host knows it can send an RTC command code only when location
3C2h has a zero value and Mx4 knows there is an RTC to process when location
3C2h contains a non-zero command code. The host should follow a procedure
when writing RTCs to the DPR such as:

1. Host polls location 3C2h until it reads 00h
2. Host writes RTC data to locations 3C3h + as needed
3. Host writes RTC command code to location 3C2h

Handling Mx4 cnC++ Software / Hardware Interrupts

Mx4 cnC++ signals interrupts to the host computer through both hardware and
software. The host has the option of responding to "hardware" interrupts across
the bus via an interrupt source routine or simply polling for "software" interrupts
in the Mx4 cnC++ DPR.

Mx4 cnC++ signals interrupts to the host by setting a bit(s) in the DPR's 7FEh
location. This in turn, generates a hardware interrupt to the host via the bus
interrupt signals. The interrupt type and interrupt source information from Mx4
cnC++ is written to the Status Registers Block of the DPR via the DSPSTAT1,
DSPSTAT2 and INTAXIS registers.

The host may check for interrupts by "software" by polling location 7FEh for set
bits. An important exception to the communication protocols of the previous
section is made here: read accesses (or polling) to location 7FEh do not require
the use of the access bytes due to its single byte status. All host-write accesses
to 7FEh must, however, use the MINTACC access byte. If the host detects an
interrupt by polling 7FEh, it may interrogate the proper status registers
(remember to use the access bytes) for interrupt type and source information.

If the host incorporates an interrupt source routine responding to bus interrupt
signals, the access to 7FEh serves two purposes. First, an access to the 7FEh
location terminates the hardware interrupt. Second, the 7FEh byte bit codes some
interrupt source data which directs the host as to which status registers should
be interrogated for further interrupt type and source information. For example, if
an axis z motion complete interrupt occurs, bit 1 of location 7FEh (HOSTINT) is
set. The interrupt type is coded with a set bit 4 of DSPSTAT1 (000h). The source,
axis 2, is evident as bit 1 of location 005h is set.

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-19

Note: It is important to remember that Mx4 cnC++ does not reset
interrupt status register bits or 7FEh location bits. The host,
after reading or recognizing an 'interrupt' location must reset
bits of its own discretion.

Mx4 cnC++ Host Programming ... RTCs & Contouring

Mx4 cnC++ programming includes both contouring and RTC Mx4 cnC++ modes
of motion. Typical programming applications consist of a combination of
contouring and RTCs, and any combination of the two types of commands is
possible of the four axes.

Real-Time Commands

Real-Time Commands (RTCs) are sent to Mx4 cnC++ via the Real-Time Command
Window in the DPR (locations 3C3h to 3FBh). RTCs consist of a single byte
command code and an argument list. As was introduced in Communication
Protocols Revisited, the host should follow this procedure when writing RTCs to
the DPR:

1. Host polls location 3C2h until it reads 00h *
2. Host writes RTC arguments to locations 3C3h + (as needed)
3. Host writes RTC command code to location 3C2h (RTC command code

register)

Note: Mx4 cnC++ polls for RTCs by checking location 3C2h for a
valid command code. If a valid code is detected, Mx4 cnC++
interprets the RTC and writes 00h to location 3C2h. The host
should verify that Mx4 has executed a previously transmitted
RTC before writing another by checking the RTC command
code register for value 00h.

Mx4 cnC++ Host-Based Programming

6-20

When writing an RTC argument list to the RTC Window, the host must follow
these rules:

1. RTC argument list always starts at DPR location 3C3h.

2. RTC arguments must be written to the DPR in the order they appear as
arguments in the "ARGUMENTS" declaration of RTC listing (see Mx4
cnC++ Host-Based Programming Command Listing in Chapter 5).

3. When writing multi-byte value RTC arguments, write LSB to MSB order.

4. Argument lists for multi-axis RTCs must be written to the DPR in
increasing-axis-number order.

These rules are illustrated in the following examples that depict RTCs written to
the Mx4 cnC++ DPR Real-Time Command Window.

Note: DPR locations marked "xxh" or "not necessary" in the
following examples do not need to be written to (for the
examples in question). Mx4 cnC++ determines which locations
contain valid data via the command code and n argument (if
any).

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-21

Example 1

Preset axis 3 position to 00112233h.

Use the HOME RTC,

n : 04h
pset3 : 00112233h

The host must write to the following DPR locations as specified:

DPR
ADDRESS BYTE SYMBOL DESCRIPTION

03C2h 68h - RTC command code

03C3h 04h n single byte form

03C4h 33h pset3 low byte of low word

03C5h 22h pset3 high byte of low word

03C6h 11h pset3 low byte of high word

03C7h 00h pset3 high byte of high word

03C8h xxh - not necessary

: xxh - not necessary

03FBh xxh - not necessary

Mx4 cnC++ Host-Based Programming

6-22

Example 2

Assuming current positions of zero for axes 2 and 4, we want to move axis 2 to
the target position of 234567h and axis 4 to the target position of 112233h. Let's
also assume that we want this move to be accomplished with the slew rate
velocity of 200000h (200000h/216 counts/200 µsec) and acceleration of 150h
(150h/215 counts/(200 µsec)2) for both axes. The values for the data parameters
are:

Use the AXMOVE RTC,

n : 0Ah
acc2 : 0150h
pos2 : 00234567h
vel2 : 00200000h
acc4 : 0150h
pos4 : 00112233h
vel4 : 00200000h

The host must write to the following DPR locations as specified:

DPR
ADDRESS BYTE SYMBOL DESCRIPTION

03C2h 60h - RTC command code

03C3h 0Ah n single byte for n

03C4h 50h acc2 low byte

03C5h 01h acc2 high byte

03C6h 67h pos2 low byte of low word

03C7h 45h pos2 high byte of low word

03C8h 23h pos2 low byte of high word

03C9h 00h pos2 high byte of high word

03CAh 00h vel2 low byte of low word

03CBh 00h vel2 high byte of low word

03CCh 20h vel2 low byte of high word

03CDh 00h vel2 high byte of high word

03CEh 50h acc4 low byte

03CFh 01h acc4 high byte

03D0h 33h pos4 low byte of low word

03D1h 22h pos4 high byte of low word

03D2h 11h pos4 low byte of high word

03D3h 00h pos4 high byte of high word

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-23

03D4h 00h vel4 low byte of low word

03D5h 00h vel4 high byte of low word

03D6h 20h vel4 low byte of high word

03D7h 00h vel4 high byte of high word

03D8h xxh - not necessary

: xxh - not necessary

03FBh xxh - not necessary

Example 3

Set a following error interrupt at 100, 101, 102 and 103 counts for axes 1 through
4, respectively.

Use the FERINT RTC,

n : 0Fh
fer1 : 0064h
fer2 : 0065h
fer3 : 0066h
fer4 : 0067h

The host must write to the following DPR locations as specified:

DPR
ADDRESS BYTE SYMBOL DESCRIPTION

03C2h 67h - RTC command code

03C3h 0Fh n single byte for n

03C4h 64h fer1 low byte

03C5h 00h fer1 high byte

03C6h 65h fer2 low byte

03C7h 00h fer2 high byte

03C8h 66h fer3 low byte

03C9h 00h fer3 high byte

03CAh 67h fer4 low byte

03CBh 00h fer4 high byte

03CCh xxh - not necessary

: xxh - not necessary

03FBh xxh - not necessary

Mx4 cnC++ Host-Based Programming

6-24

Contouring

Contouring commands consist of segment move commands transferred from the
host to Mx4 cnC++ via the Contouring Ring Buffers [2nd order; DPR locations
120h to 3bfh, cubic spline; DPR locations 400h to 7EFh]. Each segment move
consists of a 32-bit position value and 32-bit velocity value for each axis included
in the contouring motion. The ring buffer size is (2nd order; 672 bytes) (cubic
spline; 1008 bytes), and thus will hold (2nd order; 84) (cubic spline; 126) segment
move [position, velocity] commands'.

Mx4 cnC++ performs either 2nd order or cubic spline interpolation on the 8-byte
segment move data points. The interpolation time interval is programmable via
the BTRATE (2nd order) or CUBIC_RATE (cubic spline) commands. The
segment move 'commands' are executed in sequence, with execution commencing
only when the previously commanded segment move is complete.

The following contouring discussion is specific to 2nd order contouring. With
reference to the cubic spline contouring ring buffer, the discussion is relevant to
cubic spline contouring.

Before beginning a contour, the 2nd order contouring ring buffer must first be
initialized with contouring points (segment move commands). The host must load
the segment move commands into the DPR in round-robin format. The following
rules must be followed when initializing the ring buffer with data.

1. Data should begin in the segment command data area indicated by the
value of the Mx4 cnC++ pointer OUTPTR, loaded at incrementing
addresses.

2. Position and velocity are interleaved, position first.

3. Multi-byte position and velocity are written to the ring buffer in LSB to
MSB format.

4. For multi-axis contouring, the position/velocity pairs for each axis
involved are interleaved, written to the ring buffer in increasing-axis-
number order.

5. Host should update the value of the host pointer INPTR to [offset of
last segment move command + 1].

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-25

Note: The ring buffer is structured such that the next byte after
location 3BFh is at location 120h; so the host must implement
a roll-over to 120h after location 3BFh when loading data to
the ring buffer (and/or a roll-over from 83 to 0 in the value of
host pointer INPTR).

These rules are illustrated in the two examples of Fig. 6-4.

Contouring with Axis 2
10 Contouring 'Points' Loaded To Ring Buffer

Contouring with Axes 1 and 3
10 Contouring 'Points' Loaded To Ring Buffer

INPTR → INPTR →
x+79 VEL, HH point #10 for axis 2 y+159 VEL, HH point #10 for axis 3

x+78 VEL, HL " y+158 VEL, HL "

x+77 VEL, LH " y+157 VEL, LH "

x+76 VEL, LL point #10 for axis 2 y+156 VEL, LL "

x+75 POS, HH point #10 for axis 2 y+155 POS, HH "

• y+154 POS, HL "

• y+153 POS, LH "

• y+152 POS, LL point #10 for axis 3

x+16 POS, LL point #3 for axis 2 y+151 VEL, HH point #10 for axis 1

x+15 VEL, HH point #2 for axis 2 y+150 VEL, HL point #10 for axis 1

x+14 VEL, HL " •
x+13 VEL, LH " •
x+12 VEL, LL " •
x+11 POS, HH " y+17 POS, LH point #2 for axis 1

x+10 POS, HL " y+16 POS, LL point #2 for axis 1

x+9 POS, LH point #2 for axis 2 y+15 VEL, HH point #1 for axis 3

x+8 POS, LL point #2 for axis 2 y+14 VEL, HL point #1 for axis 3

x+7 VEL, HH point #1 for axis 2 y+13 VEL, LH "

x+6 VEL, HL " y+12 VEL, LL "

x+5 VEL, LH " y+11 POS, HH "

x+4 VEL, LL " y+10 POS, HL "

x+3 POS, HH " y+9 POS, LH "

x+2 POS, HL point #1 for axis 2 y+8 POS, LL point #1 for axis 3

x+1 POS, LH point #1 for axis 2 y+7 VEL, HH point #1 for axis 1

addr x POS, LL point #1 for axis 2 ←OUTPTR y+6 VEL, HL "

y+5 VEL, LH "

y+4 VEL, LL "

y+3 POS, HH "

y+2 POS, HL "

y+1 POS, LH "

addr y POS, LL " ←OUTPTR

Fig. 6-4: Contouring Ring Buffer Example

As is evident in Rules 1 and 2, the DPR ring buffer area includes two pointers,
INPTR and OUTPTR. Both pointers have values expressed as an offset from
120h in multiples of 8 bytes (or a single segment move command). The pointer
values range from 0 to 83, pointing to one of the 84 segment move command data
areas in the ring buffer.

Mx4 cnC++ Host-Based Programming

6-26

OUTPTR is a Mx4 cnC++ pointer. It indicates which of the 84 data areas of the
ring buffer Mx4 cnC++ will read the next segment move command from. Mx4
cnC++ increments OUTPTR as it reads data from the ring buffer. INPTR is a host
pointer. Its value indicates which data in the ring buffer the host should begin to
download additional contour data points.

Before initializing the ring buffer with contour data points, INPTR should equal
OUTPTR indicating that the ring buffer is empty. The host increments INPTR as
the ring buffer is initialized with data. After ring buffer initialization it is essential
to ensure that INPTR always leads OUTPTR so that Mx4 cnC++ is never starved
of segment move commands to read after a START RTC is issued.

The host may issue a buffer breakpoint interrupt command (BBINT RTC) in order
that Mx4 cnC++ interrupts the host whenever the number of segment move
commands in the ring buffer falls below a programmed threshold. This provides a
system of informing the host when it should refresh the ring buffer with
additional segment move commands. The number of segment move commands
indicated by BBINT must always be greater than the number of segment move
commands read by Mx4 cnC++ during a ring buffer refresh to prevent starvation.

When refreshing the ring buffer with additional segment move commands, Rules
2 through 5 should still be followed. Rule 1 is altered as follows:

1. Data should begin in the segment move command data area indicated
by value of host pointer, INPTR.

The START RTC starts the contouring motion with the argument of START
being a bit coding of the axes involved. Fig. 6-5 depicts a flowchart for a general
host contouring algorithm.

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-27

Set Mx4 cnC++ interpolation interval
via BTRATE (2nd order contouring)

Initialize ring buffer with
contour data points beginning

Set INPTR to [offset of last
segment move command + 1]

Set buffer breakpoint
interrupt BBINT

Send START RTC

at 8-byte data space indicated
by value of OUTPTR pointer

Set INPTR to [offset of last
segment move command + 1]

Refresh ring buffer data
beginning at 8-byte data space
indicated by value of INPTR

Buffer
Breakpoint
Interrupt?

Yes

No

or CUBIC_RATE (cubic spline
contouring) command

Fig. 6-5: Ring Buffer Contouring Algorithm Flowchart

Mx4 cnC++ allows the axes involved in a contouring motion to be changed "on
the fly" via the VECCHG (vector change) command (2nd order) or velocity
argument bit coding (cubic spline). For 2nd order contouring, upon the execution
of VECCHG, the contouring task assumes a new set of axes at the programmed
segment move command data space in the ring buffer. The VECCHG is triple
buffered in Mx4 cnC++, so up to three vector changes may be queued at any

Mx4 cnC++ Host-Based Programming

6-28

time. Mx4 cnC++ sends a "vector change buffer overflown" interrupt to the host
if the host attempts to queue more than three vector changes.

Changing contouring axes with cubic spline requires only a change in the axis-
coding bits in the velocity argument upper nibble (see Cubic Spline Application
Notes).

Contouring motion in a particular axis may be terminated with a STOP command,
or if the emergency stop ESTOP_ACC input is active. Attempting to execute a
closed loop motion command such as VELMODE or AXMOVE for an axis while
that axis is involved in contouring motion (or vice versa) will result in a
"conflicting commands detected" host interrupt and the second command will be
ignored.

Mx4 cnC++ Host Programming Using C, C++, Visual
Basic or Visual C++

Programming for the Mx4 cnC++ card with the Host programming method may
involve many of the following programming items:

- transmitting RTCs to Mx4 cnC++
- sending contouring commands to Mx4 cnC++ in contouring applications
- create an interrupt service routine to process any Mx4 cnC++-to-host

interrupts
- check Mx4 cnC++ status bytes and error codes
- read Mx4 cnC++ system state variables such as position, velocity and

following error for user-feedback
- utilize the PARREAD RTC for debug support

Mx4 cnC++'s powerful instruction set and comprehensive DPR data reporting
format enables the user to create application programs from the very simple to
complex. The experienced programmer may want to write low-level code that
deals with Mx4 cnC++ at the bit level through the 2K DPR interface. Others,
however, might want to start out with higher-level Mx4 cnC++ programming;
utilizing pre-defined functions and routines that take care of the lower-level Mx4
cnC++ programming aspects such as reading and writing bytes and utilizing the
correct Mx4 cnC++ DPR communication protocols.

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User’s Guide v1.1 6-29

For further information about programming the Mx4 cnC++ with C, please refer to
the Mx4 & C Programmer’s Guide.

For further information about programming the Mx4 cnC++ with C++, Visual
Basic or Visual C++, contact DSP Control Group.

Mx4 cnC++ Power-Up / Reset Software Initialization

A typical Mx4 cnC++ host programming application program should include a
standard initialization routine. Upon power-up, the Mx4 cnC++ card resets itself
just as it would as if it had received the RESET command from the host. After the
Mx4 cnC++ reset sequence is completed (signaled by ‘reset complete’ interrupt
to the host), the Mx4 cnC++ (and VECTOR, if installed) signature is written to the
DPR. If the post-reset signature is not complete, the reset was unsuccessful and
the Mx4 cnC++ system reset should be repeated. Following this initialization
sequence ensures that Mx4 cnC++ (and VECTOR4, if installed) has been reset
and is ready to be programmed before the host programming commences. The
suggested initialization sequence is depicted in the flowchart of Fig. 6-6.

Mx4 cnC++ Host-Based Programming

6-30

Mx4 cnC++ Power-Up or Reset

Read Mx4 cnC++ (and VECTOR4,
if installed) signature

Clear Reset-complete Interrupt

Mx4 cnC++
Reset-complete

interrupt received

Yes

No

?

Is
signature complete

Yes

No

?

Continue Mx4 cnC++ Host Programming

Send RESET
command to Mx4 cnC++

Fig. 6-6: Mx4 cnC++ Power-Up / Reset Software Initialization Routine

Mx4 cnC++ User’s Guide v1.1 7-1

7 Mx4 cnC++ Status & Error
Reports
Mx4 cnC++ Power-Up / Reset State

Upon power-up, the Mx4 cnC++ card resets itself just as it would as if it had
received the RESET RTC from the host. Upon completion of the reset, Mx4
cnC++ sends the 'reset finished' interrupt to the host. Thus, upon power-up of
the Mx4 cnC++ card, the host should wait for and then clear the 'reset finished'
interrupt generated by Mx4 cnC++. (See Chapter 6, Mx4 cnC++ Power-Up /
Reset Software Initialization.)

A Mx4 cnC++ reset results in the clearing of all Mx4 cnC++ parameters including
the 2K Dual Port RAM (DPR). Any programming of the Mx4 cnC++ card prior to
reset must be repeated.

Mx4 cnC++ Interrupts, Status Codes & Error Condition
Reports to the Dual Port RAM

Mx4 cnC++ data reporting to the host includes a variety of interrupt conditions,
status codes and error conditions. Table 7-1 sums up these reports.

Note: Refer to Chapter 6 Mx4 cnC++ Host-Based Programming for
a detailed description of the Mx4 cnC++ DPR interface and
protocols for host writing and reading of the DPR.

N
A

M
E

H
O

S
T

IN
T

E
R

R
U

P
T

R
T

C
E

N
A

B
L

E
D

D
E

S
C

R
IP

T
IO

N

Fo
llo

w
in

g
E

rr
or

 a
nd

 H
al

t
In

te
rr

up
t

√
√

se
e

FE
R

H
L

T
 c

om
m

an
d

de
sc

ri
pt

io
n

Fo
ll

ow
in

g
E

rr
or

 I
nt

er
ru

pt
√

√
se

e
FE

R
IN

T
 c

om
m

an
d

de
sc

ri
pt

io
n

In
de

x
P

ul
se

 I
nt

er
ru

pt
√

√
se

e
IN

X
IN

T
 c

om
m

an
d

de
sc

ri
pt

io
n

P
os

it
io

n
B

re
ak

po
in

t
In

te
rr

up
t

√
√

se
e

PO
SB

R
K

 c
om

m
an

d
de

sc
ri

pt
io

n

M
ot

io
n

C
om

pl
et

e
In

te
rr

up
t

√
√

se
e

M
C

E
N

B
L

 c
om

m
an

d
de

sc
ri

pt
io

n

E
xt

er
na

l
In

te
rr

up
t

√
√

se
e

PR
B

IN
T

 c
om

m
an

d
de

sc
ri

pt
io

n

C
on

fl
ic

ti
ng

 C
om

m
an

ds
 D

et
ec

te
d

√
"C

on
fl

ic
ti

ng
 c

om
m

an
ds

 d
et

ec
te

d"
 is

 a
n

er
ro

r
in

te
rr

up
t r

ep
or

te
d

to
 th

e
ho

st
 v

ia
 b

it
 6

 o
f

D
PR

 s
ta

tu
s

re
gi

st
er

 D
SP

ST
A

T
1

(s
ee

 M
x4

 D
P

R
O

rg
an

iz
at

io
n)

. T
hi

s
in

te
rr

up
t

se
rv

es
 t

o
re

po
rt

 t
he

 h
os

t
er

ro
r

of
at

te
m

pt
in

g
to

 c
om

bi
ne

 b
ot

h
co

nt
ou

ri
ng

 a
nd

 R
T

C
 m

ot
io

n
in

 t
he

 s
am

e
ax

is
 s

im
ul

ta
ne

ou
sl

y.
 A

ny
 o

ne
 o

f
th

e
fo

llo
w

in
g

ca
se

s
w

ill
 y

ie
ld

 a
"c

on
fl

ic
ti

ng
 c

om
m

an
ds

 d
et

ec
te

d"
 in

te
rr

up
t.

Fo
r

an
 a

xi
s

w
it

h

1.
 c

on
to

ur
in

g
in

 p
ro

gr
es

s,
 a

nd
 a

n
A

X
M

O
V

E
 o

r
V

E
L

M
O

D
E

 R
T

C
in

vo
lv

in
g

th
at

 a
xi

s
is

 s
en

t
to

 M
x4

2.
 A

X
M

O
V

E
 o

r
V

E
L

M
O

D
E

 m
ot

io
n

in
 p

ro
gr

es
s,

 a
nd

 a
 c

on
to

ur
in

g
S

T
A

R
T

 R
T

C
 in

vo
lv

in
g

th
at

 a
xi

s
is

 s
en

t t
o

M
x4

.

T
he

 "
co

nf
li

ct
in

g
co

m
m

an
d(

s)
"

th
at

 c
au

se
d

th
e

er
ro

r
is

 n
ot

 e
xe

cu
te

d
by

 M
x4

, i
t i

s
di

sc
ar

de
d.

T
ab

le
 7

-1
:

M
x4

 I
nt

er
ru

pt
s,

 S
ta

tu
s

C
od

es
 a

nd
 E

rr
or

 C
on

di
ti

on
s

(c
on

ti
nu

ed
 o

n
ne

xt
 p

ag
e)

N
A

M
E

H
O

S
T

IN
T

E
R

R
U

P
T

R
T

C
E

N
A

B
L

E
D

D
E

S
C

R
IP

T
IO

N

R
T

C
 C

om
m

an
d

Ig
no

re
d

√
T

hi
s

er
ro

r
in

te
rr

up
t

is
 r

ep
or

te
d

to
 t

he
 h

os
t

vi
a

bi
t

7
of

 D
P

R
 s

ta
tu

s
re

gi
st

er
 D

SP
ST

A
T

1
(s

ee
 M

x4
 D

P
R

 O
rg

an
iz

at
io

n)
.

T
he

 "
R

T
C

co
m

m
an

d
ig

no
re

d"
 in

te
rr

up
t i

s
ge

ne
ra

te
d

w
he

n
a

m
ot

io
n

co
m

m
an

d
is

re
ce

iv
ed

 b
y

M
x4

 f
or

 a
n

ax
is

 th
at

 is
 p

re
se

nt
ly

 h
al

ti
ng

 to
 a

 s
to

p
vi

a
a

pr
ev

io
us

ly
 e

xe
cu

te
d

S
T

O
P

 R
T

C
 o

r
ac

ti
ve

 E
S

T
O

P
/ i

np
ut

. T
he

 m
ot

io
n

co
m

m
an

ds
 a

re
 th

e
A

X
M

O
V

E
, S

T
A

R
T

 o
r

V
E

L
M

O
D

E
 R

T
C

s.

P
os

it
iv

e
F

ee
db

ac
k

In
te

rr
up

t
√

√
se

e
PO

SF
E

E
D

 c
om

m
an

d
de

sc
ri

pt
io

n

E
nc

od
er

 L
os

t
In

te
rr

up
t

√
√

se
e

E
N

C
O

L
O

S
co

m
m

an
d

de
sc

ri
pt

io
n

O
ff

se
t C

an
ce

l F
in

is
he

d
√

√
se

e
O

FF
SE

T
 c

om
m

an
d

de
sc

ri
pt

io
n

E
nc

od
er

 S
ta

tu
s

T
he

 "
en

co
de

r
st

at
us

"
is

 r
ep

or
te

d
to

 th
e

lo
w

er
 n

ib
bl

e
of

 D
P

R
 lo

ca
ti

on
11

3h
 (

se
e

M
x4

 D
P

R
 O

rg
an

iz
at

io
n)

. A
 s

et
 b

it
 in

di
ca

te
s

th
at

 M
x4

 h
as

de
te

ct
ed

 a
n

en
co

de
r

ha
rd

w
ar

e
fa

il
ur

e.
 M

x4
 r

ep
or

ts
 a

n
"e

nc
od

er
 s

ta
tu

s"
er

ro
r

if
 f

or
 th

e
ax

is
 in

 q
ue

st
io

n:

1.
 th

e
fo

ll
ow

in
g

er
ro

r
co

un
t i

s
>

 3
00

h,
 a

nd

2.
 th

e
en

co
de

r
fe

ed
ba

ck
 to

 M
x4

 is
 lo

si
ng

 e
nc

od
er

 p
ul

se
s

or
 o

ne
 o

f
th

e
en

co
de

r
si

gn
al

s
(A

 o
r

B
)

ac
ti

ve
ly

 to
gg

le
s

w
hi

le
 th

e
ot

he
r

on
e

is
 in

ac
ti

ve
.

R
ea

l T
im

e
In

de
x

Pu
ls

e
R

ep
or

ti
ng

In
 a

dd
it

io
n

to
 th

e
ho

st
-e

na
bl

ed
 in

de
x

pu
ls

e
in

te
rr

up
t,

th
e

ho
st

 m
ay

m
on

it
or

 th
e

in
de

x
pu

ls
es

 o
f

al
l f

ou
r

ax
es

 v
ia

 th
e

"R
ea

l t
im

e
in

de
x

pu
ls

e
re

po
rt

in
g"

 in
 th

e
up

pe
r

ni
bb

le
 o

f
D

PR
 lo

ca
ti

on
 1

13
h

(s
ee

 M
x4

D
P

R
 O

rg
an

iz
at

io
n)

. A
 s

et
 b

it
in

di
ca

te
s

an
 in

de
x

pu
ls

e
an

d
th

e
ni

bb
le

 is
up

da
te

d
in

 r
ea

l-
ti

m
e

(5
 m

se
c)

.

T
ab

le
 7

-1
 c

on
t.:

M
x4

 I
nt

er
ru

pt
s,

 S
ta

tu
s

C
od

es
 a

nd
 E

rr
or

 C
on

di
ti

on
s

(c
on

ti
nu

ed
 o

n
ne

xt
 p

ag
e)

N
A

M
E

H
O

S
T

IN
T

E
R

R
U

P
T

R
T

C
E

N
A

B
L

E
D

D
E

S
C

R
IP

T
IO

N

Se
rv

o
C

he
ck

 S
ta

tu
s

T
he

 "
se

rv
oc

he
ck

 s
ta

tu
s"

 b
yt

e
(S

E
R

V
O

C
H

K
, D

PR
 lo

ca
ti

on
 1

14
h)

 is
us

ed
 to

 r
ep

or
t a

 M
x4

 in
te

rn
al

 s
ta

ck
 o

ve
rf

lo
w

 e
rr

or
. U

po
n

de
te

ct
io

n
of

a
se

t b
it

 0
 o

f
SE

R
V

O
C

H
K

, t
he

 h
os

t m
ay

 n
ee

d
to

 p
er

fo
rm

 a
 s

ys
te

m
re

se
t.

B
uf

fe
r

B
re

ak
po

in
t I

nt
er

ru
pt

√
√

se
e

B
B

IN
T

 c
om

m
an

d
de

sc
ri

pt
io

n

E
S

T
O

P
 D

et
ec

te
d

√
M

x4
 r

ep
or

ts
 t

he
 o

cc
ur

re
nc

e
of

 a
n

em
er

ge
nc

y
st

op
 (

E
S

T
O

P
/

in
pu

t)
 t

o
th

e
ho

st
 w

it
h

an
 i

nt
er

ru
pt

. T
he

 i
nt

er
ru

pt
 i

s
re

po
rt

ed
 v

ia
 b

it
 2

 o
f

D
P

R
in

te
rr

up
t r

eg
is

te
r

H
O

ST
IN

T
 (

se
e

M
x4

 D
P

R
 O

rg
an

iz
at

io
n)

. W
he

n
M

x4
 d

et
ec

ts
 a

n
ac

ti
ve

 E
S

T
O

P
/ i

np
ut

, t
he

 m
ot

io
n

(i
f

an
y)

 o
f

al
l f

ou
r

ax
es

 is
 b

ro
ug

ht
 to

 a
 h

al
t w

it
h

th
e

pr
og

ra
m

m
ed

 E
ST

O
P/

 a
cc

el
er

at
io

n
/

de
ce

le
ra

ti
on

.

V
ec

to
r

C
ha

ng
e

B
uf

fe
r

O
ve

rf
lo

w
n

√
T

he
 V

E
C

C
H

G
 R

T
C

 u
ti

li
ze

s
th

re
e

bu
ff

er
 le

ve
ls

 to
 im

pl
em

en
t t

he
in

st
ru

ct
io

n.
 I

f
th

e
ho

st
 a

tt
em

pt
s

to
 "

st
ac

k"
 o

r
bu

ff
er

 m
or

e
th

an
 t

hr
ee

V
E

C
C

H
G

 c
om

m
an

ds
, a

 h
os

t i
nt

er
ru

pt
 is

 g
en

er
at

ed
 a

nd
 r

ep
or

te
d

vi
a

bi
t

3
of

 D
P

R
 in

te
rr

up
t r

eg
is

te
r

H
O

S
T

IN
T

 (
se

e
M

x4
 D

P
R

 O
rg

an
iz

at
io

n)
.

R
es

et
 F

in
is

he
d

√
U

po
n

co
m

pl
et

io
n

of
 th

e
po

w
er

-u
p

se
qu

en
ce

 o
r

R
E

SE
T

 R
T

C
, M

x4
si

gn
al

s
an

 in
te

rr
up

t t
o

th
e

ho
st

. T
he

 in
te

rr
up

t i
s

bi
t-

co
de

d
as

 a
 s

et
 b

it
4

of
 D

P
R

 in
te

rr
up

t r
eg

is
te

r
H

O
S

T
IN

T
 (

se
e

M
x4

 D
P

R
 O

rg
an

iz
at

io
n)

.

D
at

a
R

un
-O

ut
 I

n
R

in
g

B
uf

fe
r

√
It

 is
 e

ss
en

ti
al

 f
or

 th
e

ho
st

 to
 p

ro
vi

de
 M

x4
 s

eg
m

en
t m

ov
e

co
m

m
an

ds
vi

a
th

e
ri

ng
 b

uf
fe

r(
s)

 w
hi

le
 c

on
to

ur
in

g
is

 in
 p

ro
gr

es
s.

 I
f

at
 a

ny
 ti

m
e

w
hi

le
 c

on
to

ur
in

g
is

 a
ct

iv
e

M
x4

 d
et

ec
ts

 I
N

P
T

R
=

O
U

T
P

T
R

 a
nd

 a
ny

ac
ti

va
te

d
ax

is
 v

el
oc

it
y

is
 n

ot
 z

er
o,

 th
e

ri
ng

 b
uf

fe
r

is
 o

ut
 o

f
da

ta
 a

nd
M

x4
 s

en
ds

 a
 "

da
ta

 r
un

-o
ut

 in
 r

in
g

bu
ff

er
"

in
te

rr
up

t t
o

th
e

ho
st

. T
he

 in
te

rr
up

t i
s

re
co

rd
ed

 in
 b

it
s

of
 D

P
R

 in
te

rr
up

t r
eg

is
te

r
H

O
S

T
IN

T
 (

se
e

M
x4

 D
P

R
 O

rg
an

iz
at

io
n)

.

T
ab

le
 7

-1
 c

on
t.:

M
x4

 In
te

rr
up

ts
, S

ta
tu

s
C

od
es

 a
nd

 E
rr

or
 C

on
di

ti
on

s

Mx4 cnC++ User’s Guide v1.1 8-1

8 VECTOR4

Note: The following is a brief description of the functionality and
capabilities of the VECTOR4 drive control option. A more
detailed VECTOR4 description can be found in the VECTOR4
User's Guide (included with the VECTOR4 option).

VECTOR4 is an add-on daughter-board to the Mx4 cnC++ card (PC/AT, Multibus
and VME). VECTOR4 is an all digital AC servo controller for four axes of both
AC and DC motors. With the VECTOR4 add-on drive controller, Mx4 cnC++
controls brushless DC, variable reluctance, AC induction and brush-type DC
motors. Any combination of these motor technologies is programmable through
a single instruction. Some of the features of VECTOR4 are listed below:

q Closes current and velocity loops for four axes

q State feedback optimum control algorithm along with modified vector
control for better stability

q Programmable power electronics parameters

q PWM (Pulse Width Modulation) outputs allow VECTOR4 to interface
to any generic output stage

q Current limit is programmable

q Full VECTOR4 debug support and state variable parameter reporting

q Performs field weakening for brushless DC and AC induction motors

q Current loop offset adjustment

q Interfaces to Mx4 cnC++ through the DSP bus

VECTOR4

8-2

The VECTOR4 card interfaces to Mx4 cnC++ via two 25-pin headers (see Fig. 8-
1). The Mx4 cnC++/VECTOR4 combination requires a double-slot width in the
host bus card cage.

VECTOR4 Mx4 cnC++

Fig. 8-1: PC/AT Mx4 cnC++ with VECTOR4 Option

Mx4 cnC++ transmits to VECTOR4 a set of torque or velocity commands through
the DSP bus. VECTOR4 closes the velocity and/or torque loops and performs
commutation (see VECTOR4 functional block diagram of Fig. 8-2). VECTOR4
uses state variable control rather than classical techniques such as lead-lag or
PID. In addition to providing superior performance, this approach simplifies the
task of tuning system parameters during initial system set-up. VECTOR4
linearizes the torque and current relations and closes a single composite current
loop similar to that of a DC brush-type motor. This technique is superior to
conventional vector control which requires closing three current loops and
results in a motor-speed dependent current loop frequency response.

VECTOR4

Mx4 cnC++ User’s Guide v1.1 8-3

Field

Velocity

PWM Signal
Generation

Phase
Generator

Observer

Algorithm

Digital

Filter

Velocity

Frequency

ADC

PWM Signals

Phase Currents

Encoder Signals

Ir

Is

Commutation Encoder

Mx4 cnC++

Transformations INHIBIT

Control

Torque

Control

Field

Control

Mx4 cnC++

Transformations

Iqs
I ds

Command

Command

Command

Fig. 8-2: Mx4 cnC++/VECTOR4 Functional Block Diagram

An industrial motor may be a brush type DC, brushless DC or AC induction
machine. Instructions provided in VECTOR4 enable the user to select the
appropriate technology suitable for their application. The encoder mounted on
the motor shaft may be an incremental encoder alone (for AC induction motor or
brush type DC motor control) or the combination of incremental and
commutation encoders (for brushless DC motor control applications).

The commutation techniques used for brushless DC technology use only a 3-bit
hall sensor or similar, as well as incremental encoder signals. This is in contrast
with the use of an expensive resolver and resolver-to-digital converter. The
incremental encoder signals enter into the Mx4 cnC++ card through the card
connectors, whereas commutation encoder signals interface directly to
VECTOR4.

VECTOR4

8-4

VECTOR4 Programming Capabilities

Like Mx4 cnC++, VECTOR4 is based on a powerful kernel that provides a very
flexible programming platform. VECTOR4 supports both the host based and
DSPL programming methods. VECTOR4's commands provide the user an easy-
to-use interface to VECTOR4's field-oriented control core. The VECTOR4
command summary is categorized as follows:

Initialization

Initialization commands encompass those instructions used to define a particular
set-up. For example, programming the type of motor being used or the encoder
characteristics of an axis.

COMMAND DESCRIPTION

ENCOD_MAG encoder line number

FLUX_CURRENT bipolar field flux value

MOTOR_PAR set motor parameter

MOTOR_TECH select motor technology

VECTOR4_BLOCK block further instructions to VECTOR4

Control Parameter

Instructions used to set state variable control parameters and to tune the control
loops.

COMMAND DESCRIPTION

CURR_OFFSET current loop offset adjustment

CURR_PID program current loop gains

VECTOR4

Mx4 cnC++ User’s Guide v1.1 8-5

Power Stage

Power stage commands are used to characterize and define the VECTOR4-output
stage interface.

COMMAND DESCRIPTION

CURR_LIMIT current limit setting

PWM_FREQ set VECTOR4 PWM output frequency

System Diagnostic

System diagnostic instructions provide the Mx4 cnC++ programmer powerful
debug support.

COMMAND DESCRIPTION

VIEWVEC select VECTOR4 variable feedback

VECTOR4

8-6

This page intentionally blank.

Mx4 cnC++ User’s Guide v1.1 9-1

9 Mx4 cnC++ Specifications

Performance

ITEM DESCRIPTION

Servo Loop Update 120 µsec (all axes included)

Control Algorithms State Feedback Multi-Input Multi-Output
Controller, Kalman Filter, Robust Control, PID,
Notch

Block Execution Rate (programmable) 2nd Order: 5 to 20 msec
Cubic Spline: 1 to 100 msec

Position Range +/- 2, 147, 483, 650 counts, rollover, +/- 1 count

Position Capture 100 ns max. delay from trigger

Velocity Range 0 to 1,280,000 counts/sec, +/- 1 count

Acceleration Range 0 to 50,000,000 counts/sec2, +/- 1 count

Synchronization Unlimited number of axes can be synchronized to
the same servo cycle

Hardware

ITEM DESCRIPTION

Processing Quad DSPs in Hyper-Cube Architecture, 36 MIPS

Analog Output 16-bit parallel DAC per axis, 300 uV resolution,
-10v to +10v output

Input/Output

ITEM DESCRIPTION

Protective Inputs ESTOP/ emergency stop [1]

External Interrupts /PR0, /PR1 [2]

General Purpose Inputs User-defined inputs [10], TTL logic

General Purpose Outputs User-defined outputs [3], TTL logic

Mx4 cnC++ Specifications

9-2

Position Encoder Feedback

ITEM DESCRIPTION

Encoder Type A/B quadrature or single-ended with "I" (index
pulse) channel [optional]

Maximum Encoder Count 5 MHz

Maximum Encoder Pulse 1.25 MHz

Electrical

ITEM DESCRIPTION

+5v Mx4 cnC++ Supply Voltage MIN = 4.75v
NOM = 5v
MAX = 5.25v

Operating Free Air Temperature Range 0°C to 70°C

Power Consumption

ITEM DESCRIPTION

+5v MAX = 3A

+12v MAX = 250mA

-12v MAX = 250mA

Mechanical

ITEM DESCRIPTION

PC/AT Mx4 cnC++ Interface
Connector

protected header, .100 x .100 centers, center and
dual polarized

PC/AT Mx4 cnC++ I/O Connector protected header, low profile, .100 x .100
centers, center polarized

PC/AT Mx4 cnC++ Synch Connector AMP 640457-4 friction lock header

Mechanical Dimensions See Fig. 9-1

Mx4 cnC++ Specifications

Mx4 cnC++ User’s Guide v1.1 9-3

33.65 cm

11.43 cm

Fig. 9-1: PC/AT Mx4 cnC++ Mechanical Dimensions

Mx4 cnC++ Specifications

9-4

This page intentionally blank.

