
DSPL
Application Programs v3.1

DSPL

Application Programs

v3.1

This documentation may not be copied, photocopied, reproduced, translated,
modified or reduced to any electronic medium or machine-readable form, in
whole or in part, without the prior written consent of DSP Control Group, Inc.

© Copyright 1997 DSP Control Group, Inc.
PO Box 39331
Minneapolis, MN 55439
Phone: (612) 831-9556
FAX: (612) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a
mechanical motion that could cause harm. DSP Control Group, Inc. is not
responsible for any accident resulting from misuse of its products.

DSPL, Mx4, Mx4pro and Vx4++ are trademarks of DSP Control Group, Inc.

Other brand names and product names are trademarks of their respective
holders.

DSPCG makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a
particular purpose, regarding the licensed materials.

DSPL Application Programs v3.1 i

Contents

1 Motion Pallet.. 1-1

Point-to-Point Move Family .. 1-1
Linear Move Family... 1-3
Cubic Spline Interpolation Move ... 1-4
Arc and Circular Interpolation Moves.. 1-5
Master Slave Command Family.. 1-6

2 Simple Point-to-Point Moves .. 2-1

Simple Trapezoidal Move .. 2-2
Simple Triangular Move .. 2-2
S-Curve Trapezoidal Move.. 2-3
S-Curve Triangular Move.. 2-4
Time Based Trapezoidal Move .. 2-5

3 Time Based Motion Programs ... 3-1

4 Linear & Circular Moves .. 4-1

Constant Acceleration Linear Move... 4-1
Combined S-Curve Linear & Circular Moves............................. 4-3
Combined Linear & Arc Moves ... 4-4

5 Electronic Gearing Programs .. 5-1

Contents

ii

6 Homing Programs.. 6-1

Single-Axis Homing... 6-1
Multi-Axis Homing.. 6-3

7 External Signal Interrupt.. 7-1

High Speed Position Capture Using External Interrupt............... 7-1

8 Position Break-Point Interrupt ... 8-1

Position Break-Point Activated Outputs 8-1
Axis Exceeds Set Position Interrupt... 8-2

9 Motion Complete Interrupt ... 9-1

10 Moves in Polar Coordinates ... 10-1

Polar Coordinate Move, ‘main.hll’ ... 10-2
Point Retrieving Subroutine, ‘get_a_point.hll’.......................... 10-3
Polar to Cartesian Xformation, ‘coordinate_xfer.hll’ 10-4

11 Rotary Axis Tangent ... 11-1

Rotary Axis Tangent to x-y Trajectory..................................... 11-1

 Contents

DSPL Application Programs v3.1 iii

12 Cubic Spline Programming... 12-1

Introduction .. 12-1
Cubic Spline Trajectory on A Single Axis 12-2
Cubic Spline Trajectory on Two Axes...................................... 12-5
Dynamic Scaling and Coordinate Transformation..................... 12-7
High Speed Moves with User Defined Trajectories 12-9
3-Axis Moves with Automatic Time/Length Computation...... 12-19
4-Axis Moves with Automatic Time/Length Computation...... 12-25
Appendix A ... 12-31

13 Cam Applications .. 13-1

Simple Cam Function with
One Master & up to Three Slaves.. 13-1
Use of Multiple Mx4 Cards in Cam Master/Slaving.................. 13-5
Cam Operation with Dynamic Error
Correction on Slaves ... 13-7

Contents

iv

This page intentionally blank.

These commands facilitate point to point moves. Their function is simple: given the current and target positions, find a
trapezoid or an s-curve path velocity to achieve the target. All commands in this family complete the motion (i.e. they
bring the system to a complete stop.)

DSPL Application Programs v3.1 1-1

axmove A trapezoidal move which uses traveling
speed, acceleration and end point for its
arguments. In a trapezoidal move the
acceleration to reach slew speed is con-
stant. Also, the time to achieve the tar-
get position is a function of this move’s
arguments.

axmove_s The arguments for this move are similar
to those for AXMOVE - except, this
command produces S curve velocity.
Due to its finite jerk (derivative of accel-
eration with respect to time) compared
to AXMOVE this command is gentler
to the mechanical structure. You may
achieve a better result with
AXMOVE_S, when high acceleration
AXMOVE results an unacceptable over-
shoot. Also, it must be noted that com-
pared to AXMOVE, AXMOVE_S takes
the same amount of time to finish the
move.

axmove_t

This command generates a trajectory
similar in shape to AXMOVE except its
arguments are, end position and time to
finish a move. The instruction will auto-
matically generate the trapezoidal profile
to finish the move in a programmed
time.

1 Motion Pallet
Point-to-Point Move Family

1-2

rel_axmove An instruction similar to AXMOVE,
only its target point is relative to the cur-
rent position.

rel_axmove_s An instruction similar to AXMOVE_S,
only its target point is relative to the
current position.

rel_axmove_t An instruction similar to AXMOVE_T,
only its target point is relative to the
current position.

rel_axmove_slave This instruction produces a super-
imposed move on the slave axes in a
master slave application. Therefore, a
slave will move a programmed
REL_AXMOVE on the top of its slave
motion.

velmode Velocity mode instruction regulates
speed of a machine. It follows a
trapezoidal profile to reach the
slew speed.

velocity

velocity

time

slave_pos

master_pos

time

time

time

velocity

Motion Pallet

velocity

DSPL Application Programs v3.1 1-3

linear_move This command brings a system form its
current position and speed to a target
position and speed over a linear speed
trajectory. Its arguments are target posi-
tion and velocity.

linear_move_s This command brings a system form its
current position and speed to a target
position and velocity over an S-curve

speed trajectory. Its arguments are cur-
rent position/velocity, target position/
velocity, acceleration and move time.

linear_move_t This command is similar to
LINEAR_MOVE except its arguments
are final position and time to reach the
final position. The command will gen
erate a linear speed (within the maxi
mum programmed acceleration) to
achieve the position within the pro
grammed time period.

velocity

Motion Pallet

time

time

velocity

Linear Move Family
These commands facilitate segment moves. Their function is simple: given the current position and speed,
they achieve a programmed target position/velocity by moving over a linear (or s-curve) velocity path. All
commands in this category perform a segment motion (i.e. depending on target speed they may or may not bring
the system to a complete stop).

velocity

time

1-4

cubic_int Using Cubic Spline interpolation, the
user points specified by their positions
and time interval (rate) can be connect
ed together. The CUBIC_INT instruc
tion arguments are:

1) number of move parameters to run;
2) initial index to move parameter

table and;
3) number of times to loop through the

selected points.

cubic_scale This command performs a combination
of shift and scale on the move parame
ters. Shift relocates the origin of
Cartesian coordinate and scale attenu
ates or magnifies the moves.

cubic_rate CUBIC_RATE determines the time
interval between two adjacent points.
This instruction’s argument, time, can
be changed on the fly.

/

shift & scale

time

/

position

/

velocity

Motion Pallet

time

Cubic Spline Move

rate

position velocity

Arc and Circular Moves
These commands facilitate arcs, full circle or a circle with compensation for backlash or other non-linearity.

arc The arc command performs an arc using
the following arguments.

center (x,y)
radius,
feedrate,
target (x,y) relative to current posi-

tion

circle The circle command performs a circle
using the following arguments:

center (x,y)
radius
feedrate

sine_on This instruction turns on the sinusoidal
interpolation involved in a circular

motion.

sine_off This instruction turns off the sinusoidal
interpolation involved in a circular

motion.

table_on Turns on a normalized and user
programmable path compensation table
that will be added to the sinusoidal

table used in a circular interpolation.

table_off This instruction is opposite of
TABLE_ON.

Motion Pallet

DSPL Application Programs v3.1 1-5

t a r g e t

f e e d r a t e

+

 (x , y)

f e e d r a t e

1-6

gear This command puts a selected number of
axes (slaves) in ratioing relationships
with master.

gear_probe This instruction is similar to GEAR
except gear is engaged at active transi
tion of an external signal (referred to as
probe) from high to low.

gear_pos This instruction is similar to GEAR
except gear is engaged when position is
passed a programmed value, p1.

gear_off This command disengages master and
slave instantly.

gear_off_acc This command disengages master and
slave instantly. Slave stops at the
deceleration rate programmed by MAX
ACC.

Master Slave Command Family

Motion Pallet

cam This instruction uses the selected
master, selected slaves and the table
number into which cam gear ratios
have been already downloaded.

cam_tsize This instruction uses the table number
and size of cam table as its arguments.

cam_probe This instruction is similar to CAM
except CAM is engaged at active
transition of external signal (probe)
from high to low.

cam_pos This instruction is similar to CAM
except CAM is engaged when posi-
tion is passed a programmed value.

DSPL Application Programs v3.1 1-7

Motion Pallet

1-8

cam_off This command disengages master and
slave instantly.

cam_off_acc This command disengages master and
slaveinstantly. Slave stops at the deceler-
ation rate programmed by MAXACC.

rel_axmove_slave This instruction produces a super-
imposed move on the slave axes in a
master slave application. Therefore, a
slave will move a programmed position
move in addition to its slave move.

Move Pallet

DSPL Application Programs v3.1 2-1

2 Simple Point-to-Point Moves

Simple Trapezoidal Move

This simple motion program moves motor one from a preset position to a new
position with a specified velocity profile characterized by its slew rate and
acceleration.

time

velocity

time

-0.01

0.01

5.0

0

acceleration

trapezoid:

pos_preset(0x1,0)
axmove(0x1,0.010,5000,5.0)

end

Simple Point-to-Point Moves

2-2

Simple Triangular Move

This program moves motor one from an initial position of 0 to a final position of
5,625 counts on a triangular velocity profile. This profile uses an acceleration of
0.0025 counts/(200 µs)2 and target velocity of 5.0 counts/200µs.

time

velocity

time

acceleration

3.75

0

0.0025

-0.0025

triangle:

pos_preset(0x1,0)
axmove(0x1,0.0025,5625,5.0)

end

Simple Point-to-Point Moves

DSPL Application Programs v3.1 2-3

S-Curve Trapezoidal Move

This simple motion program moves motor one from a preset position to a new
position with a specified s curve velocity profile characterized by its slew rate
and acceleration. Note that the maximum acceleration achieved in the move
will be twice that programmed as the acceleration argument.

time

velocity

time
-0.01

0.01

5.0

0

acceleration

scurve_trapezoid:

pos_preset(0x1,0)
axmove_s(0x1,0.010,5000,5.0)

end

Simple Point-to-Point Moves

2-4

S-Curve Triangular Move

This program moves motor one from an initial position of 0 to a final position of
5,625 counts on a triangular s curve velocity profile. This profile uses an
acceleration of 0.0025 counts/(200 µs)2 and target velocity of 5.0 counts/200µs.

time

velocity

time

acceleration

3.75

0

0.0025

-0.0025

scurve_triangle:

pos_preset(0x1,0)
axmove_s(0x1,0.0025,5625,5.0)

end

Simple Point-to-Point Moves

DSPL Application Programs v3.1 2-5

Time Based Trapezoidal Move

This program moves motor one from an initial position of 0 to a final position
of 20000 counts in 500 ms (or 2500*200µs) at acceleration = 1 count/(200 µs)2.
Velocity for this move will be automatically calculated by the Mx4.

time

velocity

5.0

0.5 s

time_trapezoid:

pos_preset(0x1,0)
axmove_t (0x1,1,20000,2500)

end

Simple Point-to-Point Moves

2-6

This page intentionally blank.

DSPL Application Programs v3.1 3-1

3 Time Based Motion Programs

In the following application a series of moves for multiple joints are to be
completed within the specified times: t1,t2,... respectively. This means that
all motors must reach their intermediate target positions (posx,posy,posz and

posw) simultaneously. The DSPL instruction AXMOVE_T is ideal for this
application. It is important to note that a real time execution of AXMOVE_T(or
AXMOVE)with its new move parameter(s) will intercept the one in progress.
There are two ways to supply a DSPL program with target positions (and/or
other move parameters). The first method allows the host to update move
parameters using real time command CHANGE_VAR. This command is provided
with the Mx4 C++ /Visual Basic 32-bit DLL. In the second method the DSPL
retrieves the move parameters from its own table memory. Alternatively, the
DSPL can use its own floating point math for real time computation of move
parameters.

1

2

3

4

Time Based Motion Programs

3-2

1) Host updates the target positions to reach in a specified time

In this case host updates the target points. The communication protocol between
DSPL and host programs is as follows. First, the DSPL resets flag = 0 to let host
program know it can update target points. Host uses command CHANGE_VAR to
update the target points. Upon the completion of variable update, host sets the flag
= 1 to let DSPL program know update is finished. The DSPL uses the recently
updated variables as arguments for AXMOVE_T command and resets the flag = 0 to
let the host program know that once again host is allowed to update target points.

#define accx var2
#define posx var3
#define t var4
#define accy var5
#define posy var6
#define accz var7
#define posz var8
#define accw var9
#define posw var10
#define flag var11

#include “init_mx4.hll”

plc_program

run_m_program(move_arm)

plc_end

move_arm:
call(init_mx4) ;initialize the gains
t = 200 ;set time to 200*200µsec = 40 ms
flag = 0 ;tell the host it can update motion parameters
wait_until(flag == 1) ;wait until host finished updating parameters

 while (var1 == 1)
 axmove_t(0xf, accx, posx, t, accy, posy, t, accz, posz, t, accw, posw, t)
 flag = 0 ;tell host it can change move parameters
 wait_until(cpos 1 == posx);wait until move is finished
 wait_until(flag == 1) ;host sets flag upon updating motion parameters
 wend
end

Time Based Motion Programs

DSPL Application Programs v3.1 3-3

2) DSPL calculates/retrieves the target positions to reach in a
specified time

In this case, the target points are retrieved from the Mx4 table memory. The
subroutine, get_points performs this data retrieval. The variable size holds the
number of prestored target points. To download target position to the Mx4 table
memory, you may use the download position facility provided with Mx4pro v4.

#define size var1
#define accx var2
#define posx var3
#define t var4
#define accy var5
#define posy var6
#define accz var7
#define posz var8
#define accw var9
#define posw var10
#define flag var11

#include “mx4_init.hll”

plc_program
run_m_program(move_arm)

plc_end

move_arm:
t = 200 ;set time to 200*200µsec = 40 ms
accx = 1
accy = 1
accz = 1
accw = 1

size = 500 ;the total number of moves

call(get_points)
 while (size >= 1)
 axmove_t(0xf, accx, posx, t, accy, posy, t, accz, posz, t, accw, posw, t)

targetx = posx
call(get_points)
wait_until(cpos 1 == targetx) ;wait until move is finished
var1 = var1 - 1

 wend

Time Based Motion Programs

3-4

get_points:
posx = table_p(index) ;retrieve one set of 32-bit target points
index = index + 2
posy = table_p(index)
index = index + 2
posz = table_p(index)
index = index + 2
posw = table_p(index)

ret()
end

DSPL Application Programs v3.1 4-1

4 Linear & Circular Moves

Constant Acceleration Linear Move

The linear motion commands are used in motions where the velocity connecting
point A to point B is linear. The starting position/velocity (defining point A) are
those of an axis at the commencement of this command. The ending position and
velocity are the command’s arguments. The following example will trace a square
shape as illustrated below.

 Axis 2 POS (counts)

 Axis 1 POS (counts)

30000 B

A C

D

20000

10000 20000 30000

plc_program:

run_m_program (square)

end_program

square:
var23=1
ctrl(0x3,0,1000,1000,1000,0,1000,1000,1000)

;set control gains for motor 1
pos_preset(0x3,10000,20000) ;point A
while(var23==1)

linear_move(0x3,15000,5,25000,5) ;point AB/2
linear_move(0x3,20000,0,30000,0) ;point B

linear_move(0x3,25000,5,25000,-5) ;point BC/2
linear_move(0x3,30000,0,20000,0) ;point C

linear_move(0x3,25000,-5,15000,-5) ;point CD/2

Linear & Circular Moves

4-2

linear_move(0x3,20000,0,10000,0) ;point D

linear_move(0x3,15000,-5,15000,5) ;point DA/2
linear_move(0x3,10000,0,20000,0) ;point A

wend
end

Linear & Circular Moves

DSPL Application Programs v3.1 4-3

Combined S-Curve Linear & Circular Moves

From position A (1000,1000) counts, move axes one and two to position
(3000,2500) where the axes complete 360° of a circle centered at (4500,500). The
circle feedrate is 1.0 counts/200µs.

3000

500

A1000

2000

2500

1000 2000 3000 7000

B

4500

-2000

r = 2500

= 323 degrees Θ

Axis 2 POS (counts)

Axis 1 POS (counts)

circular:

pos_preset(0x3,1000,1000) ;preset position counters to
;point A

linear_move_s(0x3,1000,0,3000,0.8,5000,0.00030,1000,0,2500,0.6,500
0,0.00023)

;linear move from A to B
circle(0x3,1500,-2000,2500,1.0,0,0)

;circle from B to B (360
;degrees clockwise)

end

Linear & Circular Moves

4-4

Combined Linear & Arc Moves
This example demonstrates how to move an x-y table according to the shape
illustrated below.

15000

5000

5000 15000

L K

M J

F E

DG

CB

I H

A

Axis 2 POS (counts)

Axis1 POS (counts)

r = 2000 r = 2000

r = 1000

13000
12000

8000
7000

7000

6000

U-Shape:

pos_preset(0x3,3000,1000) ;preset position counters
axmove(0x3,0.004,7000,1.0,0.004,5000,1.0)

;from A to B
wait_until(CPOS1==7000) ;wait for completion of A

;to B motion

linear_move_s(0x1,7000,0,13000,1.0,0,0)
;from B to C

circle(0x3,0,2000,2000,-1.0,2000,2000)
;from C to D

linear_move_s(0x2,7000,1.0,15000,0,0,0)
;from D to E

wait_until((CPOS2==15000) and (CVEL2==0))
;wait for completion of D
;to E motion

axmove(0x1,0.004,13000,-1.0) ;from E to F
wait_until((CPOS1==13000) and (CVEL1==0))

;wait for completion of E
;to F motion

linear_move_s(0x2,15000,0,7000,-0.4,0,0)
;from F to G

Linear & Circular Moves

DSPL Application Programs v3.1 4-5

circle(0x3,-1000,0,1000,0.4,-1000,-1000)
;from G to H

linear_move_s(0x1,12000,-0.4,8000,-0.4,0,0)
;from H to I

circle(0x3,0,1000,1000,0.4,-1000,1000)
;from I to J

linear_move_s(0x2,7000,0.4,15000,0,0,0)
;from J to K

wait_until((CPOS2==15000) and (CVEL2==0))
;wait for completion of J
;to K motion

axmove(0x1,0.004,5000,-1.0) ;from K to L
wait_until((CPOS1==5000) and (CVEL1==0))

;wait for completion of K
;to L motion

linear_move_s(0x2,15000,0,7000,-1.0,0,0)
;from L to M

circle(0x3,2000,0,2000,-1.0,2000,-2000)
;from M to N

end

Linear & Circular Moves

4-6

This page intentionally blank.

DSPL Application Programs v3.1 5-1

5 Electronic Gearing Programs

The four applications that will be covered in this section include:

1) Single gear ratio motion program
2) Variable gear ratio motion program
3) Engage in electronic gearing when external signal changes state
4) Engage in electronic gearing when master passes a programmed position

Illustrated below is an example of a packaging process that includes two
conveyor belts. The upper belt contains the products equally positioned in
between the logs. The master motor moves the product and drops each into the
buckets. Clearly, this calls for a gearing mechanism that engages the master
and slave, the conveyor belt moving the buckets. The gear ratio in this example
is determined by the ratio of the space between the centers of adjacent buckets
and the space between the products. In the following example, the motion
program runs only one master/slave line. This line states master is motor 1,
slave is motor 2 and gear ratio is 2.

Master

Slave

v

2v

Gear Ratio = 2.0

Electronic Gearing Programs

5-2

1) Single gear ratio motion program

#define master var2
#define slave var3

#include “init_mx4.hll”

plc_program
run_m_program(electronic_gearing)

end_plc

master = 1 ;select axis 1 as master
slave = 2 ;select axis 2 as slave

electronic_gearing:
gear(master, slave, 2)

end

2) Variable gear ratio motion program

In this example, motion program electronic_gearing starts an endless loop in
which variable gear_ratio (VAR4) is continually updated. You may use the
second task (permitted in DSPL programming) to calculate gear_ratios on-
the-fly. Alternatively, if the host is to update gear_ratios, the host based real
time command CHANGE_VAR (contained in Mx4 C++ or Visual Basic DLL) can
be used to update VAR4.

#define master var2
#define slave var3
#define gear_ratio var4
#include “init_mx4.hll”

plc_program
run_m_program(electronic_gearing)

end_plc

master = 1 ;select axis 1 as master
slave = 2 ;select axis 2 as slave
gear_ratio = 2

Electronic Gearing Programs

DSPL Application Programs v3.1 5-3

electronic_gearing:

while (var1 == 1) ;changing var1 (by host) disengages slave
gear(master, slave, gear_ratio)
delay(100)

wend
gear_off_acc(2)

end

3) Engage in electronic gearing by an external signal

In this example, the slave is geared to the master motor only if the pulse sent by
the electronic eye is switched to logic zero. This feature is useful in ap-
plications where there may be a problem on the line such as missing bucket.

v

2v

Master

Slave

Missing Buckets

Electronic Eye

EncodersProbe (*EXTx)

Mx4

Electronic Gearing Programs

5-4

#define master var2
#define slave var3
#define gear_ratio var4
#include “init_mx4.hll”

plc_program
run_m_program(electronic_gearing)

end_plc

master = 1 ;select axis 1 as master
slave = 2 ;select axis 2 as slave
gear_ratio = 2

electronic_gearing:

velmode (1,5) ;put master in velocity control mode

gear_probe(master, slave, 1, gear_ratio)

wait_until(INP1_REG & 0x0002) ;wait until stop button is pushed
gear_off_acc(2)

end

Electronic Gearing Programs

DSPL Application Programs v3.1 5-5

4) Engage in electronic gearing when master passes a
programmed position

Products on the conveyor belt moved by the master motor are positioned
uniformly. The slave motor cuts the film connecting the two adjacent products.
The result of this cut is unsatisfactory if the knife lands vertically. It is
preferred that while landing, the knife edge travels and is tightly geared to the
position of film that must be cut. This is shown in the following figure.

Slave

Master

Electronic Gearing Programs

5-6

#define master var2
#define slave var3

#include “init_mx4.hll”

plc_program
run_m_program(electronic_gearing)

end_plc

master = 1 ;select axis 1 as master
slave = 2 ;select axis 2 as slave
gear_ratio = 1

electronic_gearing:

gear_pos(master, slave, gear_ratio, 200);engage when master passed 200
velmode (1,5) ;start master move
wait_until(INP1_REG & 0x0002) ;wait for stop button
gear_off_acc(2) ;stop slave
stop(1) ;stop master

end

DSPL Application Programs v3.1 6-1

6 Homing Programs

Single-Axis Homing

This program describes automatic homing for an axis. We assume that axis 1 home switch is
connected to the Mx4 input IN1. The negative and positive homing speeds are set to a small
value.

The process of homing starts with driving toward the home switch. Upon the recipt of this
signal the axis decelerates to a stop, index (marker) pulse interrupt is enabled and a move in
opposite direction is initiated. Upon the recipt of index pulse interrupt, the location of index
pulse is saved in reference_pos and the axis decelerates to a stop. The move parameter,
reference_pos, in conjunction with trapezoidal move command, AXMOVE, will drive the axis
to the marker position.

#define neg_homing_vel var2
#define pos_homing_vel var3
#define reference_pos var4

plc_program:

 run_m_program(go_home)

end

go_home:
 neg_homing_vel = -.5 ;negative homing velocity
 pos_homing_vel = .1 ;positive homing velocity

 ; Assume the Mx4 Input IN1 is connected to the home position switch.

 velmode(0x1, neg_homing_vel) ;move toward home switch

 wait_until(inp1_reg & 0x0002) ;while home switch isn't set

 int_reg_clr(0x0001, 0x1) ;clear index pulse interrupt
 en_index(0x1) ;enable index pulse interrupt ax1

Homing Programs

6-2

stop(0x1) ;stop immediately

while(~index_reg & 0x0001) ;while no index interrupt set
 velmode(0x1, pos_homing_vel) ;move towards home
wend
stop(0x1) ;stop immediately

 reference_pos = index_pos1 ;reference position saves the marker position
 axmove(1, .1, reference_pos, neg_homing_pos)

 ;go to reference position
end

Homing Programs

DSPL Application Programs v3.1 6-3

Multi-Axis Homing

This program describes automatic homing for multiple axes. We assume that axis 1 and
axis 2 home switches are connected to the Mx4 inputs IN1 and IN3 respectively. The
negative and positive homing speeds are set to small values. The process of homing
starts with driving toward the home switches. Upon receipt of these signals the two axes
decelerate to a stop, index (marker) pulse interrupt is enabled and a move in opposite
direction is initiated. Upon the receipt of index pulse interrupt, the locations of these
index pulses are saved in reference_pos1 and reference_pos2, and both axes
decelerate to a stop. The move parameters, reference_pos1, and reference_pos2, in
conjunction with trapezoidal move command, axmove, will move the axes to the marker
position.

#define neg_homing_vel var2
#define pos_homing_vel var3
#define reference_pos1 var4
#define reference_pos2 var5

plc_program:

run_m_program(go_home)

end

go_home:
 neg_homing_vel = -.5 ;negative homing velocity
 pos_homing_vel = .1 ;positive homing velocity

 velmode(0x3, neg_homing_vel, neg_homing_vel) ; move toward home switch

 wait_until((inp1_reg & 0x0002) OR (inp1_reg & 0x0004))
 ; wait for home switches for axis 1 or

 ; axis 2 to set
 stop(0x3) ;stop axis 1 & 2 immediately
 while(~inp1_reg & 0x0002) ;test to see if axis 1 is at home

velmode(0x1, neg_homing_vel);axis 1 go towards home switch
 wend
 stop(0x1) ;stop axis 1 immediately

 while(~inp1_reg & 0x0004) ;test to see if axis 2 is at home
velmode(0x2, var2) ;axis 2 go towards home switch

 wend
 stop(0x2) ;stop axis 2 immediately

Homing Programs

6-4

int_reg_clr(0x0001, 0x1) ;clear index pulse interrupts
en_index(0x1) ;enable index pulse interrupt ax1 & 2

while(~index_reg & 0x0001) ;while no index interrupt set
 velmode(0x1, var3) ;move towards home
wend
stop(0x1)

int_reg_clr(0x0001, 0x2) ;clear index pulse interrupts
en_index(0x2) ;enable index pulse interrupt ax1 & 2

while(~index_reg & 0x0002) ;while no index interrupt set
 velmode(0x2, var3) ;move towards home
wend
stop(0x2)

reference_pos1 = index_pos1 ; reference position saves the marker position
reference_pos2 = index_pos2 ; reference position saves the marker position
axmove(0x3, .1, reference_pos1, neg_homing_pos, .1, reference_pos2, neg_homing_pos)

 ; go to reference position
end

DSPL Application Programs v3.1 7- 1

7 External Signal Interrupt

High Speed Position Capture Using External Interrupt

This program describes high speed position capture using external interrupt signal (*EXTx,
referred to as probe).

The program will first run axis 1 in velocity mode. Second, one of the two external interrupts
(*EXT2) is enabled. This is done after this signal’s corresponding interrupt register is cleared.
Upon the recipt of probe interrupt, the captured positions for axes 1 through 4 are saved. To
indicate the termination of capture, and only as a test, we preset the position of axis 4 to this value.
Make sure axis 4 is not connected to an amplifier or amplifier is disabled.

#define captured_pos1 var3
#define captured_pos2 var4
#define captured_pos3 var5
#define captured_pos4 var6

plc_program:
run_m_program (capture_position)

end

capture_position:

 velmode(0x1, 1)

 int_reg_clr(0x0008, 0x2) ; clear probe_int register
 en_probe(2, 2) ; enable probe 2, and echo to DPR

 wait_until(probe_reg & 0x0002) ; wait for probe 2

 captured_pos1 = probe_pos1 ; position of axis 1 at time of probe int
 captured_pos2 = probe_pos2 ; position of axis 2 at time of probe int

 captured_pos3 = probe_pos3 ; position of axis 3 at time of probe int
 captured_pos4 = probe_pos4 ; position of axis 4 at time of probe int

 pos_preset(0x8, captured_pos4) ; preset position of axis 4 to indicate ;capture

end

External Signal Interrupt

7-2

This page intenionally blank.

DSPL Application Programs v3.1 8-1

8 Position Break-Point Interrupt

Position Break-Point Activated Outputs

The position break-point interrupt is helpful in applications where interrupt is to be
generated based on the position of an axis passing a programmed set point while move is in
progress. The DSPL command which initiates such interrupt is EN_POSBRK. In addition to
generation of interrupt, DSPL command POSBRK_OUT sets the programmed logic outputs.

The following DSPL program enables position break-point interrupt. This is done after
clearing the corresponding interrupt register and programming the outputs to turn on (see
POSBRK_OUT) at the break-point position. The position break-point interrupt is enabled to
trigger at x=15000 and at y=15000. This is followed by a trapezoidal move command
AXMOVE to move both axes to positions 28000. Clearly, in the process of achieving 28000,
they must pass 15000 at which point interrupt is generated. The receipt of this interrupt is
acknowledged by seven(7) output signals turned on. Next the position break-point
interrupt is re-enabled to trigger at location x=3000 y=3000. The second AXMOVE command
moves axes 1 and 2 to positions 0 and 0. The program waits until a position break-point
interrupt is generated. This happens while move is in progress. The receipt of this
interrupt is acknowledged by turning off all previously turned on signals.

plc_program:

 run_m_program (set_output_logic)

end

set_output_logic:

 int_reg_clr(0x0002, 0x3) ;clear the pos_brk int register
 posbrk_out(0x1,0x1555,0x0000) ;set output on mask
 en_posbrk(0x3, 15000, 15000) ;enable position interrupt for axes 1,2

;to set at x=15000, y= 15000

Position Break-Point Interrupt

8-2

axmove(0x3, .1, 28000, 5, .1, 28000, 5)
wait_until(posbrk_reg & 0x0003) ;wait until position passed 15000

int_reg_clr(0x0002, 0x3) ;clear the pos_brk int register
posbrk_out(0x1,0x0000,0x1555) ;set outputs off
en_posbrk (0x3, 3000, 3000) ;enable position break-point

;to set at x=3000, y= 3000
axmove(0x3, .1, 0, 5, .1, 0, 5)
wait_until(posbrk_reg & 0x0003) ;wait until position passed 3000

end

Axis Exceeds Set Position Interrupt

Position break-point interrupt is helpful in applications where interrupt is
generated based on the position of an axis passing a programmed set point
during the move. The DSPL command which will initiate such interrupt is
EN_POSBRK

The program first enables position break-point interrupt. This is done after
clearing the corresponding interrupt register. The positions break-point
interrupt is enabled to trigger at x=15000 and y=15000. This is followed by a
trapezoidal move command AXMOVE to move both axes to position 28000.
Clearly, in the process of achieving 28000, position will pass 15000 at which
point interrupt is generated. The receipt of this interrupt is acknowledged by
presetting axis 4 to 444. Make sure axis 4 is not connected to an amplifier.
Next the position break-point interrupt is re-enabled to trigger at location
x=3000 y=3000. The second AXMOVE command moves axes 1 and 2 to positions
0 and 0. The program waits until a position break-point interrupt is generated.
This happens while move command is in progress. The receipt of this interrupt
is acknowledged by presetting axis 4 to 555.

plc_program:

run_m_program (issue_position_int)

end

issue_position_int:

int_reg_clr(0x0002, 0x3) ;clear the pos_brk int register
en_posbrk(0x3, 15000, 15000) ;enable position interrupt for axes 1,2

;to set at x=15000, y= 15000

Position Break-Point Interrupt

DSPL Application Programs 8-3

axmove(0x3, .1, 28000, 5, .1, 28000, 5)
wait_until(posbrk_reg & 0x0003) ;wait until position passed 15000

pos_preset(0x8, 444) ;indicate the occurrence of the interrupt

int_reg_clr(0x0002, 0x3) ;clear the pos_brk int register
en_posbrk (0x3, 3000, 3000) ;enable position break-point

;to set at x=3000, y= 3000
axmove(0x3, .1, 0, 5, .1, 0, 5)
wait_until(posbrk_reg & 0x0003) ;wait until position passed 3000
pos_preset(0x8, 555) ;indicate the occurrence of this interrupt

end

Position Break-Point Interrupt

8-4

This page intentionally blank.

DSPL Application Programs v3.1 9-1

9 Motion Complete Interrupt

Motion complete (MC) interrupt indicates the completion of motion generated
by the following commands:

AXMOVE (all family members)
STOP
CUBIC_INT

MC interrupt, doesn’t need to be re-enabled each time one is generated.
However, to detect additional MC interrupts, after each MC occurrence, the MC
interrupt register must be cleared.

The program first enables the motion complete interrupt. This is done after the
signals interrupt register is cleared. A trapezoidal motion command (AXMOVE)
for axes 1 and 2 moves these axes to position 30000. Upon the receipt of an MC
interrupt we preset the position of axis 4 (unconnected to an amplifier) to the
value 444. Next, the MC interrupt register is cleared to accept another
interrupt. The second AXMOVE command moves axes 1 and 2 back to position 0,
0. Upon the receipt of an MC interrupt we preset the position of axis 4 to the
value 555.

plc_program:

run_m_program (motion_complete_int)

end

motion_complete_int:

int_reg_clr(0x4, 0x3) ;clear motion complete interrupt reg
en_motcp(0x3) ;enable motion complete interrupt
axmove(0x3, .1, 30000, 5, .1, 30000, 5)
wait_until(motcp_reg & 0x0003);wait for motion of axes 1&2 completed
pos_preset(0x8, 444) ;indicate the completion of motion
int_reg_clr(0x4, 0x3) ;clear motion complete interrupt reg

axmove(0x3, .1, 0, 5, .1, 0, 5) ;move axes back to the starting point
wait_until(motcp_reg & 0x0003) ;wait until motion is completed
pos_preset(0x8, 555)

end

Motion Complete Interrupt

9-2

This page intentionally blank

DSPL Application Programs v3.1 10-1

10 Moves in Polar Coordinate

This application describes the DSPL programming for moves in polar co-
ordinate.

y

x

z

p1
p2

p3

φ

Θ
r1

The application program moves a three-axis motion system from p1 to p2 and
p3 in the polar coordinate. The three points, p1, p2 and p3 are characterized by
their r, Θ and φ as follows:

p1: r1, Θ1 and φ1

p2: r2, Θ2 and φ2

p3: r3, Θ3 and φ3

The following illustrates “main.hll” that performs the required moves. This
program uses external routines contained in programs “coordinate_xfer.hll”
and “get_a_point.hll”.

Moves in Polar Coordinate

10-2

Polar Coordinate Move, ‘main.hll’

#define x var20
#define y var21
#define z var22

#define teta var23
#define phi var24
#define r var25
#define indexvar26
#include “coordinate_xfer.hll”
#include “get_a_point.hll”

plc_program:

run_m_program (move_in_polar_coordinate)

end_plc

move_in_polar_coordinate:

var1 = 1
while (var1 == 1)

 call (get_a_new_point) ;get a point provided by either
 call (polar2cartesian) ;the Mx4(case 1) or the host(case 2)

wend
end

Moves in Polar Coordinate

DSPL Application Programs v3.1 10-3

Point Retrieving Subroutine, ‘get_a_point.hll’

Case 1: All points are computed and stored in Mx4 by
the Mx4’s own DSPL

get_a_new_point:

;***
;*
;* this routine is useful if end points are computed
;* by the Mx4 and stored in the Mx4 table.
;*
;***

r = table_p(index) ;pick r, teta and phi
index = index + 1
teta = table_p(index)
index = index + 1
phi = table_p (index)
index = index + 1

ret()
end

Case 2: All points are provided to the Mx4 in real time
by the host

get_a_new_point:

;***
;*
;* this routine is useful if end points are provided
;* by the Mx4 and stored in the Mx4 table.
;*
;***

r = var30 ;host uses instruction change_var to update points
teta = var31 ;to update points characterized by:r,teta and phi
phi = var32

ret()

end

Moves in Polar Coordinate

10-4

Polar to Cartesian Xformation, ‘coordinate_xfer.hll’

polar2cartesian:

;***
;*
;* this routine transfers polar to Cartesian
;* coordinate. And executes a trapezoidal move
;* to reach the target point within a specified time
;*
;***

x = r * cos (phi)
y = r * sin (phi)

x = x * cos (teta)
y = y * cos (teta)
z = r * sin (teta)

axmove_t(0x7, x_accel, x, y_accel, y, time, z, z_accel, time)

ret()
end

DSPL Application Programs 11-1

11 Rotary Axis Tangent

Rotary Axis Tangent to x-y Trajectory

This application requires the motion of a rotary axis to remain tangent to the
path created by x and y axes. The x-y trajectory in this example is circular.
Assuming 1000 encoder lines/mech. rev. (i.e. 4000 counts/rev), one radian
move of rotary axis generates 637 encoder counts. Thus, in conjunction with α
in radians, this conversion factor must be used.

3000

500

A1000

2000

2500

1000 2000 3000 7000

B

4500

-2000

 r = 2500

= 323 degreesÊ

Axis 2 POS (counts)

Axis 1 POS (counts)

Rotary axis

α

#define del_x var1
#define del_y var2
#define a var3
#define alpha var4
#define flag var5
#define rotary var6

plc_program:

run_m_program(tangential_path)

end

Rotary Axis Tangent

11-2

tangential_path:

flag = 1
pos_preset (0x7,1000,1000,0) ;preset to point A
linear_move_s(3,1000,0,3000,0.8,5000,0.0003,1000,0,2500,0.6,5000,0.00023); start AB line
circle(3,1500,-2000,2500,1,0,0) ;continue with x-y circle

 ;compute position for rotary
 ;axis

while (flag == 1)
del_x = cvel1 ;obtain rate of change of position in x direction
del_y = cvel2 ;obtain rate of change of position in y direction

a = del_y/del_x ;calculate tangent of alpha
alpha = arctan(a) ;find alpha in radians
rotary = 637 * alpha ;use conversion factor 637 to find encoder lines
axmove(0x8, 0.5, rotary, 10)

 ;move rotary axis(3) to the computed position
wend

end

DSPL Application Programs v3.1 12-1

12 Cubic Spline Programming

Introduction

Motion control applications requiring fine moves through a set of points require
cubic spline interpolation. The Mx4 can run cubic splines either in contouring
mode (in which the host continually updates Mx4's DPR with a new set of
points), or in table mode (Mx4's table is pre-loaded with a set of points only
once). In table mode the user array can be up to 2,000 points long. Each point
specifies the position and velocity of only one motor.

The DSPL commands useful for cubic spline applications are:

CUBIC_RATE Specifies the “time” interval between the
two adjacent points in a cubic spline table.
This instruction is similar to BTRATE
(used in dual port RAM-based contouring
applications).

CUBIC_SCALE Specifies," position/velocity_multiplier” and
“position_shift” for all points of a spline table.

CUBIC_INT To run on "m" points of cubic spline table,
"n" number_of_times. Starting from “si” starting
index.

Three Steps to Run Cubic Spline

1) Download the data points using the Tables option in Mx4pro v4 on
Windows 95/NT or down_cub.exe on DOS, (located in the Mx4
Utilities diskette).

Cubic Spline Programming

12-2

Also, the DSPL offers floating point arithmatic and trigonometric functions by
which new move parameters can be calculated in real time and stored in the
table memory.

2) Run the DSPL command CUBIC_RATE. This command must run before
issuing CUBIC_INT.

 3) Use CUBIC_INT in your DSPL or host-based program.

We will now discuss six DSPL programs -- starting from simple leading to
more advanced applications.

Cubic Spline Trajectory on A Single Axis

Consider a single axis move as illustrated. This trajectory is characterized by its
position and velocity at times starting at zero and incrementing every 100 ms.
In order to perform cubic spline contouring you must follow the steps as
follows:

Step 1: Generate points

Step 2: Form an ASCII file that contains the points and download it to Mx4

Step 3: In your DSPL program use relevant instructions:

CUBIC_RATE()
CUBIC_SCALE()
CUBIC_INT()

Cubic Spline Programming

DSPL Application Programs v3.1 12-3

200

t(ms)

100 800 1000900

2.5

5

vel x
pos x

40000(10)x
4

 (counts/s)

This example helps you understand how a data table is organized.

The Data File for One-Axis Contouring Process

You need to generate an ASCII file similar to the following and save it under
any name followed by .DAT, (e.g., CUB1.DAT).

Position (counts) Velocity (counts/s)

0.00000000000000e+000 0.000e+000
1.25000000000000e+003 2.5000e+004
5.00000000000000e+003 5.0000e+004
1.00000000000000e+004 5.0000e+004
1.50000000000000e+004 5.0000e+004
2.00000000000000e+004 5.0000e+004
2.50000000000000e+004 5.0000e+004
3.00000000000000e+004 5.0000e+004
3.50000000000000e+004 5.0000e+004
3.87500000000000e+004 2.5000e+004
4.00000000000000e+004 0.0000e+004
3.87500000000000e+004 -2.5000e+004
3.50000000000000e+004 -5.0000e+004
3.00000000000000e+004 -5.0000e+004
2.50000000000000e+004 -5.0000e+004
2.00000000000000e+004 -5.0000e+004
1.50000000000000e+004 -5.0000e+004
1.00000000000000e+004 -5.0000e+004
5.00000000000000e+003 -5.0000e+004
1.25000000000000e+003 -2.5000e+004
0.00000000000000e+000 0.0000e+000

You may now download all (21) points to the Mx4 memory.

Cubic Spline Programming

12-4

Memory Capacity

The Mx4 memory size dedicated to cubic spline is 8000 words. Each point on
cubic spline contour is characterized by its position (32-bit) and velocity (32-
bit), thus requiring four words. As a result, the total number of points that may
be saved in an Mx4 cubic spline table is 2000.

Downloading a Table

To download your table at the DOS prompt type:

down_cub cub1.dat 1 0xd0000

This instruction downloads CUB1.DAT file for axis 1 in an Mx4 card located in
address location 0xd0000 (see the Mx4 User’s Guide, Installing Your Mx4
Hardware). Alternatively, you may use the Table download facility in Mx4pro
v4 on Windows 95/NT.

DSPL Program
The steps following the transmission of the data table includes setting block
transfer rate (CUBIC_INT), scaling (CUBIC_SCALE) and, running through the
points (CUBIC_INT).

The following illustrates the DSPL program that runs through 21 points of
cub1.dat.

Cubic Spline Programming

DSPL Application Programs v3.1 12-5

plc_program:
 run_m_program(cubic)
end

cubic:
 cubic_rate(500) ;set the cubic spline time interval to 100ms
 cubic_scale(0x1,1,0) ;set the pos and vel scales to 1 with no shift
 cubic_int(21,0,1) ;run 21 points of the table only once
end

Cubic Spline Trajectory on Two Axes

This example is similar to the first one and is only modified for two axes. Our
objective here is to show how the data points for an additional axis must
appear in the data file.

x_pos

y_pos

v = -5.0e+004x

v = 5.0e+004x

v = -5.0e+004y v = 5.0e+004y

40,000

40,000

To simplify our presentation, we use similar motions for x and y. In a general
case x and y may have any arbitary shape.

Cubic Spline Programming

12-6

ASCII File for Two-Axis Contouring Process

Position (counts) Velocity (counts/s)

0.00000000000000e+000 0.000e+000 ← for axis x
0.00000000000000e+000 0.000e+000 ← for axis y
1.25000000000000e+003 2.5000e+004 ← for axis x
1.25000000000000e+003 2.5000e+004 ← for axis y
5.00000000000000e+003 5.0000e+004
5.00000000000000e+003 5.0000e+004
1.00000000000000e+004 5.0000e+004
1.00000000000000e+004 5.0000e+004
1.50000000000000e+004 5.0000e+004
1.50000000000000e+004 5.0000e+004
2.00000000000000e+004 5.0000e+004
2.00000000000000e+004 5.0000e+004
2.50000000000000e+004 5.0000e+004
2.50000000000000e+004 5.0000e+004
3.00000000000000e+004 5.0000e+004
3.00000000000000e+004 5.0000e+004
3.50000000000000e+004 5.0000e+004
3.50000000000000e+004 5.0000e+004
3.87500000000000e+004 2.5000e+004
3.87500000000000e+004 2.5000e+004
4.00000000000000e+004 0.0000e+004
4.00000000000000e+004 0.0000e+004
3.87500000000000e+004 -2.5000e+004
3.87500000000000e+004 -2.5000e+004
3.50000000000000e+004 -5.0000e+004
3.50000000000000e+004 -5.0000e+004
3.00000000000000e+004 -5.0000e+004
3.00000000000000e+004 -5.0000e+004
2.50000000000000e+004 -5.0000e+004
2.50000000000000e+004 -5.0000e+004
2.00000000000000e+004 -5.0000e+004
2.00000000000000e+004 -5.0000e+004
1.50000000000000e+004 -5.0000e+004
1.50000000000000e+004 -5.0000e+004
1.00000000000000e+004 -5.0000e+004
1.00000000000000e+004 -5.0000e+004
5.00000000000000e+003 -5.0000e+004
5.00000000000000e+003 -5.0000e+004
1.25000000000000e+003 -2.5000e+004
1.25000000000000e+003 -2.5000e+004
0.00000000000000e+000 0.0000e+000
0.00000000000000e+000 0.0000e+000

 Save this ASCII file as CUB2.DAT and download it to the Mx4 memory.

Cubic Spline Programming

DSPL Application Programs v3.1 12-7

DSPL Program for Two-Axis Contouring

The following illustrates the DSPL program modified for two motors.

plc_program:
 run_m_program(cubic)
end

cubic:
 cubic_rate(500) ;set the cubic spline time interval to 100ms
 cubic_scale(0x3,1,0,1,0) ;scale the pos and velocity scales to 1 and no shift
 cubic_int(42,0,1) ;run 42 points of cub2.dat file only once
end

Dynamic Scaling and Coordinate Transformation

Motion control applications involving cubic spline may be scaled or
coordinate transformed. Scaling means the real-time multiplication of
"all" positions and/or velocities by a set value. This feature may be
used to change coordinated speed, vectorially. The position vector may
be magnified or attenuated accordingly.

Coordinate transformation (shift) performs the real-time position shift
of Cartesian coordinates. That is, this command in conjunction with
cubic spline will shift, the position of all axes to a new origin. The
RTC used for this task is CUBIC_SCALE.

Consider our previous example, in which the system continually
repeats the same motion. Now imagine after cutting a shape, the
operator, wishes to transform the coordinates to a new origin specified
by its positions in x and y directions (e.g.,30000,30000).

Cubic Spline Programming

12-8

20000

30000

40000

10000

40000300002000010000

x_pos

y_pos

The following command shows how this coordinate transfer is accomplished:

CUBIC_SCALE(0x3,1,30000,1,30000)

Cubic Spline Programming

12-9

High Speed Moves with User Defined Trajectories

This application coordinates x,y, z (and w in a later example) axes to perform
series of high speed (10-50 ms travel time) contouring moves. An example of
such application is semiconductor wire bonding. We describe the DSPL
programs that achieve the target points for x,y, and z along the user-defined
trajectory. In the following examples the user defines a shape of the traveling
trajectories such as the one illustrated below.

Motion Origin

x

y

z

Target Position

P1

P2

wire

where P1 and P2 are characterized by their x,y, and z components. In this
example, the user has defined the moves from P1 to P2 along a (1-cos(ωt))
velocity trajectory. The user has also specified that x and y complete their
moves, simultaneously, in 50 ms. As you will see in the first DSPL application
program listing (wirebond.hll), the motion trajectory period for both x-y and z
are independently programmed. The DSPL routines xy_traj.hll and z_traj.hll
generate the corresponding trajectories.

In the later example the program automatically adjusts the move time to the
length of target points.

Cubic Spline Programming

12-10

In the first example, axes x and y reach their targets simultaneously. The z axis
starts its move upon the completion of x and y motion. We’ve separated z
trajectory from x and y to point out that z can have its own independent shape.

Supplying the Mx4 Target Positions for x,y and z

The end points for x, y and z trajectories can be downloaded in one of the
following ways:

1) Host downloads the entire target points to the Mx4 memory using
 download utilities:

 I) down_tbl.exe in DOS or;
 ii) Table, Points Data Table in Windows 95/NT.

Since the DSPL allows internal computation, it is also possible for
the Mx4 to obtain its own move parameters, on the fly and
independent of the host.

Cubic Spline Programming

 DSPL Application Programs v3.1 12-11

2) Host provides the Mx4, the end points one set of x,y and z at a
 time.

The first DSPL program describes the first method. In this example, the data
points for 16 pins of a semiconductor are downloaded. Each pin’s x,y and z is
characterized in a row as follows:

pin x(count)y(count)z(count)

 1 200 50 200
 2 300 150 200
 3 400 250 200
 4 500 350 200
 5 600 450 200
 6 700 550 200
 7 800 650 200
 8 900 750 200
 9 0 250 200
10 100 350 200
11 200 450 200
12 300 550 200
13 400 650 200
14 500 750 200
15 600 850 200
16 700 950 200

We start with creating a data file which contains the above end points, saved in
ASCII file “points.dat” (do not include the pin number in the data file).

Next, download the end points to the Mx4 controller using the down_tbl.exe
utility as follows:

c:\>down_tbl points.dat 800

The parameter “800” indicates at which starting index to begin downloading
the data points in the Mx4 memory. Alternatively, you may use the Mx4pro
v4’s Windows 95 or NT table download.

At this point, the Mx4 contains 16 rows of end points.

Cubic Spline Programming

12-12

Write a DSPL program to move the axes to target
points along user defined trajectories

With the endpoints downloaded to the Mx4, we need to create a DSPL program
which calculates the contouring data points and performs the cubic spline
interpolation on the x,y, and z axes. The “wirebond.hll” DSPL program
performs the above tasks on its own and independent of the host.

The “wirebond.hll” program uses the #include function to link in the “external”
DSPL program files “xy_traj.hll” and “z_traj.hll”. These files generate the
normalized data points, on the user defined trajectories. The “init.hll” DSPL
file includes system initialization parameters such as control gains and
maximum acceleration settings, etc.

The specific functions of each of DSPL programs /files is contained in the
commented documentation within the program listing itself.

;**
;*
;* Wire Bonding - A HIGH SPEED CONTOURING APPLICATION
;*
;* This program performs very high speed (10-50 ms) contouring
;* used primarily in IC bonding applications. The application
;* uses x and y for table and z for vertical moves.
;*
;* The external routines used in conjunction with this program
;* are:
;* "init.hll" for initialization
;* "xy_traj.hll" for xy and
;* "z_traj.hll" z trajectory generations.
;*
;* The target points for x,y and z are saved in
;* data file "points.dat". Before compiling this program
;* "points.dat" must be down loaded to the Mx4 with an
;* offset address. For this program, we used 800 for offset
;* address.
;*
;***

#define flag var2
#define period_xy var3
#define period_z var57
#define 2pi var4
#define aux4 var5
#define aux5 var6
#define aux6 var7
#define aux1 var8
#define aux2 var9

#define index_cur_pos var10

#define aux3 var11
#define index_cur_vel var12

Cubic Spline Programming

 DSPL Application Programs v3.1 12-13

#define scale var13
#define index_cur_posz var14
#define velocity var15
#define coded_pve_vel var19

#define position var20
#define total_no_pts var21
#define x_target_pos var22
#define scaled_x var23
#define init_z_table var26
#define y_target_pos var27
#define z_target_pos var28
#define scaled_y var29

#define scaled_z var30
#define table_pointer var33

#define index_dec_pos var42
#define index_neg_vel var43
#define coded_neg_vel var46

#define z_cur_pos var50
#define x_cur_pos var51
#define y_cur_pos var52
#define x_increment var53
#define y_increment var54
#define index_cur_vyz var55
#define index_neg_vyz var56
#define index_cur_posz var59

#define total_no_ptz var60
#define rate var61
#define stay var62
#define index_cur_posy var63
#define index_dec_posy var64

#include "init.hll"
#include "z_traj.hll"
#include "xy_traj.hll"

PLC_PROGRAM:

 run_m_program(wire_bond)
END
;
; Program wirebond.hll Performs A Stand Alone
; 3-Axis Contouring
;

wire_bond:

 rate = 5 ;rate is 1 ms
 call(INIT) ;this routine is for gain initializations
 wait_until(var1 == 1) ;variable 1 is a flag which lets the main
 ;program know it is done initializing

 period_xy = 50 ;period_xy holds x and y trajectory period in ms
period_z = 30 ;period_z holds z axis "stitching" period in ms

 cubic_rate(rate) ;cubic spline points are spaced by 1 ms

 period_xy = period_xy/2 ;this internal division by two is necessary
 period_z = period_z/2 ;because of the way trajectories are implemented

 total_no_pts = 2*period_xy

Cubic Spline Programming

12-14

 total_no_pts = total_no_pts + 2 ;total number of points for x and y
 total_no_ptz = 2*period_z
 total_no_ptz = total_no_ptz + 2 ;total number of points for z

 scale = 1000 ;scale holds the peak amplitude for position
 var25 = 2*total_no_pts ;trajectory, var25 holds number of points for x and y
 var35 = total_no_pts
 var36 = total_no_pts-1

 call(z_profile) ;this routine calculates the points on z traj.
 wait_until(var2 == 1)

 call(xy_profile) ;this routine calculates the points on xy trajs
 wait_until(var2 == 1)

 index_cur_pos = 0

 init_z_table = 2*total_no_pts ;holds the initial table point for z move
 stay = 2.5*total_no_pts ;holds the delay to let z finish its move

 ;**
 ;*
 ;* At this point program starts running all points
 ;*
 ;**
 table_pointer = 800 ;points to the initial table location for
 ;target points.
 ;
 x_cur_pos = 0 ;initialize previously retrieved x
 y_cur_pos = 0 ;initialize previously retrieved y
 z_cur_pos = 0

 while(table_pointer < 848) ;start bonding 16 pins

 x_target_pos = table_p(table_pointer) ;load target point for x
 table_pointer = table_pointer+1 ;increment index variable table_pointer

 y_target_pos = table_p(table_pointer) ;load target point for y
 table_pointer = table_pointer+1 ;increment index variable table_pointer

 z_target_pos = table_p(table_pointer) ;load target point for z
 table_pointer = table_pointer+1 ;increment index variable table_pointer
 if (table_pointer == 848)
 table_pointer = 800 ;when table finished loop over the table points
 endif

 x_increment = x_target_pos - x_cur_pos ;pos increment from the last x
 y_increment = y_target_pos - y_cur_pos ;pos increment from the lasr y

 scaled_x = x_increment/scale ;find scaling factor for x
 scaled_y = y_increment/scale ;find scaling factor for y
 scaled_z = z_target_pos/scale ;find scaling factor for z

 cubic_scale(0x7,scaled_x,x_cur_pos,scaled_y,y_cur_pos,scaled_z,0)
 cubic_int(total_no_pts,0,1) ;run all x and y points
 cubic_int(total_no_ptz,init_z_table,1) ;run z points

 x_cur_pos = x_target_pos ;update x and y initial points
 y_cur_pos = y_target_pos

 wend

end

Cubic Spline Programming

 DSPL Application Programs v3.1 12-15

xy_profile:

 ;***
 ;*
 ;* This routine calculates the
 ;* points on xy trajectories and saves them
 ;* in the table. It also codes the x and y
 ;* axes participation by adjusting the most
 ;* significant nibble of velocity.
 ;*
 ;***

 flag = 0
 index_cur_pos = 0
 var3 = period_xy*4
 index_neg_vel = period_xy+1 ;compensation for xy axes
 while (index_cur_pos <= period_xy) ;period_xy holds xy trajectory periods in ms

 index_dec_pos = 2*period_xy
 index_dec_pos = index_dec_pos+4
 index_dec_pos = index_dec_pos - index_cur_pos ; index into descending pos segment

 index_neg_vel = index_neg_vel + 4 ;index into negative velocity segment

 2pi = 2*pi
 aux4 = 2pi/period_xy ;calculates 2pi/T
 aux5 = 1/aux4 ;calculates T/2pi
 aux6 = aux4*index_cur_pos ;calculates 2pi*t/T
 aux1 = sin(aux6)
 aux2 = cos(aux6)

 aux2 = 1 - aux2 ;calculates [1 - cos (2pi*t/T)]
 aux2 = aux2/period_xy ;
 aux2 = aux2/5 ;calculates [1 - cos(2pi*t/T)]/(5*T)
 ;velocity is in c/200 us
 aux1 = aux1*aux5 ;calculates (T/2pi)*sin(2*pi*t/T)

 aux1 = index_cur_pos - aux1
 aux1 = aux1/period_xy ;calculates [(t - T/2pi*sin(2pi*t/T)]/T

 position = scale*aux1

 aux3 = index_cur_pos
 table_p(index_cur_pos) = position ;save position
 table_p(index_dec_pos) = position ;save for descending position

 index_cur_posy = index_cur_pos + 2
 index_dec_posy = index_dec_pos + 2

 table_p(index_cur_posy) = position
 table_p(index_dec_posy) = position

 index_cur_vel = aux3 + 1
 coded_pve_vel = aux2*scale
 velocity = coded_pve_vel

 ;**
 ;*
 ;* The following shows how the DSPL
 ;* deals with the issue of coding axes

Cubic Spline Programming

12-16

 ;* into the most significant nibble of
 ;* velocity. You may read about this
 ;* coding requirement in the Mx4 User's
 ;* Guide under cubic spline contouring.
 ;*
 ;**
 ;
 ; coded_pve_vel = coded_pve_vel + 4096 ;coding axis 1 positive
 coded_pve_vel = coded_pve_vel + 12288 ;coding axes 1 and 2 positive
 ; coded_pve_vel = coded_pve_vel + 28672 ;coding axes 1,2 and 3 positive
 ; coded_pve_vel = coded_pve_vel + 61440 ;coding axes 1,2,3 and 4 positive
 ; coded_pve_vel = coded_pve_vel + 16384 ;coding axis 3 positive

 coded_pve_vel = coded_pve_vel*65536

 coded_neg_vel = -velocity
 coded_neg_vel = 65536*coded_neg_vel

 ; coded_neg_vel=coded_neg_vel+536870912 ;coding axis1 negative
 coded_neg_vel=coded_neg_vel+1073741824 ;coding axes 1 and 2 negative
 ; coded_neg_vel=coded_neg_vel+2147483648 ;coding axes 1,2 and 3 negative
 ; coded_neg_vel=coded_neg_vel+0 ;coding axes 1,2,3 and 4 negative
 ; coded_neg_vel=coded_neg_vel+1342177280 ;coding axis 3 negative

 table_p(index_cur_vel) = coded_pve_vel ;velocity with axis coding
 table_p(index_neg_vel) = coded_neg_vel ;save for negative velocity
 index_cur_vyz = index_cur_vel + 2
 index_neg_vyz = index_neg_vel + 2
 table_p(index_cur_vyz)=coded_pve_vel
 table_p(index_neg_vyz)=coded_neg_vel
 index_cur_pos = index_cur_pos + 4

 wend
 flag = 1
 ret()
 end

z_profile:

 ;***
 ;*
 ;* This routine calculates the
 ;* points on z trajectory and saves them
 ;* in the table. It also codes the third
 ;* axis participation by adjusting the most
 ;* significant nibble of velocity.
 ;*
 ;***

 flag = 0
 index_cur_pos = 8*period_xy
 index_cur_pos = index_cur_pos + 8 ;compensation for all segments
 period_z = period_z*2 ;period_z holds the period
 index_neg_vel = period_z+1 ;that is the new period
 index_cur_posz = 0 ;this plays the role of old index_cur_pos

 while (index_cur_posz <= period_z) ;remember period_z is z period in ms

 index_dec_pos = 2*period_z
 index_dec_pos = index_dec_pos+index_cur_pos
 index_dec_pos = index_dec_pos+2
 index_dec_pos = index_dec_pos-index_cur_posz;index into descending pos segment

Cubic Spline Programming

 DSPL Application Programs v3.1 12-17

 index_neg_vel = period_z + 1
 index_neg_vel = index_neg_vel + index_cur_pos
 index_neg_vel = index_neg_vel + 2 ;index into negative velocity segment
 index_neg_vel = index_neg_vel + index_cur_posz

 2pi = 2*pi
 aux4 = 2pi/period_z ;calculates 2pi/T
 aux5 = 1/aux4 ;calculates T/2pi
 aux6 = aux4*index_cur_posz ;calculates 2pi*t/T
 aux1 = sin(aux6)
 aux2 = cos(aux6)

 aux2 = 1 - aux2 ;calculates [1 - cos(2pi*t/T)]
 aux2 = aux2/period_z ;
 aux2 = aux2/5 ;calculates [1 - cos(2pi*t/T)]/(5*T)
 ;velocity is in c/200 us
 aux1 = aux1*aux5 ;calculates (T/2pi)*sin(2*pi*t/T)

 aux1 = index_cur_posz-aux1 ;
 aux1 = aux1/period_z ;calculates [t - T/2pi*sin(2pi*t/T)]/T

 position = scale*aux1

 index_cur_posz = index_cur_posz
 index_cur_posz = index_cur_posz+index_cur_pos
 table_p(index_cur_posz) = position ;save position
 table_p(index_dec_pos) = position ;save for descending position
 index_cur_vel = index_cur_posz + 1

 coded_pve_vel = aux2*scale
 velocity = coded_pve_vel

 ;**
 ;*
 ;*
 ;* The following shows how the DSPL
 ;* deals with the issue of coding axes
 ;* into the most significant nibble of
 ;* velocity. You may read about this
 ;* coding requirement in the Mx4 User's
 ;* Guide under cubic spline contouring.
 ;*
 ;*
 ;**
 ;
 ; coded_pve_vel = coded_pve_vel + 4096 ;coding axis 1 positive
 ; coded_pve_vel = coded_pve_vel + 12288 ;coding axes 1 and 2 positive
 ; coded_pve_vel = coded_pve_vel + 28672 ;coding axes 1,2 and 3 positive
 ; coded_pve_vel = coded_pve_vel + 61440 ;coding axes 1,2,3 and 4 positive
 coded_pve_vel = coded_pve_vel + 16384 ;coding axis 3 positive

 coded_pve_vel = coded_pve_vel*65536

 coded_neg_vel = -velocity
 coded_neg_vel = 65536*coded_neg_vel

 ; coded_neg_vel=coded_neg_vel+536870912 ;coding axis1 negative
 ; coded_neg_vel=coded_neg_vel+1073741824 ;coding axes 1 and 2 negative
 ; coded_neg_vel=coded_neg_vel+2147483648 ;coding axes 1,2 and 3 negative
 ; coded_neg_vel=coded_neg_vel+0 ;coding axes 1,2,3 and 4 negative
 coded_neg_vel=coded_neg_vel+1342177280 ;coding axis 3 negative

Cubic Spline Programming

12-18

 table_p(index_cur_vel) = coded_pve_vel ;velocity with axis coding
 table_p(index_neg_vel) = coded_neg_vel ;save for negative velocity
 index_cur_posz = index_cur_posz+2
 wend
 flag = 1
 ret()

 end

Cubic Spline Programming

12-19

3-Axis Moves with Automatic Time/Length Computation

The differences between this example and the previous one are:

1) All moves reach their targets simultaneously
2) The equation for z is elliptical
3) The time to finish a move is a function of its length
4) Target points are passed (downloaded) to the Mx4 one

 set (of x,y,z) at a time

The host program which will down load the target points to the DSPL program
(one set at a time) is labeled as “process.c”. We have included this C++
program in Appendix A of this chapter. Also, to start this program you may
use program “target.exe” which runs on Windows 95. This push button utility
starts an endless transmission of data from the host to the Mx4 memories. You
must remember that process.c program takes advantage of the Mx4’s Visual
Basic and C++ DLL. Therefore to run this program you must have already
installed the above DLL.

;**
;*
;* This program performs time variable user defined trajectories
;* for x,y and z:
;*
;* 1) The host program sets end points for xyz and sets flag1=1 to
;* signal dspl. The dspl calculates the time to finish the move
;* and starts the move.
;* 2) dspl clears flag1 to signal the host program it is ready to take
;* new end points.
;*
;* 3) xy moves follow 1-cos(wt) for velocity and z moves are eliptic
;* for z position as a function of r = sqrt(x^2 + y^2).
;*
;* The external routines used in conjunction with this program
;* are:
;* "init.hll" gain and position initialization
;* "xyz.hll" generates norm trajectories for xyz
;*
;* The target points for x,y,z as well as flag1 are at: var22, var27, var28
;* and var34 respectively. The host program must first check flag1.
;* This flag must be zero before host can issue change_var. Host needs
;* to issue only one change_var command to change all above variables.
;*
;***
;
#define flag2 var2
#define period var3
#define 2pi var4
#define aux4 var5
#define aux5 var6

Cubic Spline Programming

12-20

#define aux6 var7
#define aux1 var8
#define aux2 var9

#define index_cur_pos var10
#define aux3 var11
#define index_cur_vel var12
#define scale var13
#define coded_pve_velz var14
#define coded_neg_velz var15
#define position_z var16
#define velocity_z var17
#define last_z_pos var18
#define coded_pve_vel var19

#define position var20
#define total_no_pts var21
#define x_target_pos var22
#define scaled_x var23
#define y_target_pos var27
#define z_target_pos var28
#define scaled_y var29

#define scaled_z var30
#define index_target_pos var33
#define flag1 var34
#define xx var35
#define yy var36
#define zz var37

#define index_dec_pos var42
#define index_neg_vel var43
#define coded_neg_vel var46

#define z_cur_pos var50
#define x_cur_pos var51
#define y_cur_pos var52
#define x_increment var53
#define y_increment var54
#define z_increment var55
#define velocity var56
#define index_cur_pyz var57
#define index_dec_pyz var58

#define index_cur_vyz var60
#define index_neg_vyz var61
#define rate var62
#define max var63

#include "c:\mx4prov4\hll\init.hll"
#include "c:\mx4prov4\hll\xyz.hll"

PLC_PROGRAM:

 run_m_program(moves)

end

moves:
 flag1 = 1 ;this tells host it can not send move parameters yet
 call(INIT) ;this routine initializes gains
 wait_until(var1 == 1) ;variable 1 is a flag to show init is done

Cubic Spline Programming

 DSPL Application Programs v3.1 12-21

 ;program know it is done initializing

 period = 300 ;generates period for x,y and z

 call(xyz_profiler) ;routine to calculates the points on xyz trajs
 wait_until(flag2 == 1)

 x_cur_pos = 0 ;initialize previously retrieved x
 y_cur_pos = 0 ;initialize previously retrieved y
 z_cur_pos = 0 ;initialize previously retrieved z

 x_target_pos = 0
 y_target_pos = 0
 z_target_pos = 0

 var1 = 1

 while(var1 == 1) ;start an endless loop

 x_cur_pos = cpos1
 y_cur_pos = cpos2
 z_cur_pos = cpos3

 x_increment = x_target_pos - x_cur_pos ;x target point relative to current position
 y_increment = y_target_pos - y_cur_pos ;y target point relative to current position
 z_increment = z_target_pos - z_cur_pos ;z target point relative to current position

 aux1 = x_target_pos
 aux2 = y_target_pos
 aux3 = z_target_pos

 scaled_x = x_increment/scale ;scaled x target relative to current position
 scaled_y = y_increment/scale ;scaled y target relative to current position
 scaled_z = z_increment/scale ;scaled z target relative to current position

 xx = abs(scaled_x)
 yy = abs(scaled_y)
 zz = abs(scaled_z)
 if (xx >= yy) ;find the max length between target x,y and z
 max=xx
 else
 max=yy
 endif
 if (zz >= max)
 max=zz
 endif

 rate = 10*max ;make cubic spline rate proportional/max length
 rate = int(rate)
 rate = rate + 5 ;minimum rate must be 5

 cubic_rate(rate)
 cubic_scale(0x7,scaled_x,x_cur_pos,scaled_y,y_cur_pos,scaled_z,z_cur_pos)

 flag1 = 0 ;this tells host it can change move parameters
 cubic_int(total_no_pts,0,1) ;run the previously entered moves
 cubic_rate(5) ;this has to be here to let cubic_int finish
 axmove(0x7,1.9,aux1,100,1.9,aux2,100,1.9,aux3,100) ;
 wait_until(cpos1 == aux1)

 wait_until(flag1 == 1) ;host sets flag1 = 1 and sets new target
 wend ;position with only one change_var
end

Cubic Spline Programming

12-22

xyz_profiler:

 ;***
 ;*
 ;* This routine calculates the normalized
 ;* points on xyz trajectories and saves them
 ;* in the table.
 ;*
 ;***

 total_no_pts = 3*period
 total_no_pts = total_no_pts + 3 ;total number of points for x,y and z

 scale = 810000 ;this is the max position in one move
 scale = scale/2 ;scale holds the peak amplitude for position

 flag2 = 0
 index_cur_pos = 0
 last_z_pos = 0

 period = period*6
 index_neg_vel = period+1 ;compensation for xy axes
 while (index_cur_pos <= period) ;period holds xy trajectory periods in ms

 index_dec_pos = 2*period
 index_dec_pos = index_dec_pos+6
 index_dec_pos = index_dec_pos - index_cur_pos ;index into descending position

 index_neg_vel = index_neg_vel + 6 ;index into negative velocity

 2pi = 2*pi
 aux4 = 2pi/period ;calculates 2pi/T
 aux5 = 1/aux4 ;calculates T/2pi
 aux6 = aux4*index_cur_pos ;calculates 2pi*t/T

 aux4 = aux6/2pi
 aux4 = aux4*aux4
 aux4 = 1 - aux4 ;calculate 1 - (t/T)^2

 aux1 = sin(aux6)
 aux2 = cos(aux6)

 aux2 = 1 - aux2 ;calculates [1 - cos (2pi*t/T)]
 aux2 = aux2/period ;
 aux2 = aux2/5 ;calculates [1 - cos(2pi*t/T)]/(5*T)
 ;velocity is in c/200 us
 aux1 = aux1*aux5 ;calculates (T/2pi)*sin(2*pi*t/T)

 aux1 = index_cur_pos - aux1
 aux1 = aux1/period ;calc. [(t-T/2pi*sin(2pi*t/T)]/T
 aux4 = sqrt(aux4) ;calc. sqrt(1 - (t/T)^2)
 aux4 = 1 - aux4

 position = scale*aux1
 position_z = scale*aux4

 aux3 = index_cur_pos
 table_p(index_cur_pos) = position ;save position
 table_p(index_dec_pos) = position ;save for descending position

 index_cur_pyz = index_cur_pos + 2
 index_dec_pyz = index_dec_pos + 2

Cubic Spline Programming

 DSPL Application Programs v3.1 12-23

 table_p(index_cur_pyz) = position
 table_p(index_dec_pyz) = position
 index_cur_pyz = index_cur_pyz + 2
 index_dec_pyz = index_dec_pyz + 2
 table_p(index_cur_pyz) = position_z
 table_p(index_dec_pyz) = position_z

 index_cur_vel = aux3 + 1
 coded_pve_vel = aux2*scale
 velocity = coded_pve_vel

 velocity_z = position_z - last_z_pos
 velocity_z = velocity_z/5
 coded_pve_velz = velocity_z

 ;**
 ;*
 ;*
 ;* The following segment shows how the DSPL
 ;* codes the participating axes
 ;* into the most significant nibble of
 ;* velocity. You may read about this
 ;* coding requirement in the Mx4 User's
 ;* Guide under cubic spline contouring.
 ;*
 ;**
 ;
 ; coded_pve_vel = coded_pve_vel + 4096 ;coding axis 1 positive
 ; coded_pve_vel = coded_pve_vel + 12288 ;coding axes 1 and 2 positive
 coded_pve_vel = coded_pve_vel + 28672 ;coding axes 1,2 and positive
 coded_pve_velz = coded_pve_velz + 28672 ;coding axis 3 positive
 ; coded_pve_vel = coded_pve_vel + 61440 ;coding axes 1,2,3 and 4 positive
 ; coded_pve_vel = coded_pve_vel + 16384 ;coding axis 3 positive

 coded_pve_vel = coded_pve_vel*65536
 coded_neg_vel = -velocity
 coded_neg_vel = 65536*coded_neg_vel
 coded_pve_velz = coded_pve_velz*65536
 coded_neg_velz = -velocity_z
 coded_neg_velz = 65536*coded_neg_velz

 ; coded_neg_vel=coded_neg_vel+536870912 ;coding axis1 negative
 ; coded_neg_vel=coded_neg_vel+1073741824 ;coding axes 1 and 2 negative
 var64 = 2147483647
 var64 = var64+1

 coded_neg_vel=coded_neg_vel+var64 ;coding axes 1,2 and 3 negative
 coded_neg_velz = coded_neg_velz + var64

 ; coded_neg_vel=coded_neg_vel+0 ;coding axes 1,2,3 and 4 negative
 ; coded_neg_vel=coded_neg_vel+1342177280 ;coding axis 3 negative

 table_p(index_cur_vel) = coded_pve_vel ;velocity with axis coding
 table_p(index_neg_vel) = coded_neg_vel ;save for negative velocity

 index_cur_vyz = index_cur_vel + 2
 index_neg_vyz = index_neg_vel + 2

 table_p(index_cur_vyz)=coded_pve_vel
 table_p(index_neg_vyz)=coded_neg_vel

 index_cur_vyz = index_cur_vyz + 2
 index_neg_vyz = index_neg_vyz + 2

Cubic Spline Programming

12-24

 table_p(index_cur_vyz)=coded_pve_velz
 table_p(index_neg_vyz)=coded_neg_velz
 last_z_pos = position_z

 index_cur_pos = index_cur_pos+6
 wend
 flag2 = 1
 ret()
 end

Cubic Spline Programming

12-25

4-Axis Moves with Automatic Time/Length Computation

This example is similar to the previous one except the program is written for
four axes.

The host program which downloads the target points to the DSPL program (one
set at a time) is labeled as “process.c”. We have included this C++ program in
Appendix A of this chapter. Also, to start this program you may use program
“target.exe” which runs on Windows 95. This push button utility starts an
endless transmission of data from the host to the Mx4 memories. You must
remember that process.c program takes advantage of the Mx4’s Visual Basic
and C++ DLL. Therefore to run this program you must have already installed
the above DLL.

;**
;*
;* This program performs user defined trajectory for x,y,z and w:
;*
;* user set end points and flag1 to signal dspl
;* dspl decides about the time to finish a move
;*
;* The external routines used in conjunction with this program
;* are:
;* "init.hll" gain and position initialization
;* "xyzw.hll" generates norm trajectories for xyz
;*
;* The target points for x,y and z are at: var22, var27 and var28
;* flag1 is at var34. The host C programs can only issue a change_var
;* when var34 = 0. When var34 is 0, one change_var can change target
;* points for x,y and z as well as flag1 = var34 to 1.
;*
;***
;
#define flag2 var2
#define period var3
#define 2pi var4
#define aux4 var5
#define aux5 var6
#define aux6 var7
#define aux1 var8
#define aux2 var9
#define index_cur_pos var10
#define aux3 var11
#define index_cur_vel var12
#define scale var13
#define w_cur_pos var14
#define w_target_pos var15
#define w_increment var16
#define scaled_w var17
#define ww var18
#define coded_pve_vel var19

#define position var20
#define total_no_pts var21
#define x_target_pos var22
#define scaled_x var23

Cubic Spline Programming

12-26

#define y_target_pos var27
#define z_target_pos var28
#define scaled_y var29

#define scaled_z var30
#define index_target_pos var33
#define flag1 var34
#define xx var35
#define yy var36
#define zz var37
#define aux0 var38

#define index_dec_pos var42
#define index_neg_vel var43
#define coded_neg_vel var46

#define z_cur_pos var50
#define x_cur_pos var51
#define y_cur_pos var52
#define x_increment var53
#define y_increment var54
#define z_increment var55
#define velocity var56
#define index_cur_pyz var57
#define index_dec_pyz var58

#define index_cur_vyz var60
#define index_neg_vyz var61
#define rate var62
#define max var63

#include "init_mx4.hll"
#include "c:\mx4prov4\hll\xyzw.hll"

PLC_PROGRAM:

 run_m_program(moves)

end
moves:
 flag1 = 1 ;this tells the host it can not send move parameters yet
 call(INIT_MX4) ;this routine is for gain initializations
 wait_until(var1 == 1) ;variable 1 is a flag which lets the main
 ;program know it is done initializing

 period = 50 ;period holds minimum move time

 call(xyzw_profiler) ;this routine calculates the points on xyzy trajs
 wait_until(flag2 == 1)

 ;target points.
 ;
 x_cur_pos = 0 ;initialize previously retrieved x
 y_cur_pos = 0 ;initialize previously retrieved y
 z_cur_pos = 0 ;initialize previously retrieved z
 w_cur_pos = 0

 x_target_pos = 0
 y_target_pos = 0
 z_target_pos = 0
 w_target_pos = 0

 var1 = 1

 while(var1 == 1) ;

Cubic Spline Programming

 DSPL Application Programs v3.1 12-27

 x_cur_pos = cpos1
 y_cur_pos = cpos2
 z_cur_pos = cpos3
 w_cur_pos = cpos4

 x_increment = x_target_pos - x_cur_pos ;x target point relative to current position
 y_increment = y_target_pos - y_cur_pos ;y target point relative to current position
 z_increment = z_target_pos - z_cur_pos ;z target point relative to current position
 w_increment = w_target_pos - w_cur_pos ;w target point relative to current position

 aux1 = x_target_pos
 aux2 = y_target_pos
 aux3 = z_target_pos
 aux0 = w_target_pos

 scaled_x = x_increment/scale ;scaled x target relative to current position
 scaled_y = y_increment/scale ;scaled y target relative to current position
 scaled_z = z_increment/scale ;scaled z target relative to current position
 scaled_w = w_increment/scale ;scaled w target relative to current position

 xx = abs(scaled_x)
 yy = abs(scaled_y)
 zz = abs(scaled_z)
 ww = abs(scaled_w)

 if (xx >= yy) ;find the max between x,y,z and w
 max=xx
 else
 max=yy
 endif
 if (zz >= max)
 max=zz
 endif
 if (ww >= max)
 max=ww
 endif

 rate = 5*max
 rate = int(rate)
 rate = rate + 5

 cubic_rate(rate)

cubic_scale(0xf,scaled_x,x_cur_pos,scaled_y,y_cur_pos,scaled_z,z_cur_pos,scaled_w,w_cur_pos)

 flag1 = 0

 cubic_int(total_no_pts,0,1) ;run all x and y points
 cubic_rate(5)
; axmove(0xf,1.9,aux1,100,1.9,aux2,100,1.9,aux3,100,1.9,aux0,100)
 wait_until(flag1 == 1)

 wend
end

xyzw_profiler:

 ;***
 ;*
 ;* This routine calculates the normalized
 ;* points on xyzw trajectories and saves them
 ;* in the table.
 ;*
 ;***

Cubic Spline Programming

12-28

 total_no_pts = 4*period
 total_no_pts = total_no_pts + 4 ;total number of points for x,y,z and w

 scale = 100010 ;this is the max position in one move
 scale = scale/2 ;scale holds the peak amplitude for position

 flag2 = 0
 index_cur_pos = 0
 period = period*8
 index_neg_vel = period+1 ;compensation for xy axes
 while (index_cur_pos <= period) ;period holds xyzw trajectory periods in ms

 index_dec_pos = 2*period
 index_dec_pos = index_dec_pos+8
 index_dec_pos = index_dec_pos - index_cur_pos ;index into descending pos seg
 index_neg_vel = index_neg_vel + 8 ;index into negative vel.segment

 2pi = 2*pi
 aux4 = 2pi/period ;calculates 2pi/T
 aux5 = 1/aux4 ;calculates T/2pi
 aux6 = aux4*index_cur_pos ;calculates 2pi*t/T
 aux1 = sin(aux6)
 aux2 = cos(aux6)

 aux2 = 1 - aux2 ;calculates [1 - cos (2pi*t/T)]
 aux2 = aux2/period ;
 aux2 = aux2/5 ;calculates [1 - cos(2pi*t/T)]/(5*T)
 ;velocity is in c/200 us
 aux1 = aux1*aux5 ;calculates (T/2pi)*sin(2*pi*t/T)

 aux1 = index_cur_pos - aux1
 aux1 = aux1/period ;calc. [(t - T/2pi*sin(2pi*t/T)]/T

 position = scale*aux1

 aux3 = index_cur_pos
 table_p(index_cur_pos) = position ;save position for X
 table_p(index_dec_pos) = position ;save for descending position

 index_cur_pyz = index_cur_pos + 2
 index_dec_pyz = index_dec_pos + 2
 table_p(index_cur_pyz) = position ;save position for Y
 table_p(index_dec_pyz) = position

 index_cur_pyz = index_cur_pyz + 2
 index_dec_pyz = index_dec_pyz + 2
 table_p(index_cur_pyz) = position ;save position for Z
 table_p(index_dec_pyz) = position

 index_cur_pyz = index_cur_pyz + 2
 index_dec_pyz = index_dec_pyz + 2
 table_p(index_cur_pyz) = position ;save position for W
 table_p(index_dec_pyz) = position

 index_cur_vel = aux3 + 1
 coded_pve_vel = aux2*scale
 velocity = coded_pve_vel

Cubic Spline Programming

 DSPL Application Programs v3.1 12-29

 ;**
 ;*
 ;*
 ;* The following segment shows how the DSPL
 ;* codes the participating axes
 ;* into the most significant nibble of
 ;* velocity. You may read about this
 ;* coding requirement in the Mx4 User's
 ;* Guide under cubic spline contouring.
 ;*
 ;**
 ;
 ; coded_pve_vel = coded_pve_vel + 4096 ;coding axis 1 positive
 ; coded_pve_vel = coded_pve_vel + 12288 ;coding axes 1 and 2 positive
 ; coded_pve_vel = coded_pve_vel + 28672 ;coding axes 1,2 and 3 positive
 coded_pve_vel = coded_pve_vel + 61440 ;coding axes 1,2,3 and 4 positive
 ; coded_pve_vel = coded_pve_vel + 16384 ;coding axis 3 positive

 coded_pve_vel = coded_pve_vel*65536
 coded_neg_vel = -velocity
 coded_neg_vel = 65536*coded_neg_vel

 ; coded_neg_vel=coded_neg_vel+536870912 ;coding axis1 negative
 ; coded_neg_vel=coded_neg_vel+1073741824 ;coding axes 1 and 2 negative
 var64 = 2147483647
 var64 = var64+1
 ; coded_neg_vel=coded_neg_vel+var64 ;coding axes 1,2 and 3 negative
 coded_neg_vel=coded_neg_vel+0 ;coding axes 1,2,3 and 4 negative
 ; coded_neg_vel=coded_neg_vel+1342177280 ;coding axis 3 negative

 var64 = 2*var64 ;coding when axis 4 is involved
 coded_pve_vel = var64 - coded_pve_vel ;coding when axis 4 is involved
 coded_pve_vel = -coded_pve_vel ;coding when axis 4 is involved

 table_p(index_cur_vel) = coded_pve_vel ;velocity with axis coding for X
 table_p(index_neg_vel) = coded_neg_vel ;save for negative velocity

 index_cur_vyz = index_cur_vel + 2
 index_neg_vyz = index_neg_vel + 2
 table_p(index_cur_vyz)=coded_pve_vel ;velocity with axis coding for Y
 table_p(index_neg_vyz)=coded_neg_vel

 index_cur_vyz = index_cur_vyz + 2
 index_neg_vyz = index_neg_vyz + 2

 table_p(index_cur_vyz)=coded_pve_vel ;velocity with axis coding for Z
 table_p(index_neg_vyz)=coded_neg_vel

 index_cur_vyz = index_cur_vyz + 2
 index_neg_vyz = index_neg_vyz + 2

 table_p(index_cur_vyz)=coded_pve_vel ;velocity with axis coding for W
 table_p(index_neg_vyz)=coded_neg_vel

 index_cur_pos = index_cur_pos+8
 wend
 flag2 = 1
 ret()
 end

Cubic Spline Programming

12-31

Appendix A
/***

Program Process.c
This application will send X, Y, Z, and W end points to the Mx4 card
using the C/C++ DLL, MX4WPL.DLL. The functions mainly used are
monitor_var, change_var, and var.

The algorithm is as follows,

 1. Everytime Process() is called, var34 on the Mx4 card is
checked. If var34 = 1, then we exit the Process() procedure.
If var34 = 0, then we continue on...

 2. At this point, var34 = 0. Now we send the new end points for
X, Y, Z, and W to the Mx4 card. That is we set var22 = X end point
var27 = Y end point, and var28 = Z end point.

 3. We set var34 = 1 to notify the DSPL that we have sent the
new end points.

***/

#include <windows.h>
#include "mx4wpl.h"
#include "Process.h"

void Process(HWND hwnd)
{

static double dX = 0 ; // X target position
static double dY = 0 ; // Y target position
static double dZ = 0 ; // Z target position
static double dW = 0 ; // W target position
static int iIndex = 0 ; // Index into points

// Hard coded end points, these could come from a file instead
static double dPts[20] = {0,1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1};

// Set the new end points
dX = dPts[iIndex] * 1000.0 ;
dY = dPts[iIndex] * 1000.0 + 250.0;
dZ = dPts[iIndex] * 1000.0 + 500.0;
dW = dPts[iIndex] * 1000.0 + 750.0;

// Set axis Z to 100000 to test if the cubic rate is changing
if(iIndex == 5)

dZ = 100000 ;

// Set axis Z to 10000 to test if the cubic rate is changing
if(iIndex == 15)

dZ = 10000 ;

Cubic Spline Programming

12-32

// Check if Flag = 0, NOTICE: This requires that var39 is being
// updated to VARIABLE viewing window #1
if(var(1) == 1.0)

return ;

// Change the variables to the new end points
begin_RTC();

change_var(22, dX);
change_var(27, dY);
change_var(28, dZ);
change_var(15, dW);

end_RTC();

// Flag the DSPL that vars have been changed
change_var(34, 1.0);

// Get the new index point into the endpoints table
iIndex = (iIndex + 1) % 20;

}

// Header file for Processing The Handshaking of points

void Process(HWND hwnd);

**
/***

Program Target.c
This application will send X, Y, Z, and W end points to the Mx4 card
using the C/C++ DLL, MX4WPL.DLL. The functions mainly used are
monitor_var, change_var, and var.

The algorithm for this program (without the window handling)
is as follows,

 1. Every TIMER ms (see the #define below) the procedure Process()
is called.

The algorithm for Process() is as follows,

 1. Everytime Process() is called, var34 on the Mx4 card is
checked. If var34 = 1, then we exit the Process() procedure.
If var34 = 0, then we continue on...

 2. At this point, var34 = 0. Now we send the new end points for
X, Y, and Z to the Mx4 card. That is we set var22 = X end point
var27 = Y end point, and var28 = Z end point.

 3. We set var34 = 1 to notify the DSPL that we have sent the
new end points.

***/

#include <windows.h>
#include <string.h>
#include "mx4wpl.h"
#include "Process.h"

// Global definitions

Cubic Spline Programming

DSPL Application Programs v3.1 12-33

#define ID_START_BUTTON 100
#define ID_STOP_BUTTON 101
#define ID_CLOSE_BUTTON 102

// Timer in milliseconds
#define TIMER 50

// Global handles
HWND hposition;
HWND herror;
HWND hvelocity;

// Function prototypes
long FAR PASCAL TargetWndProc(HWND hwnd, UINT message,

 WPARAM wparam, LPARAM lparam);

/***

 WinMain

This is the main windows procedure. Processes the message loop.

***/
int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

WNDCLASS wc; // Window Class
HWND hwnd; // Handle to the main window
MSG msg; // The message
static char buffer[20]; // For checking the signature

if (!hPrevInstance){
wc.style = NULL;

 wc.lpfnWndProc = TargetWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;

 wc.hIcon = LoadIcon(hInstance, "Target");
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_BTNFACE+1);
wc.lpszMenuName = NULL;

 wc.lpszClassName = "TargetWndClass";

// Register the class
if (!RegisterClass(&wc))

return FALSE;
}

// Verify that the Mx4 or DM4 was found at the address in the DSPCG.INI file
if (_fstrncmp(signature(buffer), "MX4", 3)!= 0){

if (_fstrncmp(signature(buffer), "DM4", 3)!= 0){
MessageBox(NULL, "Mx4 Not Found", "", MB_OK);
return NULL;

}
}

// Set up the position and time units for the DLL
time_unit(1);
position_unit(1);

// Create the windows
hwnd = CreateWindow("TargetWndClass","Target", WS_SYSMENU | WS_OVERLAPPED,

 CW_USEDEFAULT, CW_USEDEFAULT, 125, 180, NULL,NULL, hInstance, NULL);

Cubic Spline Programming

12- 34

CreateWindow("button", "Start", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 10, 10, 100, 35, hwnd, ID_START_BUTTON, hInstance, 0L);

CreateWindow("button", "Stop", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 10, 60, 100, 35, hwnd, ID_STOP_BUTTON, hInstance, 0L);

CreateWindow("button", "Close", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 10, 110, 100, 35, hwnd, ID_CLOSE_BUTTON, Instance, 0L);

// Show and update the windows
ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);

// Process the messages
while (GetMessage(&msg,NULL,NULL,NULL)){

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return (msg.wParam);
}

/***

 TargetWndProc

Handles the messages.

***/
long FAR PASCAL TargetWndProc(HWND hwnd, UINT message,

WPARAM wparam, LPARAM lparam)
{

switch(message){

case WM_COMMAND:

switch (wparam){

case ID_START_BUTTON:

// Send the monitor var RTC
monitor_var(1, 34); // Flag variable

// Start the timer
SetTimer(hwnd, 1, TIMER, NULL);

break;

 case ID_STOP_BUTTON:

// Kill the timer
KillTimer(hwnd, 1);

break;

 case ID_CLOSE_BUTTON:

 // Send the close message
 SendMessage(hwnd, WM_CLOSE, 0, 0L);
 break;

}
break;

case WM_TIMER:

Cubic Spline Programming

DSPL Application Programs v3.1 12-35

// Process the handshaking
Process(hwnd) ;
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hwnd, message, wparam, lparam);

}
return NULL;

}

DSPL Application Programs v3.1 13-1

13 Cam Applications

The DSPL commands useful for cam applications are:

i) Commands used by all cam applications

CAM ;engages a cam function unconditionally
CAM_OFF ;disengages cam
CAM_OFF_ACC ;disengages cam and decelerates slaves to a stop
CAM_POS ;engages cam based on a programmed position
CAM_PROBE ;engages cam when an external signal is set
CAM_TSIZE ;sets the total table length

ii) Command used by applications requiring cyclic error corrections

REL_AXMOVE_SLAVE ;moves slaves relative to slave position(s)

iii) Command used by applications requiring several Mx4 cards (one master
and up to 127 slaves)

SYNC ;synchronizes a slave Mx4 card to a master Mx4 card

The following starts from general to more specific applications.

1. Ordinary cam used in a four-axis master/slave application (one axis is
master and up to three axes are slaves).

2. Ordinary cam used in an up to 128-axis master/slave application (one axis
is master and the remaining axes, using several Mx4 cards, are slaves).

3. Cam functions used in cyclic slave position corrections.

Simple Cam Function with One Master & up to Three Slaves

The first application uses a single Mx4 card. One of the axes is selected as
master and up to three axes are slaves. There are three DSPL commands that
turn on a CAM, function. The first command, CAM, starts cam unconditionally.

Cam Applications

13-2

The second command, CAM_POS, starts cam when master axis has passed a
programmed position. Finally, the third command, CAM_PROBE, starts cam upon
the resetting of an external high speed input signal referred to as probe
(*EXTx).

There are two cam disengaging commands: CAM_OFF and CAM_OFF_ACC. The
first, CAM_OFF, disengages a cam function immediately. The second command,
CAM_OFF_ACC, disengages the slave(s) and stops them at the programmed
acceleration rate.

The procedure to run a complete cam function involves the following steps.

1) Choose a “master position space” defined as the master position
displacement for the adjacent gear ratios of a cam table. For example,
master position space of 5 means for every 5 counts of master move the
index to the gear ratio table (also referred to as cam table) will be
incremented by one.

2) Download the cam table to the Mx4 memory.

The functions required in steps 1 and 2 are combined in a DOS level
executable file called down_cam.exe. You may find this file in the TABLE
subdirectory of your Mx4 utilities diskette. Alternatively, you may use the
Tables option on the Mx4pro v4 for Win 95/NT to select master position
spacing and table down load.

3) Depending on your application need, choose one of the following DSPL
commands: CAM, CAM_POS or CAM_PROBE.

4) You may use one of the following DSPL commands to stop (disengage) a
cam function: CAM_OFF or CAM_OFF_ACC.

The above four steps establish a command sequence for all cam applications.

 How to Download a Table Along with Its Position Spacing

Steps 1 and 2 are combined in a single DOS executable called
DOWN_CAM.EXE. This file is saved in the TABLE sub directory of the Mx4
utilities diskette. The syntax for this file is:

down_cam table_name.dat table_number table_spacing Mx4_card_address

Cam Applications

Mx4 Application Programs v3.1 13-3

where:

down_cam ;name of the executable file
table_name ;name of the ASCII table containing gear ratios
table_spacing ;value specifying the master's position space

 ;between adjacent gear ratios of the cam table
table_number ;either 1 or 2, selecting one of the two tables
Mx4_card_address ;segment address for the Mx4 card

For example,

down_cam tab.dat 2 500 0xd0000

means download ASCII file TAB.DAT to table 2 and use table position spacing of
500 for an Mx4 card located at segment address 0xd0000 (see Chapter 2 of the
Mx4 User's Guide for hardware address settings).

Example

In a two-axis application axis 2 is the master and axis 1 is the slave. In this
application the master must run at a constant speed of 10 counts/200 µsec. The
slave must follow the master over the cam profile to be down loaded to table 1
as illustrated below. The position spacing between two adjacent points (gear
ratios) of the cam table is 100 and the table length is 1000. (this means that
there are 1000 gear ratios stored in the table) Write a DSPL program that puts
the master and slaves in a cam relationship only when the master's position
exceeds 200,000 counts.

Master
Position

Gear
Ratio

L = 1,000 table points

adjacent table points

100 encoder edges

Cam Applications

13-4

Steps 1 and 2

Following the command sequence described earlier in this section, use DOS
executable DOWN_CAM.EXE to download the cam table and table spacing value:

down_cam ratio.dat 1 100 0xd0000

The following describes the DSPL program for this application:

PLC_PROGRAM:

 var1=0 ;VAR1 is the initialization procedure flag
 run_m_program(INIT) ;starts running the initialization program
 run_m_program (CAM_EX1) ;starts running the CAM_EX1 program

end

INIT:

 maxacc(0x3,0.1,0.1) ;sets the maximum acc. for axes 1 & 2
 pos_preset(0x3,0,0) ;presets the position of axes 1 & 2 to 0

 ctrl(0x3,0,28000,5000,1600,0,28000,5000,1600)

 ;sets control law parameters for axes 1 & 2
 var1=1 ;initialization procedure has finished

end

CAM_EX1:

 wait_until(var1==1) ;waits until the initialization finishes
 cam_tsize(1,1000) ;sets the length of cam table 1 to 1000
 cam_pos(0x2,0x1,1,200000);engages CAM when the position of the master
 ;axis exceeds 200,000 counts
 velmode (0x2,10) ;runs axis 2 (master) in velocity mode

end

Cam Applications

Mx4 Application Programs v3.1 13-5

Use of Multiple Mx4 Cards in Cam Master/Slaving

Applications requiring more than three slaves need multiple Mx4 cards. The
figure below illustrates the hardware diagram of a multi-card operation.

. ..

Master Motor

Slave Motor 1

Slave Motor 2

Slave Motor 3

Encoder

Encoder

Encoder

Encoder

Master Mx4 CardSlave Mx4 Card (1)Slave Mx4 Card (n)

Synchronization Cable

 Figure: Multiple Mx4 Cards in Cam Master/Slaving

The position of the master position is used by the first axis of each Mx4 card.
Therefore each card can only accept three slaves.

Hardware Settings for Multi-Card Cam Operation

Daisy-chaining several Mx4 boards and proper jumper settings for their
synchronization is described in the Mx4 User's Guide, Installing Your Mx4
Hardware.

Cam Applications

13-6

Software Commands for Multi-Card Cam Operation

The only difference between multiple- and single-card cam operations is that in
multi-card operation, you must let a slave Mx4 card know that it has been
selected as a slave. The master Mx4 card does not need to be notified!

On a slave card, the DSPL command that needs to precede those listed for a
single card cam application (see Example 1) is:

SYNC

Note 1: The DSPL command sync must precede those listed in the
first example.

Note 2: The above DSPL command sync is only required to run on
a slave Mx4 card.

Cam Applications

Mx4 Application Programs v3.1 13-7

Cam Operation with Dynamic Error Correction on Slaves

Industrial applications such as flying shear with mark registration or
synchronous cutting require frequent error correction. These cyclic motions are
similar to those described in the previous two examples. The only difference is
that the slave position must be corrected once every master cycle.

Slave Accel.

Slave Jerk

Number of Points

Time

Time

Master Speed

Slave Speed

Gear Ratio

One Full CAM Cycle

Real-Time Compensation
for Registration Error

 Figure: Master/Slave Cam Profile

The registration error (measured in real time by the DSPL) is used as the
relative target position with instruction REL_AXMOVE_SLAVE. This command
compensates for any slave position retardation.

Cam Applications

13-8

Example

Consider Example 1 in a cyclic operation. This example uses the DSPL
language and does not involve the host computer. The cutting error is defined
as:

Cutting Error = (position of slave index marker) - (position of slave at the
 registration mark)

This value can be calculated in real time by the DSPL program and used as
position argument with REL_AXMOVE_SLAVE. The command REL_AXMOVE_SLAVE
superimposes a relative trapezoidal move on the top of the slave's motion.
Therefore, it adds to slave position at a specified relative velocity and
acceleration. In flying shear application, this compensation is done when the
knife (slave) is disengaged. This way, during the next cycle, by the time the
knife is engaged again, the slave has already recovered the error.

A DSPL Program Example

In the following example, axis 1 is master and axis 2 is slave. The cam table,
‘RATIO.DAT’ consisting 1000 gear ratios has already been downloaded to cam
table 1 location via DOS command line:

down_cam ration.dat 1 500 0xd0000

This means the master position spacing between adjacent gear ratios in cam
table is equal to 500, and the Mx4 card is in address location 0xd0000.

Cam Applications

Mx4 Application Programs v3.1 13-9

Master

Mx4

Encoder

Slave

(axis 1)

(axis 2)

IP(2)

*EXT1

Electronic Eye

 Figure: Flying Shear With Mark Registration

Figure shows that the registering electronic eye is connected to the probe signal
(*EXT1) and index pulse of the knife (slave) registers the slave location.
Enabling the probe interrupt will capture the position of all four axes upon the
falling edge of *EXT1. Enabling the index pulse interrupt will capture the
position of all four axes upon the rising edge of, IP(2). Upon the recipt of one of
the two interrupts the index and probe positions are captured. Clearly, one of
the interrupts may occur earlier than the other. The program waits until both
interrupts within a single move cycle are received. VAR5 calculates the distance
between the positions of slave at the times of the two interrupts. This distance is
used as a relative position in conjunction with REL_AXMOVE_SLAVE command to
advance the motion of slave.

The following DSPL program implements the “flying shear” application.

Cam Applications

13-10

PLC_PROGRAM:

 var1=0 ;VAR1 is the initialization procedure flag
 run_m_program(INIT) ;starts running the initialization program
 run_m_program(CAM_EX3) ;starts running the CAM_EX3 program

end

INIT:

 maxacc(0x3,0.1,0.1) ;sets the maximum acc. for axes 1 and 2
 pos_preset(0x3,0,0) ;presets the position of axes 1 and 2 to 0

 ctrl(0x3,0,28000,5000,1600,0,28000,5000,1600)

 ;sets control parameters for axes 1 and 2
 en_probe(1,1,0) ;enables probe 1 interrupt
 en_index(2) ;enables index pulse interrupt for axis 2
 var1=1 ;initialization procedure has finished

end

CAM_EX3:

 wait_until(var1==1) ;waits until the initialization finishes
 cam_tsize(1,1000) ;sets the length of cam table 1 to 1000
 cam(0x1,0x2,1) ;enables cam, axis 1 master, axis 2 slave
 velmode (0x1,5) ;runs axis 1 in velocity mode
 var2=0; ;var2 is used as a control flag for the
 ;while loop

 while(var2==0)

 if ((probe_reg & 0x01) AND (index_reg & 0x02))
 ;checks for both interrupt conditions
 var3=probe_pos2 ;stores the position of slave at the time
 ;the probe signal was set
 var4=index_pos2 ;stores the position of slave at the time
 ;the index pulse was set
 var5=var4-var3 ;computes the shift of slave position
 rel_axmove_slave(0x2,1.5,var5,20) ;adjusts the position of slave
 int_reg_clr(0x09,0x02,0x01) ;clears probe_reg and index_reg
 en_probe(1,1,0) ;enables probe 1 interrupt
 en_index(2) ;enables index pulse interrupt for axis 2

 endif

 wend

end

