

DSPMechatrolink III User's Guide

DSPMechatrolink III Network Controller DSP Control Group, Inc.

DSPMechatrolink III Manual DSP Control Group, Inc. 1

1 Introduction to DSPMechatrolink III
Product Overview
DSPMechatrolink III is an Isochronous Industrial Network/Controller that functions over the time-
tested Ethernet interface. By combining the power of Ethernet with Mechatrolink III protocol that
is both simple and reliable, a complete digital solution has been created for networking
between motion control elements. The robustness of Ethernet's design is attested to by the fact
that it continues to be adapted to new applications, and is constantly being upgraded to
provide new capabilities.

YASKAWA Drives DSPMechatrolink III

DSPMechatrolink III Manual DSP Control Group, Inc. 2

When programming with DSPMechatrolink III Network/Controller card, a single Ethernet cable
is sufficient to configure and program all devices (such as Yaskawa drives) on the Mechatrolink
III network.

Whether the Mechatrolink network is inclusive of a single or multiple devices, DSPMechatrolink
as the Isochronous Controller is capable of transmitting the real-time cyclic information through
an Ethernet cable in a straight or daisy chained fashion.

Determinism of the Isochronous Ethernet
For high performance motion control applications, such as precise coordination of many motors
with less than a microsecond delay between their coordinated commands, Mechatrolink
Controller is suited because it comes with an Isochronous Real-Time channel. As indicated by
the word "isochronous" in its acronym, Mechatrolink III is used for closed-loop control of a servo
system, where the control (both the set-point and feedback) for multiple devices occurs during
the same sample period. This sample period can be as strict as 33 microseconds, meaning that
the Controller in a Mechatrolink III network issues its command to all devices every 33
microseconds.

Uniqueness of DSPMechatrolink III Controller
Certainly other Ethernet protocols in motion control today operate on a regularly occurring
interval basis. A relevant question may be: what is special about Mechatrolink III Network?
The guiding factor that sets Mechatrolink III apart from other real-time cyclic protocols is the
concept of "jitter". The jitter is defined as a time fluctuation in the start of the interval. For
example, in a one-millisecond sample period, if the controller started the next interval 20
nanoseconds after the termination of the previous one, the system could be described as having
a jitter of 20 nanoseconds at this point in time.

 Figure 3: DSPMechatrolink III Jitter in 0.1 Microseconds vs. Sample Time

In the case of Mechatrolink III, both devices and Controller are very concerned with jitter. The
threshold for jitter allowed by the Mechatrolink III protocol is defined to be one microsecond.
Hence, an entity that wishes to serve as a controller in a Mechatrolink III network must be able

DSPMechatrolink III Manual DSP Control Group, Inc. 3

to start each cycle very precisely on the aforementioned sample period boundary. The devices
in a Mechatrolink III network are designed to be made aware of when a controller is not
adhering to the jitter requirement.

The operation of cyclic control at these extremely precise intervals (such as 500 microsecond
interval times occurring within fraction of one microsecond of jitter) is what allows for extremely
precise coordinated motion control applications to occur across multiple axes.

DSPMechatrolink III Manual DSP Control Group, Inc. 4

2 Mechatrolink III Communications
This section describes the specifications of MECHATROLINK-III message communication.

Transmission Frame
This section describes the specifications of the transmission frame that is used for
Mechatrolink III. The transmission frame format is shown below.

Preamble

56 bit

S
F
D
8 bit

Destination
Address

16 bit

Source
Address

16 bit

Control
Field

16 bit

Frame Type/
Data
Length
16 bit

Information Field

32 bytes

FCS

32 bit

Preamble, SFD, control field and FCS are used by the DSPMechatrolink communication chip.
The destination and source addresses, frame type and data length are set by the access driver.
The information field is set by the user application.

Frame Data Control Layer Implemented at
Preamble
SFD
Destination Address
Source Address

Data Link Layer

Communication Chip
Partly implemented by Access
Driver

Control Field
Frame Type

Access Driver

Data Length
Information Field

Application Layer

User Application

FCS Data Link Layer Communication Chip

Message Communication Frame
The following table shows the frame data used in message communication.

Frame Data Contents
Destination Address C1/C2 master station: Sets the station address of a slave

station. Slave stations: Sets the station address of the
C1/C2 master station.

Source Address

C1/C2 master station: Sets the station address of the local
station. Slave stations: Sets the station address of the local
station.

Control Field The communication LSI controls the value.

Frame Type Fixed at 0Ch (MECHATROLINK message communication).
To be set by the access driver.

Data Length

Sets the size of the message to be sent. To be set by the
communication chip.

Information Field Sets the message data. To be set by the user application.

DSPMechatrolink III Manual DSP Control Group, Inc. 5

Transmission Sequence
This section describes the transmission sequence of Mechatrolink IIII message
communication.

Cyclic Communication Mode
The following describes the transmission sequence of message communication in the cyclic
communication mode.

After broadcasting the synchronous frame at the start of the transmission cycle, the C1
master sends the command data and receives the response data once for each slave.
The C1 master monitors the response from the slaves and determines the slaves to be
retry targets. Slaves from which data reception was abnormal or slaves from which the
response data was not received within the response monitoring time are taken as retry
targets.

After finishing the exchange of command data and response data for all slaves, the C1
master re-sends the command data to the retry target slaves to receive the response
data. After finishing the retry, the C1 master performs C1 message communications if
sufficient time is available before the scheduled start of C2 message communications.

If the C1 master completes cyclic communication and C1 message communication
before the time to start sending the C2 message, it sends a message token to the C2
master to prompt C2 message communication.

The C2 master performs C2 message communication at the C2 message
communication start time or when it receives the message token from the C1 master.
C2 message communication continues until the end of the transmission cycle.

DSPMechatrolink III Manual DSP Control Group, Inc. 6

Event Driven Communication Mode
The following describes the transmission sequence of message communication in the event-
driven communication mode.

Event-driven communication can be used in a system that does not require
synchronized operation (simultaneous operation) of the slaves or when the C1 master
collects information for synchronized communication (cyclic communication) from
the slaves through C1 message communication.

In the event-driven communication mode, it is possible to execute only the same
transmission sequence or C1 message communication as in cyclic communication
without fixing the transmission cycle. The same restrictions apply to the data length in
event-driven communication as in cyclic communication.

Although all of the C1 master, the C2 master and slaves can participate in
event-driven communication, the C2 master can only be used for monitoring and C2
message communication is not possible.

DSPMechatrolink III Manual DSP Control Group, Inc. 7

Message communication
This section describes Mechatrolink III message communication.

Communication Method
“Mechatrolink III Message Communication” uses the master/slave communication
method (half-duplex system) in which the slave returns the response message in response
to the command message sent from the master. In this method, only the master can send
the command message (start of communication). The slave executes the function
specified in the message and returns the response message.

DSPMechatrolink III Manual DSP Control Group, Inc. 8

Message Specifications

Message Format
The message field consists of seven fields for both a command and a response.
These fields include the slave address field, the function code field, and the extension
field.

Slave Address
Function Code
Extended Address
Reserved (00Hex)
Sub-function Code
Mode/Data Type
Data Count (High)
Data Count (Low)
Data

Slave Address
The slave address (01H to EFH) field. Set the slave address in this field when sending
the command message to slaves from the master. The slave reads only the command
message addressed to itself. When the slave returns the response message to the
master, it sets its own address in the slave address field. The master can recognize the
slave that returned the message from the address set in this field.

Function Code
This is a code that shows the function of the MECHATROLINK message and it is
fixed as 42H. If the slave returns the response message after executing the specified function,
the slave sets the same function code in the response message when the function has been
executed normally and it sets “function code + 80H” when it returns an error response
message. The master can recognize function code for which the response message was
returned from the setting in this field.

Extended Address
This field is only used if extended addresses are used.

Sub-function Code
The master specifies, with a function code, the function that the slave is to execute.
The function codes that can be used in MECHATROLINK-III message
communication are shown in Function Codes.

DSPMechatrolink III Manual DSP Control Group, Inc. 9

Mode/Data Type

Bit7 to bit4: Mode
1H: Specifies volatile memory such as a RAM (normal operation).
2H: Specifies retentive memory such as an E2PROM.
The modes to be supported are specified by the product specifications. In answer
to a setting value that is specified as out of range in the product specifications, an
error response is returned with the error code 03H (mode/data type error).
bit3 to bit0: Data type
1H: byte type (1-byte)
2H: short type (2-byte)
3H: long type (4-byte)
4H: longlong type (8-byte)

The data types to be supported are specified by the product specifications. In
answer to a setting value that is specified as out of range in the product
specifications, an error response is returned with the error code 03H (mode/data
type error).

Data Count
Specify the data size (big-endian), taking the specified data type as the unit.

Data
The field for the individual function code data. The data length, configuration and
meaning are specified for each of the function codes. The data is stored using the
big-endian format. For details, refer to the explanation on the message format of the
individual function code. A data area of up to 1496 bytes can be used for cyclic
communication, and a data area of up to 496 bytes can be used for event-driven
communication.

DSPMechatrolink III Manual DSP Control Group, Inc. 10

Slave Responses

The messages returned from a slave in response to the command messages sent from
the master are classified into the three responses shown below.

Normal Response
When a slave received a command message normally and executed the processing
normally, it returns a normal response message.

Error Response
When a slave cannot process the command message although the message was
received normally, it returns an error response message. In the error response message,
“Function Code + 80H” is set in the function code field and an error code is set in the
data field. For the error detection address, the memory address where the slave device first
detected an error is set. Whether the data read or written up until an error is detected is
to be enabled or disabled is specified by the product specifications.

No Response
A slave does not return a response in the following cases.

· A transmission error (overrun error, framing error, parity error, etc.) is detected

in the command message.
· When the slave address specified in the command message does not match with

the slave address set for the slave.
· Illegal length of data in the command message.

In the event of no response, whether the master device retries or sends a
communication alarm is specified by the product specifications.

DSPMechatrolink III Manual DSP Control Group, Inc. 11

Function Codes

The following table shows the function codes.

Function
Code

Function
Sub-code

Function

42H Mechatrolink III Message Function
 01H Read Memory
 02H Write Memory
 03H Read Memory (non-contiguous)
 04H Write Memory (non-contiguous)
 06H Write Memory with Mask
 11H Read maximum message size
 7FH User-specific command
 80H-FFH Not Usable (reserved

* When the action of writing to retentive memory fails, the measures indicated in the
 product specifications are taken.

DSPMechatrolink III Manual DSP Control Group, Inc. 12

Mechatrolink III Message Detail
This section describes details on the MECHATROLINK message functions.
The specification for 32-bit length memory addresses can be specified in the
MECHATROLINK message function.
It is possible to access the contents of specified memory addresses in 8-bit, 16-bit, 32-bit,
or 64-bit units (as explained in the product specifications).

Read Memory (Sub-function Code: 01H)

Function
This function is used to read the specified data count of the specified memory type
from contiguous memory. Data will start to be read from a specified initial address
(32-bit length).

The maximum data count that can be read at one time can be calculated from the
message size read using the “Read maximum message size” sub-function
(sub-function code: 11H).

Message Format
When the Data Type is “byte” (01H)

Data Format (Read Memory)

Response Byte Command
When Normal When Abnormal

0 Slave address Slave address Slave address
1 Function Code

(42H)
Function code
(42H)

Function code + 80H
(C2H)

2 Extended address
(00H)

Extended address

Extended address

3 Reserved
(00H)

Reserved
(00H)

Reserved
(00H)

4 Sub-function code
(01H)

Sub-function code
(01H)

Sub-function code
(01H)

5 Mode/data type
(11H)

Mode/data type
(11H)

Error code

6
7

Data count of byte type Data count of byte type Data count of byte type

8 1th data
9 2nd data
. .
.

Initial address

 nth data

Error detection address

DSPMechatrolink III Manual DSP Control Group, Inc. 13

 Example Message
Example of reading three items (long) of memory content from memory address
FF00006CH of slave station 2

Data Format (Read Memory)

Response Response Byte Command
When Normal When Abnormal

0 Slave address 02H Slave address

02H Slave address 02H

1 Function code 42H Function code 42H Function code + 80H C2H
2 Extended address 00H Extended address 00H Extended address 00H
3 Reserved 00H Reserved 00H Reserved 00H
4 Sub-function code 01H Sub-function code 01H Sub-function code 01H
5 Mode/data type 13H Mode/data type 13H Error code 02H
6

00H

00H

7

Data count of long
type

00H
03H

Data count of long
type

03H

Reserved

00H

8 FFH 00H FFH
9 00H 00H 00H
10 00H 02H 00H
11

Initial address

6CH

1st data

2BH

Error detection address

70H

12 00H
13 00H
14 00H
15

2nd data

00H
16 00H
17 00H
18 00H
19

3rd data

63H

DSPMechatrolink III Manual DSP Control Group, Inc. 14

3 Data Transfer To and From Mechatrolink III

Memory Access In Dual Port RAM

Data transfer from PC to DSPMechatrolink III (and subsequently to
 Mechatrolink III nodes)
DSPMechatrolink has two command (transmit) buffers and two response (receive)
buffers for each node on the network. The two sets of command buffers are updated
alternately so that one set of buffers can be updated by the user's application while the
contents of the other set of buffers are being transmitted. Similarly, the response buffers
are read out alternately so that one set of buffers can be read while the other set is
being filled with received data.

The user's application can either poll DSPMechatrolink's interrupt status to determine
when a cyclic transmission cycle should begin, or it can be driven by DSPMechatrolink's
IRQ line on the PCI bus.

In either case, once it is time to begin a new Mechatrolink III cycle the user application
switches buffers (a single command switches all command and response buffers for all
nodes), and for each node which has returned data on the previous bus cycle
(determined by a status register) the application reads out the contents of the response
buffer for that node, and loads the command buffer for that node with new data.

Each node is allocated 64 bytes of command data and 48 bytes of response data.
Command and response data are formatted according to Mechatrolink requirements
without any modification by or for DSPMmechatrolink.

Cyclic Communication Processing
The following describes how cyclic communication processing is executed. In this
communication mode, transmission data is written to the DSP (DSPMechatrolink III) and
the response data is read every communication cycle. The DSP status is also monitored.

Execute the processing at the start of the communication cycle (INT1) interrupt*.

* INT1 interrupt occur once every transmission cycle in cyclic
 communication. To check the interruption factor, use
 DSP_check_intrp_factor().

DSPMechatrolink III Manual DSP Control Group, Inc. 15

DSPMechatrolink III Manual DSP Control Group, Inc. 16

4 Asynchronous and cyclic program examples

Asynchronous Data Exchange For Generic Moves
The following function illustrates an example of sending and receiving data during asynchronous
communication.

Where applicable, non-vital parts of the source code have been replaced by comments
describing the code, so as not to take away from the relevant code.

What is left is the main algorithm of cyclic processing:

(1) send the asynchronous frame,
(2) receive an asynchronous frame and
(3) perform processing.

/***/
/* exchange_async() */
/* */
/* @param None */
/* */
/* Send/recieve data processing (async communication mode). */
/***/
short exchange_async(void)
{
 volatile HOST_IF_REGS *hirp; // Host I/F Top address
 CHANNEL_INFO* chbuffp; // Channel Buffer
 ULONG ests; // Error Status
 USHORT st_no;
 ULONG ret; // return code

 // Initialize values, etc.

 // Send async frame
 if (async_sw == ASYNC_SND_SEQ)
 {
 ret = send_frame(chbuffp,
 DEF_ASYNC_PEER_ADR,
 DEF_ASYNC_FTYPE,
 async_sbuff,
 DEF_ASYNC_DATA_SIZE);

 if (ret == LIB_OK)
 {
 async_sw = ASYNC_RCV_SEQ;
 }
 else if (ret != SNDING_FRAME)
 {
 return(ret);
 }
 }

 // Receive async frame
 if (async_sw == ASYNC_RCV_SEQ)
 {
 ret = req_rcv_frame(chbuffp,
 &async_rcv_stadr,

DSPMechatrolink III Manual DSP Control Group, Inc. 17

 &async_rcv_stat,
 &async_rcv_ftype,
 async_rbuff,
 &async_rcv_size,
 (USHORT)DEF_ASYNC_RCV_TOUT_TIME);

if (ret == RECEIVED_FRAME)
 {
 if ((async_rcv_stat == ASYNC_RCV_CMP) ||
 (async_rcv_stat == ASYNC_RCV_TIMOUT))
 {
 process_async();
 read_comstat(chbuffp);
 async_sw = ASYNC_SND_SEQ;
 }
 else
 {
 // Check communication processor status
 if ((ests = read_comstat(chbuffp)) != 0)
 {
 examine_comstat(chbuffp);
 return(ERROR_ASIC_STATUS);
 }
 return(async_rcv_stat);
 }
 }
 else if (ret != RCVING_FRAME)
 {
 return(ret);
 }
 }
 return(ret);

}

DSPMechatrolink III Manual DSP Control Group, Inc. 18

Synchronous Data Exchange For Interpolated Moves
The following function illustrates an example of how sending and receiving data during cyclic
communication work.

Where applicable, non-vital parts of the source code have been replaced by comments
describing the code, so as not to take away from the relevant code. (For example, error
handling has been replaced with comments showing where error handling could be
implemented.)

What is left is the main algorithm of cyclic processing:

(1) read in what is fed back to master,
(2) prepare the next outgoing command, and
(3) send the outgoing command.

/**/
/* */
/* exchange_sync() */
/* */
/* @param None */
/* */
/* @return LIB_OK Normal end */
/* ERROR_TOUT_CHANG_RBUFF Change response buffer didn't complete */
/* ERROR_TOUT_CHANG_CBUFF Change command buffer didn't complete */
/* ERROR_INVALID_STNO Setting st_no is not exist */
/* ERROR_IOMAP_SIZE */
/* */
/* Send/receive data processing for sync communication mode. This will copy */
/* received data from the communication processor’s response buffer to rbuff and */
/* copy data to send from sbuff to the communication processor’s command buffer. */
/**/
short exchange_sync(void)
{
 CHANNEL_INFO* chbuffp; // Channel Buffer
 ULONG rrcvstat[2]; // Receive status
 USHORT st_no; // Counter (iterate through all stations)
 short ret; // Return code

 // Perform some initialization, Start cyclic communication, Check communication
 // processor status, etc.

 // Iterate through all stations (slaves) and see if they have sent us data.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 // Check if we have received any data from this station (slave); if
 // not then continue on with checking next station. We may also
 // check the error status register at this point.

 // If we detect that we have received data, lets get it. Copy from
 // the DSPMechatrolink III communication processor to the buffer.
 ret = read_ldata(chbuffp, st_no, rbuff[st_no]);
 if (ret != LIB_OK)
 {
 return (ret);
 }

 process_station_data(st_no, rbuff[st_no]);
 }

 // Set up the data for the outgoing Interpolation Feed command.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)

DSPMechatrolink III Manual DSP Control Group, Inc. 19

 {
 // Every entry is 4 bytes
 sbuff[st_no][0] = IFEED; // Constant, 0x34
 sbuff[st_no][1] = target_pos[st_no]; // Update its target position
 sbuff[st_no][2] = vel[st_no]; // Update its vff

 // Since we are doing interpolation feed, we shall be interested in
 // monitoring feedback position. The monitor code for this is 3. This
 // accounts for one byte. Then we have two unused bytes, followed by the
 // watchdog byte. Regarding the watchdog byte, we compose it with the
 // low 4 bits of our counter combined with the high 4 bits of what this
 // particular station sent us for a watchdog value.
 our_watchdog++;
 sbuff[st_no][3] = (((our_watchdog & 0x0f) + (rcvd_watchdog[st_no] & 0xf0))
<< 24) + 3;
 }

 // Iterate through all stations and if the station had sent data to us
 // then we will send data back to it.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 // If we received some data from a station then we send new data to it,
 // otherwise we continue on with checking the next station.

 // If we detect that we need to send, lets send. Copy from our buffer
 // to the communication processor.
 ret = write_ldata(chbuffp, st_no, sbuff[st_no]);
 if (ret != LIB_OK)
 {
 return (ret);
 }
 }

 return (ret);
}

DSPMechatrolink III Manual DSP Control Group, Inc. 20

DSPMechatrolink III General data Communication

The following functions illustrate examples of synchronous and asynchronous communications.

Also included are system initialization and DSPMechatrolink III memory checking routines that
would be performed in start up. Last, this code includes message communication.

/**/
/* */
/* Sample programs for Master With Mechatrolink III */
/* */
/* The following functions illustrate various possibilities of how Mechatrolink */
/* master can operate (e.g. in synchronous and asynchronous communications.) */
/* The functions presented here can be called from a main() function to drive */
/* the application through the preferred communication style. */
/* */
/* */
/* */
/**/
/* Transmission Cycle : 500 usec */
#include "gbl.h"
#include "par.h"

// defines
#define HOST_IF_REGS_PTR 0x0f800000 // proc register start address
#define ASYNC_SND_SEQ 0
#define ASYNC_RCV_SEQ 1
#define MSG_SND_SEQ 0
#define MSG_RCV_SEQ 1

// Error code definitions
#define ERROR_MEASURE_TRANSDLY (-1) // A slave could not complete measure
 // transmission delay time
#define ERROR_ASIC_STATUS (-2) // Error occurred in ASIC
#define ERROR_SRAM_CHECK (-3) // SRAM read/write check error

// globals
// User setting parameter
CHANNEL_INFO chbuff; // Channel Buffer
USER_PAR usr_par; // Comm. Parameters
USER_IOMAP usr_io_map[DEF_MA_MAX+2]; // IO MAP Parameters

// Buffer
ULONG sbuff[DEF_MA_MAX+1][(DEF_CD_LEN >> 2)]; // Send Buffer
ULONG rbuff[DEF_MA_MAX+1][(DEF_RD_LEN >> 2)]; // Receive Buffer
ULONG c1msg_sbuff[(DEF_C1MSG_SIZE >> 2)]; // Send buffer for C1message comm.
ULONG c1msg_rbuff[(DEF_C1MSG_SIZE >> 2)]; // Receive buffer for C1message comm.
ULONG c2msg_sbuff[(DEF_C2MSG_SIZE >> 2)]; // Send buffer for C2message comm.
ULONG c2msg_rbuff[(DEF_C2MSG_SIZE >> 2)]; // Receive buffer for C2message comm.
ULONG async_sbuff[(DEF_ASYNC_DATA_SIZE >> 2)]; // Send Buffer for async comm.
ULONG async_rbuff[(DEF_ASYNC_DATA_SIZE >> 2)]; // Receive Buffer for async comm.

// Work for user setting
USHORT c1snd_msgsz; // Send message data size buffer
USHORT c1rcv_msgsz; // Receive message data size buffer
USHORT c2snd_msgsz; // Send message data size buffer
USHORT c2rcv_msgsz; // Receive message data size buffer
USHORT async_rcv_stadr; // Receive frame source address of async
 // comm. buffer
USHORT async_rcv_ftype; // Receive frame type of async comm. buffer
USHORT async_rcv_size; // Receive data size of async comm. buffer
USHORT async_sw; // Async. communication sequence flag
USHORT msg_sw; // Message communication sequence flag

// Status

DSPMechatrolink III Manual DSP Control Group, Inc. 21

USHORT c1msg_rcv_stat; // C1 message receive status
USHORT c1msg_snd_stat; // C1 message send status
USHORT c2msg_rcv_stat; // C2 message receive status
USHORT c2msg_snd_stat; // C2 message send status
USHORT async_rcv_stat; // Async. communication receive status

// Forward declarations
short init(void); // Initialize MECHATROLINK communication
 // (setup processor)
short exchange_sync(void); // Send/Recieve Link data in cyclic
 // communication(sync mode)
short exchange_async(void); // Send/Recieve Link data with async mode
short exchange_msg(void); // Send/Recieve message data
void set_usr_prm(USER_PAR* usr_par,
 USER_IOMAP* usr_iomapp); // Set user parameter
short check_ram(ULONG *hif_reg_top,
 USHORT size,
 ULONG chkdata); // SRAM read/write check

/***/
/* */
/* mst_init() */
/* */
/* Initialize MECHATROLINK communication Setup DSPMechatrolink communication processor)*/
/* */
/***/
short mst_init(void)
{
 CHANNEL_INFO* chbuffp; // Channel Buffer
 USHORT st_no; // Counter
 ULONG sti[2]; // Connection status
 short ret; // return code

 // Initialize value
 ret = WAIT_SETUP;
 async_sw = ASYNC_SND_SEQ;
 msg_sw = MSG_SND_SEQ;

 // Get the pointer of Channel Buffer
 chbuffp = &chbuff;

 // Setup ASIC
 while (ret == WAIT_SETUP)
 {
 ret = setup_asic((ULONG *)HOST_IF_REGS_PTR);
 if(ret == LIB_OK)
 {
 break;
 }
 else if(ret == ERROR_VERIFY_MICRO)
 {
 return(ret);
 }
 }

 // Check ASIC ready
 while ((ret = chk_asic_ready((ULONG *)HOST_IF_REGS_PTR)) != LIB_OK);

 // Check SRAM area
 ret = check_ram((ULONG *)HOST_IF_REGS_PTR, DEF_SRAM_SIZE, 0x5a5a5a5a);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 ret = check_ram((ULONG *)HOST_IF_REGS_PTR, DEF_SRAM_SIZE, 0xa5a5a5a5);
 if (ret != LIB_OK)
 {
 return(ret);

DSPMechatrolink III Manual DSP Control Group, Inc. 22

 }

 ret = check_ram((ULONG *)HOST_IF_REGS_PTR, DEF_SRAM_SIZE, 0xffffffff);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 ret = check_ram((ULONG *)HOST_IF_REGS_PTR, DEF_SRAM_SIZE, 0);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Set user parameters
 set_usr_prm(&usr_par, usr_io_map);

 // Communication processor initialization
 ret = initialize(chbuffp, (ULONG *)HOST_IF_REGS_PTR, &usr_par, usr_io_map);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // detect connecting slave
 ret = req_detect_slv(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Check if completed detecting connecting slave
 while ((ret = chk_detect_slv_cmp(chbuffp)) != LIB_OK)
 {
 if (ret == ERROR_TX_FRM)
 {
 ret = req_detect_slv(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }
 else if (ret != WAIT_CMP_DETECT)
 {
 return(ret);
 }
 }

 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 if (read_slvstat(chbuffp, st_no) < STSNUM_WAIT_MEASURE_DLY)
 {
 init_slave(st_no);
 }
 }

 // Activate user setting parameter
 ret = activate_comprm(chbuffp, &usr_par, usr_io_map);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Measure transmission delay time
 ret = req_measure_transdly(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }

DSPMechatrolink III Manual DSP Control Group, Inc. 23

 // Check if completed measuring transmit delay time
 while ((ret = chk_transdly_cmp(chbuffp)) != LIB_OK)
 {
 if (ret == ERROR_TX_FRM)
 {
 ret = req_measure_transdly(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }
 else if (ret != MEASURING_TRANSDLY)
 {
 return(ret);
 }
 }

 get_stistat(chbuffp, sti);
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 if (st_no < 32)
 {
 if (((sti[0] >> st_no) & 0x0001) != 0)
 {
 if (read_slvstat(chbuffp, st_no) != STSNUM_WAIT_TMCFRM)
 {
 handle_conn_up(st_no);
 }
 }
 }
 else
 {
 if (((sti[1] >> (st_no - 32)) & 0x0001) != 0)
 {
 if (read_slvstat(chbuffp, st_no) != STSNUM_WAIT_TMCFRM)
 {
 handle_conn_up(st_no);
 }
 }
 }
 }

 // Check that all slaves completed transmission delay time measurement
 for (st_no = 0; st_no < chbuffp->ma_max; st_no++)
 {
 ret = read_slvstat(chbuffp, st_no+1);
 if (ret == 0x0000)
 {
 continue;
 }
 else if (ret != STSNUM_WAIT_TMCFRM)
 {
 if (ret == ERROR_INVALID_STNO)
 {
 return(ret);
 }
 else
 {
 handle_slave_not_tx(st_no);
 }
 }
 }

 // Calculate response monitoring time and interrupt delay time
 ret = calc_dlytime(chbuffp, &usr_par, usr_io_map);
 if (ret != LIB_OK)
 {
 return(ret);

DSPMechatrolink III Manual DSP Control Group, Inc. 24

 }

 // Activate user setting parameter
 ret = activate_comprm(chbuffp, &usr_par, usr_io_map);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Inform communication mode to slave and C2 master
 ret = infm_cmode(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Check if completed informing communication mode and slave status
 while ((ret = chk_infm_cmode_cmp(chbuffp)) != LIB_OK)
 {
 if (ret == ERROR_INFM_CMODE)
 {
 if (chbuffp->prot_sel == 0)
 {
 // Retry to inform communication mode
 ret = infm_cmode(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }
 else
 {
 return(ret);
 }
 }
 else if (ret == ERROR_TX_FRM)
 {
 ret = infm_cmode(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }
 }

 // Start cyclic communication
 if (chbuffp->prot_sel == COM_MODE_SYNC)
 {
 ret = start_sync(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }
 else
 {
 ret = start_async(chbuffp);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 }

 return ret;
}

/***/
/* exchange_sync() */

DSPMechatrolink III Manual DSP Control Group, Inc. 25

/* */
/* Send/receive data processing for sync communication mode. This will copy */
/* received data from the communication processor’s response buffer to rbuff and */
/* copy data to send from sbuff to the communication processor’s command buffer. */
/***/
short exchange_sync(void)
{
 CHANNEL_INFO* chbuffp; // Channel Buffer
 ULONG rrcvstat[2]; // Receive status
 ULONG ests; // Error Status
 USHORT st_no; // Counter
 short ret; // Return code

 // Initialize value
 ret = OK;

 // Get the pointer of Channel Buffer
 chbuffp = &chbuff;

 // Start cyclic communication
 begin_cyclic_com(chbuffp);

 // Check communication processor status
 ests = read_comstat(chbuffp);

 // Get receive status
 get_rrcvstat(chbuffp, rrcvstat);

 // Iterate through all stations (slaves) and see if they have sent us data.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 // Check if we have received any data from this station (slave); if
 // not then continue on with checking next station. We may also
 // check the error status register at this point.

 // If we detect that we have received data, lets get it. Copy from
 // the communication processor to our buffer.
 ret = read_ldata(chbuffp, st_no, rbuff[st_no]);
 if (ret != LIB_OK)
 {
 return (ret);
 }

 process_station_data(st_no, rbuff[st_no]);
 }

 // Set up the data for the outgoing Interpolation Feed command.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {
 // Every entry is 4 bytes
 sbuff[st_no][0] = IFEED; // Constant, 0x34
 sbuff[st_no][1] = target_pos[st_no]; // Update its target position
 sbuff[st_no][2] = vel[st_no]; // Update its vff

 // Since we are doing interpolation feed, we shall be interested in
 // monitoring feedback position. The monitor code for this is 3. This
 // accounts for one byte. Then we have two unused bytes, followed by the
 // watchdog byte. Regarding the watchdog byte, we compose it with the
 // low 4 bits of our counter combined with the high 4 bits of what this
 // particular station sent us for a watchdog value.
 our_watchdog++;
 sbuff[st_no][3] = (((our_watchdog & 0x0f) + (rcvd_watchdog[st_no] & 0xf0))
<< 24) + 3;
 }

 // Iterate through all stations and if the station had sent data to us
 // then we will send data back to it.
 for (st_no = 1; st_no <= chbuffp->ma_max; st_no++)
 {

DSPMechatrolink III Manual DSP Control Group, Inc. 26

 // If we received something from a station then we send new data to it,
 // otherwise we continue on with checking the next station.

 // If we detect that we need to send, lets send. Copy from our buffer
 // to the communication processor.
 ret = write_ldata(chbuffp, st_no, sbuff[st_no]);
 if (ret != LIB_OK)
 {
 return (ret);
 }
 }

 return (ret);
}

/***/
/* exchange_async() */
/* */
/* Send/recieve data processing (async communication mode). */
/***/
short exchange_async(void)
{
 volatile HOST_IF_REGS *hirp; // Host I/F Top address
 CHANNEL_INFO* chbuffp; // Channel Buffer
 ULONG ests; // Error Status
 USHORT st_no;
 ULONG ret; // return code

 // Initialize values
 st_no = 1;
 ret = OK;

 // Set pointer of Channel Buffer
 chbuffp = &chbuff;
 hirp = chbuffp->hif_reg_top;

 // Send async frame
 if (async_sw == ASYNC_SND_SEQ)
 {
 ret = send_frame(chbuffp,
 DEF_ASYNC_PEER_ADR,
 DEF_ASYNC_FTYPE,
 async_sbuff,
 DEF_ASYNC_DATA_SIZE);

 if (ret == LIB_OK)
 {
 async_sw = ASYNC_RCV_SEQ;
 }
 else if (ret != SNDING_FRAME)
 {
 return(ret);
 }
 }

 // Receive async frame
 if (async_sw == ASYNC_RCV_SEQ)
 {
 ret = req_rcv_frame(chbuffp,
 &async_rcv_stadr,
 &async_rcv_stat,
 &async_rcv_ftype,
 async_rbuff,
 &async_rcv_size,
 (USHORT)DEF_ASYNC_RCV_TOUT_TIME);

 if (ret == RECEIVED_FRAME)
 {
 if ((async_rcv_stat == ASYNC_RCV_CMP) ||

DSPMechatrolink III Manual DSP Control Group, Inc. 27

 (async_rcv_stat == ASYNC_RCV_TIMOUT))
 {
 process_async();
 read_comstat(chbuffp);
 async_sw = ASYNC_SND_SEQ;
 }
 else
 {
 // Check communication processor status
 if ((ests = read_comstat(chbuffp)) != 0)
 {
 examine_comstat(chbuffp);
 return(ERROR_ASIC_STATUS);
 }
 return(async_rcv_stat);
 }
 }
 else if (ret != RCVING_FRAME)
 {
 return(ret);
 }
 }
 return(ret);
}

/***/
/* exchange_msg() */
/* */
/* Send/receive data processing (message communication). */
/***/
short exchange_msg(void)
{
 volatile HOST_IF_REGS *hirp; // Host I/F Top address
 CHANNEL_INFO *chbuffp; // Channel Buffer
 USHORT offset;
 USHORT ret; // return code

 // Initialize value
 ret = OK;

 // Set pointer of Channel Buffer
 chbuffp = &chbuff;
 hirp = chbuffp->hif_reg_top;

 // Set send message data size & offset
 offset = 0;

 // Message send sequence
 if (msg_sw == MSG_SND_SEQ)
 {
 // Set send data
 ret = write_msgdata(chbuffp,
 DEF_C1_MST,
 offset,
 DEF_C1MSG_SIZE,
 c1msg_sbuff);

 if (ret != LIB_OK)
 {
 return(ret);
 }

 // Request send message data
 while ((c1msg_snd_stat = req_snd_msgdata(chbuffp, DEF_C1_MST,
C1MSG_PEER_ADR, DEF_C1MSG_SIZE)) == SNDING_MSG);

 if ((c1msg_snd_stat == ERROR_MSG_ABORT) ||
 (c1msg_snd_stat == ERROR_BUSY_MSG))
 {

DSPMechatrolink III Manual DSP Control Group, Inc. 28

 msg_sw = MSG_SND_SEQ;
 }
 else
 {
 msg_sw = MSG_RCV_SEQ;
 }

 return(c1msg_snd_stat);
 }

 // Message receive sequence
 else if (msg_sw == MSG_RCV_SEQ)
 {
 msg_sw = MSG_SND_SEQ;
 // Request receive message data
 while ((c1msg_rcv_stat = req_rcv_msgdata(chbuffp, DEF_C1_MST,
C1MSG_PEER_ADR, &c1rcv_msgsz)) == RCVING_MSG);

 if (c1msg_rcv_stat == ERROR_MSG_ABORT)
 {
 msg_sw = MSG_RCV_SEQ;
 }

 // Get received messaged data
 if (c1msg_rcv_stat == LIB_OK)
 {
 ret = read_msgdata(chbuffp, DEF_C1_MST, offset, c1rcv_msgsz,
c1msg_rbuff);
 if(ret != LIB_OK)
 {
 return(ret);
 }
 }
 }
 return(ret);
}

/***/
/* set_usr_prm() */
/* */
/* Set user parameter. */
/***/
void set_usr_prm(USER_PAR *usr_parp, USER_IOMAP* usr_iomapp)
{
 USHORT ch;

 // set default user parameter setting
 usr_parp->mod = MOD_TYPE_C1MST | MOD_INT_FR;
 usr_parp->ma0 = 0x0001; // My Address(C1 Master:0x0001)
 usr_parp->ma_max = DEF_MA_MAX;
 usr_parp->t_mcyc = DEF_TMCYC; // Transmission cycle[10nsec]
 usr_parp->prot_sel = DEF_PROT_SEL; // sync mode
 usr_parp->max_rtry = DEF_MAX_RTRY; // Max. number of Retries per
 // Transmission cycle
 usr_parp->wdt = DEF_WDT; // Watch dog timer [8usec];
 // if wdt=0, WDT function disabled
 usr_parp->c2_dly = DEF_C2_DLY; // C2 delay time
 usr_parp->pkt_sz = DEF_PKT_SZ;
 usr_parp->dly_cnt = 1; // System parameter
 usr_parp->intoffset = DEF_INT_OFFSET; // Interrupt offset time [10nsec]

 // Set IOMAP parameters(C1 master)
 usr_iomapp->axis_adr = 0x0001; // Station address
 usr_iomapp->t_rsp = 1000; // Transmission response monitoring
 // time [10nsec]
 usr_iomapp->cd_len = 8; // Commando data length
 usr_iomapp->rd_len = 8; // Response data length

DSPMechatrolink III Manual DSP Control Group, Inc. 29

 // Set IOMAP parameters(slave)
 for (ch = 1; ch <= usr_parp->ma_max; ch++)
 {
 (usr_iomapp+ch)->axis_adr = 0x20 + ch; // Station address
 (usr_iomapp+ch)->t_rsp = DEF_TRSP; // Transmission response
 // monitoring time [10nsec]
 (usr_iomapp+ch)->cd_len = DEF_CD_LEN; // Command data length
 (usr_iomapp+ch)->rd_len = DEF_RD_LEN; // Response data length
 }
}

/***/
/* check_ram() */
/* */
/* SRAM read/write check. */
/***/
short check_ram(ULONG *hif_reg_top, USHORT size, ULONG chkdata)
{
 ULONG work;
 USHORT ofst, ret;

 // Initialize value
 ofst = 0;
 ret = OK;

 ret = write_ram((ULONG *)HOST_IF_REGS_PTR, 0, size, chkdata);
 if (ret != LIB_OK)
 {
 return(ret);
 }

 while (ofst < DEF_SRAM_SIZE)
 {
 ret = read_ram((ULONG *)HOST_IF_REGS_PTR, ofst, 4, &work);
 if (ret != LIB_OK)
 {
 return(ret);
 }
 if (work != chkdata)
 {
 return(ERROR_SRAM_CHECK);
 }
 ofst = ofst + 4;
 }
 return(ret);
}

