DSPL 5.0

A Guide to Programming Mx4 in DSPL Language

Turbo DSPL
Programmer's Guide
v5.0

This documentation may not be copied, photocopied, reproduced, trandated,
modified or reduced to any electronic medium or machine-readable form, in
whole or in part, without the prior written consent of DSP Control Group, Inc.

O Copyright 1998-2005 DSP Control Group, Inc.
PO Box 39331
Minneapolis, MN 55435
Phone: (952) 831-9556
FAX: (952) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for
any accident resulting from misuse of its products.

DSPL, Mx4, Acc4, Vx4++, and Vx8++ are trademarks of DSP Control Group,
Inc.

Other brand names and product names are trademarks of their respective
holders.

DSPCG makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a
particular purpose, regarding the licensed materials.

Contents

L Nt OTUCHION o 1-1
2 INSTAAION .oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 21
3 Methods of Programming MXA4.........rrenneen 31
Host-Based Programming...........cooceeeiieeiiiie e 31

DSPL Programmingcceeeeueeerieeesiieeesieeeseeseseeessseessseeens 3-2

Combining DSPL and Host-Based Programmingcccc...... 33

Introduction to DSPL Programmingccceeeeeerieeesiieeeseeeenne 3-3

PLC Programs........c.ceeeeeiieieeeeieee e 34

MOLION Programs.........cooeueeeiieeeeieeessieeesiieeeseee e saee e 35

4 Mx4 DSPL Programming ... 4-1
DSPL Programming BasiCS.........ccooueeiiieeiiiieeniie e 4-2

Program ENtry ... 4-2

SYNLBX ettt e e 4-2

WIting PLC Programs.........cooueeeiieeeniieeessiieeeseeeeesiieeesseessneeens 4-4

What iSaPLC Program?ccocceeeieeenieeenieeeseee s 4-4

PLC 1/O FUNCHONAIILY ..o 4-9

PLC Program SYNtaXceeeeeeeeeeniieiee e 4-9

PLC Program EXamples.........cccoeceeeiiieeniiieeriee e 4-9

PLC Program SpecifiCationS...........coovveeiieeeinieeenieeeseeenns 4-10

Writing MOtion Programs...........occeeeereeeenieeesieeeseeeesieeeseeeens 4-11

What isaMotion Program?ccocceevneniie s 4-11

Motion Program SyNtaX.........ccceeeeeeereeeenieeesieeesieeeseeens 4-11

Motion Program EXamplesccccooveeiiiininieeniieeneeens 4-11

DSPL Programmer’s Guide v5.0 i

Contents

SUDIOULING SEIUCLUNE.......coieiieiiiee e 4-13
Motion Program SpecifiCations...........cccoovveeiiieeiniieeeseennns 4-14
Using # INCludes FIlES..........oiiiiiieeiee e 4-14
USING # DEFINE.....ceeiiiiee s 4-15
5 DSPL BASICS ..o 51
DSPL 1AENtifIrS.....eeeeiieeeeieee e 5-1
VariableS ... 5-2
TADIES e 5-2
State Variables.........oeeiieeeieee e 54
INPUE REQISLENS ... 55
INterrupt REGISIENS.cooiiiieiiiie e 5-6
Drive Control (Vx4++) Parameters..........coocevvveeeneeesveeenne 5-6
Cam and Cubic Spline Table Counterccocoeeevieeenieennne. 5-7
CONSLANES....ceeeiieee et e e 5-7
10 PSP 5-7
DSPL Operators and FUNCLIONScccueeeiiieiiieeenieeesiee e 5-8
Basic ArithmetiC Operators..........coceerieeeerieeerieeesiee e 5-8
Elementary Math FUNCLIONSc.cooiiiiiiiiieeeeeeeee 5-9
TrigoNOMELriC FUNCLIONS.......cveieiiiiesieee e 5-10
Relational Operators..........ccveviieerieee e 5-10
Bitwise and Logical Operators..........coocveeeieeeenieeenieeesieee e 5-11
Bit Register FUNCLIONAIITYccveveiiiieeiie e 5-11
6 DSPL Program Development......rnnnnen 6-1
Opening DSPL FIES....c.uuiiiiie e 6-2
EditiNg FIES ... 6-3
CompPIING FIES....coiieie s 6-3
Downloading FIlES.........coiiiiiiiieee e 6-4
Executing DSPL Programs.........ccoceeeiiieeniiieeniee e siee e 6-5
Monitoring Execution of DSPL Programs...........ccccceeevveeenieenns 6-5
Closing the DSPL Development TOOlccceeviieeiiieeenieeeen. 6-6
7 TUBOTTAL ..o 7-1

Contents

Session 1.....Getting Started.........oooveeeeiieeinieeeee e 7-1
Session 2....Using Variables.........cocceeeeiiiee e 7-2
Session 3.....Mathematical FUNCLiONS...........ccccoevieeiiiieeniieeee, 7-3
Session 4.....Electronic Gearing........cccovveeereeeeiieeesieee e 7-4
Session 5.....Cam Programmingcooceeeeveeeenieeesieeeseeee s 7-5
SesSION 6.....LINGAr MOVES........c.ceeiiieeiie e 7-7
SessSioN 7.....Circular MOVES.........coovviieiiieeniee e 7-8
Session 8.....Table-Based Cubic Spline........ccocoeveeeiieieniieenen, 7-9
Session 9.....ASCII Termina Communicationcccue..... 7-11
Session 10...VeCtor CONtrol..........covveeeiieeeiiee e 7-14
Session 11...USiNg INtEITUPLSeeeiiiieeiee e 7-16
8 DSPL Command Set ... 81
REFEIENCE ..o 8-1
DSPL Command SUMIMEAIYceeiiueieriiieeaiiieesieeeseeesseeessseeens 8-5
Control Law & Initializationcccoevceveveeeiiieeneeeeiee 8-6
SIMPIE MOLION. ... 8-6
PLC & MUItItasKing........ccoeeeiiiereiiie e 8-7
Input / Output CONtrol............coovieeiiiieiee e 8-7
Program FIOw Control...........ccceoviiieiiiieinieeeee e 8-7
Program FIOw Control...........cccoeeiiieniiiiiiee e 8-7
(@001 (011 1o SRR 8-8
Motor, Power, Sensorsand Drive..........ccccceevieeeneeenieeenne 8-8
Coordinated Motion - GEaring........cccecveeereeeeriieresiieeesieeene 8-9
Coordinated Motion - Cam..........ccceeviereriieeesiiee e 8-9
Single & Multi-Dimensiona Interpolation............c.cceeen..e. 8-10
Interrupt Controlccceeeeiie i 8-11
ASCI INEfaCe ... 8-11
Filtering (Optional)oocveeiiiiieeiee e 8-11
DSPL Command SEcccueeeiiiieiiiee e 8-12

DSPL Programmer’s Guide v5.0 iii

Contents

This page intentionally blank.

1 Introduction

Congratulations on purchasing a DSP Control Group's high-speed multi-DSP
motion controller. You will find DSPL a powerful language with an instruction
set suitable for all coordinated motion control applications.

This manual contains additional information specific to Turbo DSPL, a version
of DSPL which maximizes instruction throughput for higher performance.
Instruction listings in Chapter 8 include instruction timing information.

The DSPL Programmer’s Guide supports the 2-axis Mx42, the 4-axis Mx4, and
the 8-axis Mx4 Octavia controllers. Unless otherwise noted, descriptions are
provided for the 8-axis Mx4 Octavia. When this manual is used in conjunction
with the 4-axis Mx4 or the 2-axis Mx42, remember that the axes available are
1-4 for the Mx4 and 1-2 for the Mx42 (rather than 1-8 for the Mx4 Octavia).

Also note that througout this manual, unless otherwise noted, the term Mx4
will be used to refer generically to al three controllers.

In addition to this manual, you may find the following manuals helpful:

Mx42 User’'s Guide
Mx4 User's Guide
Mx4 Octavia User's Guide

These manuals include comprehensive information on Mx42/Mx4/Mx4
Octavids hardware, software, system tuning, memory organization, trouble
shooting, and more. The User's Guide is the focal point in learning the
technical details of these products. All other manuals assume that the user has
familiarity with these manuals.

DSPL Programmer's Guide v5.0 1-1

Introduction

1-2

Mx4Pro Development Tools

This manual describes Mx4Pro - a testing and tuning software program used
with Mx42, Mx4, and Mx4 Octavia. Mx4Pro includes features such as a signal
generator, oscilloscope, and live block diagram which make the program useful
for testing and performance optimization.

Introduction

Vx4++ User's Guide

This manual includes information on the add-on drive control option. Vx4++ is
DSPCG's multi-DSP based drive controller that provides complete drive signa
processing for all industrial DC and AC machines. VVx4++ has capabilities that
are normally offered by servo control amplifiers.

Mx4 & Windows

If your motion application operates under the Windows 95 or Windows NT
operating system, you will want to utilize the Mx4 DLL. The Mx4 & Windows
manual accompanies the DLL, providing information for both Visual Basic and
C/C++ programming. The Mx4 DLL includes functionality in all aspects of
Mx42 | Mx4 | Mx4 Octavia use, including utilities for DSPL downloading,
DSPL execution start and stop, and much more.

DSPL Programmer's Guide v5.0 1-3

2 Installation

The Mx4Pro Development Tools include DSPL Program Development as an
integrated part of the Tools. The Mx4Pro Development Tools provide both
first-time and experienced DSPL programmers with easy access to a host of
powerful development aids, ranging from simple DSPL tutorials to
compensation table download utilities for more advanced applications. As
such, it is strongly recommended that the Mx4Pro Development Tools be used
for DSPL program development. Within Mx4Pro, the DSPL Program
Development environment may be invoked via the DSPL icon on the main
Mx4pro Development Tools tool bar. Please refer to the Mx4Pro Devel opment
Tools v5.x manual for software installation details.

Chapter 6, DSPL Program Development, contains helpful information which
details the use of the DSPL Program Development environment within the
Mx4Pro Development Tools.

DSPL program development may also be integrated into any Windows 95 or

Windows NT application via the DSPL utilities provided in the Mx4 DLL.
Refer to the Mx4 & Windows manual or contact DSPCG for more information.

DSPL Programmer's Guide v5.0 2-1

Installation

2-2

This page intentionally blank.

3 Methods of Programming
Mx4

Before we immerse ourselves in the specifics of DSPL programming. let's look
at the two different methods of programming the Mx4 controller. DSP Control
Group has applied years of experience in the motion control industry to the
development of Mx4's dua programming platform. Mx4 may be programmed
via real time Host-based programming, or at a DSPL (internal language of
Mx4) level, or a combination of both.

Host-Based Programming

Host-based programming entails real-time communication between the host
computer and the Mx4 card across the host computer bus. This communication
originates from an Mx4 motion application running on the host computer. The
host computer may read and write to the Mx4 card as it would any computer
peripheral. The user chooses the programming language for the host computer
program. For example, it may be a DOS application written in C, or maybe a
Visual Basic Windows NT application. DSPCG provides programming
utilities ranging from C functions to Visual Basic / C DLLs for host-based
program development. This host program includes the following: facilities to
transfer commands to the Mx4 card through the host bus, any conditional
program code execution routines, PLC emulation code, an optional interrupt
service routine to handle any enabled Mx4 interrupts, Mx4 system parameter
readback routines, plus any other software features required for the application.
When using host programming, an executable host program runs the operation
of the Mx4 card in real time.

User's Guide. This document, the DSPL Programmer's

@ Note: Mx4 Host programming is described in detail in the Mx4
Guide, focuses on Mx4 DSPL programming.

DSPL Programmer's Guide v5.0 31

Methods of Programming Mx4

DSPL Program

system parameter readback
host interrupts

HOST
COMPUTER

* Mx4 real-time commands

* code generation * Mx4 executes real-time host commands

assembly, C, Pascal, etc.

executable code

* executable program running
on host computer

Fig. 3-1: Mx4 Host-Based Programming

ming

The Mx4's high-level DSPL programming platform enables complete motion
control applications to be written in the DSPL programming language,
downloaded once to the Mx4 card, and executed by the Mx4 card. The DSPL
programming language is a powerful, full-featured, yet easy to use language
that includes features such as conditional program execution, subroutine calls,
separate PLC and motion programming facilities, and the ability to run PLC
and multiple Motion programs simultaneously on the Mx4 card.

A DSPL program consists of a text file which may be written with any text
editor. The DSPL code is then compiled and downloaded to Mx4's memory.
With the use of the optional non-volatile battery-backup memory available for
Mx4, standalone operation is possible once the DSPL program is downloaded
to the card. Once the DSPL code is loaded into Mx4's memory, Mx4 may begin
executing the code. DSPL code execution by Mx4 is independent of the host
computer.

D D t——bmm
HOST DD E E D
COMPUTER
* Mx4 DSPL code transfer DD l:| D
* Mx4 can run as a stand-alone unit
* code generation * DSPL code stored in Mx4 memory
DSPL text file * DSPL program runs on Mx4 independent

of host computer operation

DSPL compiler

Mx4 DSPL code

* DSPL code downloaded to Mx4

Fig. 3-2:Mx4 DSPL Programming

Methods of Programming Mx4

Combining DSPL & Host-Based Programming

Although both the Host and DSPL Mx4 programming techniques are full
featured and self-supporting, you may choose to combine the two, drawing the
advantages of both techniques in solving a particular programming application.
While running or executing DSPL PLC and Motion programs, Mx4 is still
completely programmable via the host (Host-based programming methods).
This feature of Mx4 allows for a combination of Host and DSPL programming.
In addition, a synchronizing timing structure may be established between an
executing DSPL program and the host computer via Mx4's powerful command
ets.

Introduction to DSPL Programming

DSPL was designed to combine the flexibility of low-level instructions with the
convenience of a high-level language. To use DSPL, only a minimum
programming background is required, since DSPL only contains common sense
language constructs. If you are a first time DSPL programmer, you will find
yourself writing simple applications in minutes with the aid of the Mx4pro
Development Tools and included tutorials.

DSPL is a powerful programming language designed to take advantage of
Mx4's multi-DSP architecture and multi-tasking capabilities. DSPL includes
low and high-level instructions that make it ideal for both simple and more
advanced motion control programming.

A typical DSPL program consists of two distinct portions, PLC programming
code and Motion programming code. A DSPL program aways includes a
single PLC sub-program and any number of Motion sub-programs (Fig. 3-3).
(In this manual the PLC and Motion sub-programs will be referred to as PLC
and Motion programs).

DSPL Programmer's Guide v5.0 33

Methods of Programming Mx4

pl c_program

initialize parameters and gains
performlogical operations on I/Gs
start notion prograns

not i on_prog_1:

do sinple and coordi nated noves
perform| ogical operations

do conditional branchi ng

cal | subroutines

check interrupts

end
not i on_prog_2:

end

not i on_prog_n:

end

Fig. 3-3: A Typical DSPL Program Sheet

Mx4 is capable of running the PLC program and up to two Motion programs
simultaneously. Mx4 Octaviais capable of running the PLC program and up to
three Motion programs simultaneously.

PLC Programs

The PLC program is typically used as a "monitor" program emulating a
Programmable Logic Controller. As is indicated in Fig. 3-3, the PLC may be
used to execute initialization routines, monitor system status, perform logical
operations based on input/output, run Motion programs, perform conditional
Motion program execution, and many more application-specific functions.

Based on a logical combination of inputs and/or dynamic system state values
(e.g., position, position error, or velocity), the PLC can make an executive
decision. The decision can be as simple as setting an output bit or executing
one or several motion programs simultaneously.

3-4

Methods of Programming Mx4

As an example, consider the following simple PLC program.

PLC_PROGRAM
#include "IN T.hlI"

VARL = 0

run_m program (| Nl T_MX4)

wai t_until (1NP1_REG & 0x0001)
run_m program (PROFI LE_1)

END

This PLC program, although very simple, illustrates some important
fundamentals of PLC programming such as variable and system initialization
and conditional Motion program execution.

Motion Programs

The Mx4's multi-tasking operating system allows simultaneous execution of
the PLC program and up to three Motion programs. DSPL Motion programs
consist of either conditional or unconditional execution of DSPL commands
(both motion and non-motion related), logical operations, conditiona
branching, subroutine calls, the issuance of interrupts, etc. A Motion program
isinitiated by the PLC program, but runs independent of the PLC.

Motion programs may contain /O instructions similar to those found
traditionally in the PLC. The Motion programs resemble C code and include
common logical and conditional constructs such as if, endif, while, wend, etc.
A Motion program can include several hundred lines of high-level commands,
or, in a shorter form, can include severa calls to subroutines performing a
dedicated task.

DSPL Programmer's Guide v5.0 35

Methods of Programming Mx4

The following is an example of a simple Motion program.

SEG A1_TO B1:
pos_preset (0x3, 1000, 3500)
if ((PCS3 > 500) and (CVEL1 = 0))
I i nearnove (0x2, 0, 0, 1000, 1.0, 2, 0.025)
circle (0xC, 0,1000, 500, 0. 75, 0, 0)
endi f

END

4 Mx4 DSPL Programming

As we have seen, a DSPL program consists of two parts: the PLC sub-program
and the Motion sub-program(s) (Fig. 4-1)

pl c_program

initialize paraneters and gai ns
performlogical operations on I/Cs
start notion prograns

notion_prog_1:

do sinple and coordinated noves
perform|ogical operations

do condi tional branching

cal | subroutines

check interrupts

end

notion_prog_2:

end

noti on_prog_n:

end

Fig. 4-1: A Typical DSPL Program Sheet

The PLC and Mation programs together are collectively referred to as a DSPL
program. The DSPL program is merely atext file, which is then compiled and
downloaded to the Mx4 card. The following sections illustrate some of the
basics of DSPL programming.

DSPL Programmer's Guide v5.0 4-1

Mx4 DSPL Programming

DSPL Programming Basics

Program Entry

The DSPL program is a text file containing a series of DSPL commands,
keywords, and operators, which make up the PLC and (any number of) Motion
programs. A DSPL program may consist of a maximum of 2048 DSPL
command lines. The DSPL program may be entered with any standard text
editor via the Mx4pro Development Tool (see Chapter 6, DSPL Program
Devel opment).

The DSPL program file must be a suffix of .hll. For example:
filename.hll

Note: The .hll suffix isrequired in order for the DSPL program file
to be compiled by the DSPL compiler.

Syntax

included in the listing of each of the commands (see DSPL

@ Note: The syntax for the usage of individual DSPL commandsis
Command Set).

The DSPL programming language follows some very simple structural syntax
rules.

Mx4 DSPL Programming

Upper & Lower Case Characters

DSPL programs may be written in either upper or lower case characters, or any
combination of such. The DSPL compiler does not differentiate between upper
and lower case. The following example Motion program illustrates this point,

EXAMPLE:

var1=1
VAR2=33

i f(inpl_REG&0x0010)
maxacc(0x1, 0. 024)
VELMODE(0x1, 6. 5)

ENDI F

end

In order to ease program readability, it is advisable that the programmer
follows a procedure for the use of upper and lower case characters. For
example, the programmer may wish to reserve upper case characters for
program labels and variable designators,

EXAMPLE:

VARL=1

VAR2=33

i f (I NP1_REG&0x0010)
maxacc(0x1, 0. 024)
vel node(0x1, 6. 5)

endi f

END

Blank Space

The DSPL compiler does not require any spacing or carriage returns between
commands. For example, the following example Motion program is a valid

program,
EXAMPLE: VARL=1VAR2=33 i f(INP1_REG& 0x0010)
maxacc (0x1, 0. 024) vel node
(0x1, 6. 5)
endi f END

Again, it is strongly advised that the programmer use a spacing procedure with
spaces, tabs, and/or carriage returns in order to increase readability of the
program as well asto indicate program flow and structure.

DSPL Programmer's Guide v5.0 4-3

Mx4 DSPL Programming

EXAMPLE
VARL = 1
VAR2 = 33
if (INP1_REG & 0x0010)
maxacc (0x1,0.024)
vel node (0x1, 6.5)
endi f
END

Commenting Programs

It is often convenient to place comments or notes in a program in order to
improve the program’s readability. In DSPL a comment always begins with a
semi-colon (;) and ends with a carriage return. For example,

; This programis an exanple

EXAMPLE
VARL = 1 sinitialize variable 1
VAR2 = 33 ; defi ne VAR2=33
if (INP1_REG & 0x0010) ;if INL(1) input is
maxacc (0x1,0.024) ;set, then initiate
vel node (0x1, 6.5) ;velocity node notion
endi f
END

Writing PLC Programs

4-4

What is a PLC Program?

Each DSPL program must include a single PLC program. The PLC (or
Programmable Logic Controller) program is typically used as a monitor
program, utilizing input logic and/or system parameter conditions for
evaluating conditional expressions, and initiating the execution of Motion
programs.

Mx4 DSPL Programming

pl c_program

initialize parameters and gains
perform|ogical operations on I/GCs
start notion prograns

end

not i on_prog_1:

do sinpl e and coordi nated noves
perform| ogi cal operations

do condi tional branching

cal | subroutines

check interrupts

end
not i on_pr og_2:

end

not i on_pr og_n:

end

Fig. 4-2: A Typical DSPL Program Sheet, PLC Program Highlighted

Due to its “monitoring” function, the PLC program must execute in an
uninhibited fashion. For this reason, the PLC program is limited as to the
DSPL commands, which may appear within it. For example, a DELAY command
is not allowed in the PLC program, since the PLC program code execution
halts during the specified duration of the DELAY command, impairing the PLC
"monitoring” function. Also, motion and system commands are restricted from
use in the PLC program. In short, only those commands, operators, and
keywords related to system initialization, conditional expression evaluation,
and Motion program execution are available to the PLC program.

The DSPL command listings (see DSPL Command Set) include a USAGE
category that indicates whether or not the command is available for use in the
PLC program. The following table indicates the PLC and/or Motion program
usage of the DSPL commands.

DSPL Programmer's Guide v5.0 4-5

Mx4 DSPL Programming

Note: Operators and identifiers are not PLC/Motion program
sensitive.

DSPL COMMANDS P
ABS

LC MOTION
v
ADC1, ADC2, ADC3, ADC4 v
v
v

AND, OR
ARCTAN

AXMOVE

AXMOVE_S

AXMOVE_T

BTRATE

CALL

CAM

CAM_OFF

CAM_OFF_ACC

CAM_POINT

CAM_POS

CAM_PROBE

CAMCOUNTY, ..., CAMCOUNTS v
CIRCLE

cos v
CPOSL, ..., CPOS8 v
CTRL

CTRL_KA

CUBIC_INT

CUBIC_RATE

CUBIC_SCALE

CURR LIMIT

CURR_OFFSET

CURR_PID

CVELL, ..., CVELS v
DDAC

DELAY

DISABL_INT

DISABL2_INT

ELSE v
EN_BUFBRK

ENCOD_MAG

ENDIF v
EN_ENCFLT

EN_ERR

EN_ERRHLT

EN_INDEX

EN_MOTCP

EN_POSBRK

EN_PROBE

A N N N N R N O N N N N N S N N NN

Table4-1: DSPL Command Usage Listing

Table 4-1 cont.: DSPL Command Usage Listing

DSPL Programmer's Guide v5.0

Mx4 DSPL Programming

DSPL COMMANDS

PLC

MOTION

ERRL ..., ERRS
ESTOP_ACC
ESTOP_REG
FERR REG
FERRH_REG
FLUX_CURRENT
FRAC

GEAR
GEAR_OFF
GEAR_OFF_ACC
GEAR_POS
GEAR_PROBE
ICUBCOUNT

IF
INDEX_POSL, ..., INDEX_POS8
INDEX_REG
INPL_REG, INP2_REG
INP_STATE
INPUT

INT

INT_HOST
INT_REG_ALL_CLR
INT_REG_CLR
KILIMIT
LINEAR_MOVE
LINEAR_MOVE_S
LINEAR_ MOVE_T
LOW_PASS
MAXACC
MOTCP_REG
MOTOR_PAR
MOTOR_TECH
NOTCH

OFFSET
OFFSET_REG
OUTGAIN
OUTP_OFF
OUTP_ON
OVERRIDE

P
POSL, ..., POS3
POSBRK_OUT
POSBRK_REG
POS_PRESET
POS_SHIFT
PROBE_REG
PRINT

v

AN

AR NANEN

ANANRNEN

SN NE NN

<

v

A N N N O N R N N N N N N NN NENEN

Mx4 DSPL Programming

DSPL COMMANDS

PLC

MOTION

PRINTS
PROBE_POSL, ..., PROBE_POSS3
PWM_FREQ
REL_AXMOVE
REL_AXMOVE_S
REL_AXMOVE T
REL_AXMOVE_SLAVE
RESET

RET
RUN_M_PROGRAM
SIGN

SIN

SINE_OFF

SINE_ON

SQRT

START

STEPPER_ON

STOP

STOP ALL_M_PROGRAM
STOP_M_PROGRAM
SYNC

TABLE_OFF
TABLE_ON

TABLE_P, TABLE_V
TABLE_SEL

TAN

TIMER, TIMER_RESET
TRQ_LIMIT

VARL, ..., VAR128
VECCHG

VECT4 _PARY, ..., VECT4_PARS
VX4 _BLOCK
VELD, ..., VELS
VELMODE

VIEWVEC
WAIT_UNTIL
WAIT_UNTIL_RTC
WEND

WHILE

+

R 1~ *

N

,>, <=, >=, == I=

RS SANEEE NN ASASANENENRN

s

<

CULLLRR]

A N N N N N O N R N R N R S e S NN

Table 4-1 cont.: DSPL Command Usage Listing

Mx4 DSPL Programming

The PLC program controls the execution of the Mation programs contained in
the DSPL program. The PLC program and up to three Motion programs can be
running simultaneously on Mx4.

PLC I/O Functionality

In addition to scanning inputs within the PLC program, the ability to change
output status has been added. The outP_oN and outP_OFF commands may be
used within the PLC program.

PLC Program Syntax

The first line of the PLC program is must be the label pLCc_Procramfollowed by
acolon (:). Thelast line of the PLC program must be the keyword END.

PLC_PROGRAM
; PLC program code here

END

PLC Program Examples

Example 1
The following PLC program,

1) initializestwo variables, VARl and VAR2

2) initializes the Mx4 gains, etc. by running an initialization Motion
program

3) initiates execution of TEST_1 Motion program

4) monitors the axis 1 following error, initiating halting procedure if
error exceeds limit

PLC_PROGRAM
VARL = 0 ;initialize variables
VAR2 = 1
run_m progran{MX4_I NI T) ;run initialization program
wait_until (VARL == 1) ;wait for variable condition
run_m progran(TEST_1) ;run TEST_1 program
wait_until (ERRL > 500) ;nmonitor nmotor 1 error
run_m progran(HALT_ALL) ;run halting procedure

END

DSPL Programmer's Guide v5.0 4-9

Mx4 DSPL Programming

4-10

Example 2

PLC programs may initiate simultaneous up to three Motion programs (using
Mx4's multi-tasking capabilities) and repeat execution of Motion programs.

PLC_PROGRAM
VARL = 1
run_m program (PRG_1,) ; PRG 1

while ((CPCS1 > -1)or(CPCS1 < 1)) ;endl ess while case
if (VARL == 1)

VARL == 0
run_m program (EX) ; EX program execut ed repeatedly
endi f

wend

END

Note: Additional PLC programming examples may be found in the
Applications Notes chapter.

PLC Program Specifications

Stack Size

Stack size refers to the allowable depth of nested IF-THEN structures in the
PLC program. DSPL allows a maximum of 256 IF-THEN constructs in a PLC
program.

Mx4 DSPL Programming

Writing Motion Programs

What is a Motion Program?

DSPL Motion programs include all of the capabilities of the PLC program in
addition to system and motion-related commands. The function of a particular
Motion program, thus, is defined by the requirements of an application. The
Motion program may emulate PLC monitoring functions or motion commands
such as circular and linear interpolations, or a combination of those commands.

pl c_program

initialize paraneters and gai ns
performlogical operations on |/Cs
start notion prograns

end

noti on_prog_1:

do sinple and coordinated noves
performlogical operations

do conditional branching
call subroutines
check interrupts

end

noti on_prog_2:

noti on_prog_n:

Fig. 4-3: A Typica DSPL Program Sheet, Maotion Program Highlighted

The complete DSPL command set is available to Motion programs (see Table

4-1). A DSPL program may contain any number of Motion programs (as
opposed to the PLC program, of which only one is permitted). A particular
application may require only a single Motion program, whereas the needs of

DSPL Programmer's Guide v5.0 4-11

Mx4 DSPL Programming

4-12

another application may be better served by 20 different Motion programs. The
number of Motion programs used in a DSPL program depends both on a
particular application and on the programmer’ s preferences.

In addition to the PLC program, up to three Motion programs can be executed
simultaneously on Mx4.

The execution of a motion program is initiated by the RUN_M PRoOGRAM DSPL
command. The execution of a motion program may be terminated by one of the
following cases:

The motion program terminates itself upon reaching the END mark of the
program

The DSPL commands STOP_M PROGRAMand STOP_ALL_M PROGRAM Wil
terminate motion program execution

The host-programming STOP_DSPL RTC will terminate DSPL program
execution (and thus any motion programs)

Motion Program Syntax

The first line of a Motion program isits label, up to 21 characters long followed
by a colon (:). The last line of this program must be the keyword ENnD. For
example,
CURVE_43DEG
; CURVE_43DEG program code here

END

Motion Program Examples

Example 1

The MX4_INT Motion program sets the gains, maximum acceleration, and
integral gains limits for axis 1 and axis 4.

Mx4 DSPL Programming

MX4_| NT:
;initialize Mk4 paraneters

ctrl (0x9, 10, 10000, 0, 2000, 0, 10000, 500, 1000)
maxacc (0x9, 0.05,0.13)

estop_acc (0x9,0.2,0.2)

kilimt (0x9,2,3)

VARL =1

END

Example 2

The following Motion program performs a simple trapezoidal velocity profile to
move motor 3 to target position of 100,000 counts. When the target command
position is reached, Mx4 output OUTO is set. Motion programs can initiate the
execution of other Motion programs (similar to the PLC program function) as
isincluded in the TEST example Motion program.

TEST:
axnove (0x4, 0.855, 100000, 3. 4) ;trapezoidal profile
wait_until (CPCS3 == 100000) ;wait for end of nove
out p_on (0x0001) ; see QUTO
if (INP1_REG & 0x0200) ;if input condition is

run_m program (TEST2) ;met, run TEST2

endi f

END

Note: Additional Motion programming examples may be found in
the Applications Notes chapter.

Subroutine Structure

Subroutine calls (up to 15 levels deep) may be made in Motion programs via
the caLL and RET commands. The structure of the subroutine itself is identical
to the Motion program structure with the exception that RET commands are
placed in the subroutine program code to indicate at which point in the
subroutine code that the program flow should return to the calling Motion
program.

As an example, consider the following subroutine program with three return
options,

DSPL Programmer's Guide v5.0 4-13

Mx4 DSPL Programming

| NPUT_CHECK
if (INP1_REG & 0x1010)
VAR3 = 12
ret ()
el se
if (INP1_REG & 0x0035)
pos_preset (0x4,20000)
ret ()
endi f
endi f

axnove (0x1,0.15, 1000, 5.0)
wait (CPCS1 = 1000)
ret ()

END

Motion Program Specifications

Stack Size

Stack size refers to the allowable depth of nested IF-THEN structures in a
Motion program. DSPL alows a maximum of 256 IF-THEN constructs in a
Motion program.

Using #include files

4-14

Many DSPL programs may share similar routines such as Mx4 card
initialization routines or emergency motion-halting routines. Rather than
copying duplicate Motion programs between DSPL files, the user may wish to
use the DSPL compiler #i ncl ude operand. The #i ncl ude operand, when used
in a DSPL file, alows the DSPL programmer to link the DSPL file with the
specified #i ncl ude file. An #i ncl ude file may contain any number of Motion
programs or subroutine codes and, like a DSPL file, must have the .hll
extension. The #i ncl ude file must be within the same directory as the DSPL
file when the DSPL file is compiled.

The correct syntax for the #i ncl ude operand is,

#i ncl ude "filename.hll"

Mx4 DSPL Programming

The #incl ude operand(s) must appear at the beginning of the DSPL file,
separate from the PLC and any Motion programming in the file. For example,
consider the following DSPL program which includes an #i ncl ude compiler
operand,

#include "init.hl1"

PLC_PROGRAM
run_mprogram (MX4_INI'T)
END

where the init.hll file consists of,

MX4_I NI T
ctrl (0x1,10,10000, 5000, 3400)
kilimt (0x1,2)
maxacc (0x1,0.5)
estop_acc (0x1,1.0)

END

Using #define

#define may be used in DSPL programming to customize or personalize VARx
variable definitions. #define allows the DSPL programmer to assign names to
VARx variables. For example,

#defi ne LENGTHX VARL3
#defi ne tool radi us VAR7

#defines should be located to the top of the HLL DSPL text file. Referencesto

the variables in the PLC and motion program (s) may use the defined name or
the standard VARx syntax.

DSPL Programmer's Guide v5.0 4-15

Mx4 DSPL Programming

This page intentionally blank.

4-16

5 DSPL Basics

Now that you have gained some familiarity with a DSPL program and the PLC
and Motion programs which comprise it, let's look at the specific components
which make up both PLC and Motion programs. DSPL includes a number of
identifiers, operators, and functions.

DSPL Operators

DSPL Identifiers and Functions
Variables Basic Arithmetic Operators
Tables - Elementary Math Functions
State Variables - Trigonometric Functions
Input Registers - Relational Operators
Interrupt Registers - Logical Operators

Drive Control Parameters
Cam & Cubic Spline Table
Counters

Constants

DSPL Identifiers

The DSPL programming language contains a number of identifiers. The DSPL
identifiers allow users to:

Store, retrieve, and modify floating point numbers.

Create tables.

Obtain information about system state variables such as position, velocity,

and error values.

Read the status of the Mx4 input registers.

Check the status of the Mx4 interrupt registers.

DSPL Programmer's Guide v5.0 51

DSPL Basics

Variables

IDENTIFIER DESCRIPTION

VAR1 to VAR128 Genera purpose DSPL variables 1 to 128

The DSPL language includes 128 general-purpose variables, which store data
in either floating point format for extended precision or as bit registers (when
used in bit register operations, see Bit Register Functionality). Variables can be
used in assignment, function, and relational operations.

var3 var 2/ var 25
var 4 si n(var6)
if (var3 > = var4)

Variables can also be used as argumentsin DSPL commands. This permits the
real time adjustment of motion parameters. For example, the DSPL line:

axnove(1l, varl9, var2, var62)

uses variables to perform areal time update of acceleration, dew rate, and
target position in atrapezoidal move.

Variables can aso be used to store and retrieve data from atable location.

table_p(1l) = var23
table_v(91) = varll

Thefirst line (involving TABLE_P) saves VAR23 in the position format (32-bit
value) in the table at location 1. The second line (involving TABLE_V) saves the
floating-point value vARL1 in the velocity format (25 bit two’s complement
value sign extended to 32 bits, the least significant 16 bits represent the
fractional value) in the table at location 91. Tables are discussed further in the
next section.

Tables
IDENTIFIER DESCRIPTION
TABLE_P Mx4 position table. Stores integer values
TABLE_V Mx4 velocity table. Stores floating point values

DSPL offers 4096 (32-hit) table locations. Table locations can be used to save
either integer or fractional values. Integer values (such as positions) can be

DSPL Basics

stored in TABLE_P, while values involving fractions (such as velocities) can be
stored in TABLE_V. Numbersin TABLE_P are stored as 32-bit values, while the
valuesin TABLE_V are stored as 25-hit values (sign extended to 32 bits) where
the least significant 16 bits represent the fractional portion of the value. The
index into the table can be specified as either a constant or avariable. For
example:

table_p(17) = 42.5

savesinteger value 42 at index 17. Whereas

var50 = 23
table_v(var50) = 42.5

will save 42.5 at index 23.

The values to be stored in the table can be specified by either a constant or a
variable. Therefore,

var49 = 42.5
table_p(17) = var49
table_v(23) = var49

will result in the exact same table values as the previous two examples.

Values can also be retrieved from the table. For example, continuing with the
previous example:

var33 = tabl e_v(23)

retrieves the fractional value stored at index 23 of TABLE V (that is42.5 if we
use the previous example) and stores the value into vAR33. The DSPL
instruction:

var26 = table_p(17)

reads the value stored in index 17 of TABLE_P (i.e. 42 if we continue using the
previous examples) in VAR26.

For a dlightly more involved example, the DSPL diagram below

var3 =1

while (var3 <= 25)
table_p(var3) = var3
var3 = var3 + 1

DSPL Programmer's Guide v5.0 5-3

DSPL Basics

5-4

wend

will save the integer values 1 through 25 in the table locations indexed from 1
to 25. Theinformation saved in the locations indexed from 1 through 25 can
be retrieved using the following DSPL code: (note that vArs will be
overwritten with a new table value each pass through the wHi LE structure.)

var3 = 1
while (var3 <= 25)
var5 = table_p(var3)
var3 = var3 + 1
wend

State Variables

IDENTIFIER DESCRIPTION

CPCS1- 8 Command position, axes 1-8
CVEL1-8 Command velocity, axes 1-8
ERR1- 8 Following error, axes 1-8

I NDEX_PCS1-8 Index-capture position, axes 1-8
PCs1- 8 Actual position, axes 1-8
PROBE_PCS1-8 Probe-capture position, axes 1-8
VEL1-8 Actual velocity, axes 1-8

The system state variable values such as position, velocity, and error are
availablein DSPL as 32-bit registers. The state variables can be used to set the
value of avariable. For example:

var1ll = POS3
sets the value of VARL1 to the actual position value of axis 3

State variable can also be used (either alone or in conjunction with variables) in
the DSPL conditional structures| F, WHi LE, and WAI T_UNTI L. For example,

wait_until (POS3 >= var23)

prevents execution of the next instruction until the actual position of axis3is
greater than or equal to the value stored in vaR23.

DSPL Basics

Input Registers

IDENTIFIER DESCRIPTION

ADC1- 4 Andog inputs 1-4
I NP1_REG Bit register (INO through IN15)
| NP2_REG Bit register (IN16 through IN31)

DSPL hastwo 16-bit input registers, | NP1_REG and | NP2_REG, that hold the real
time status of the [Mx4:22][Mx4 Octavia:32] external user-defined inputs. The
status of the first 16 Mx4 inputs (INO through IN15) is contained in | NP1_REG,
while the real time status of the last 16 Mx4 inputs (IN16 — IN31) isheld in

I NP2_REG. Inboth I NP1_REGand | NP2_REG, a set bit (bit = 1) indicates an
active input condition. Either input register can be used (in conjunction with a
bitwise operator) in the DSPL conditional structures | F, wHI LE, and

WAI T_UNTI L. In the following example:

while (inpl_reg & 0x8)
varl2 = 1.5
wend

VAR12 isset to 1.5 only if the signal IN2 is set.

If the Mx4 controller includes the Mx4 Quad ADC Acc4 option, four (4)
analog-to-digital (ADC) values are available in DSPL programs. The value (in
Volts) that is applied to each of the ADC inputs can be saved in a variable and
subsequently transferred to the table. For example, the following command,

var 23 = ADC3
sets vAR23 to the value (in volts) of the channel 3 voltage. For instance,

applying -1.25 volts across the channel 3 input, would result in varR23 being set
to -1.25 (in floating point format).

DSPL Programmer's Guide v5.0 5-5

DSPL Basics

Interrupt Registers

IDENTIFIER DESCRIPTION

ESTOP_REG Bit register signaling ESTOP interrupt

FERR_REG Bit register coding source of following error interrupt
FERRH_REG Bit register coding source of following error /halt int.

| NDEX_REG Bit register coding source of index pulse interrupt
MOTCP_REG Bit register coding source of motion complete interrupt

OFFSET_REG Bit register coding source of offset complete interrupt
POSBRK_REG Bit register coding source of pos. breakpoint interrupt
PROBE_REG Bit register coding source of external probe interrupt

The status of a variety of Mx4 interrupt conditions is available to the DSPL
programmer viathe DSPL interrupt bit registers. All of the DSPL interrupt bit
registers, with the exception of ESTOP_REG, are 16-bit registers (bit 0-15) that
specify the axis(es) responsible for the interrupt. Since there is only one ESTOP

signal for all eight (8) axes, ESTOP_REG is a single-bit register. In al of the

interrupt registers, a set bit (bit = 1) indicates an interrupt.

Like the input registers, interrupt registers can be used (in conjunction with a
bitwise operator) in the DSPL conditional structures | F, Wil LE and
WAI T_UNTI L. For example, the following command:

wait_until (index_reg & 0x2)

will prevent the execution of the next line until the previously enabled index
pulse for axis 2 generates an interrupt. Some or all of the interrupt registers
can be cleared by using the DSPL commands | NT_REG CLR and

I NT_REG ALL_CLR.

Drive Control (Vx4++) Parameters

IDENTIFIER DESCRIPTION
VECT4_PAR1-8 Vx4++ drive control parameters 1-8

When using the Vx4++ option, Vx4++ state variables are available in Mx4s
DSPL programming language. The drive control parameters VECT4_PAR1
through VECT8_PAR4 can be assigned one of the following drive variables:

lgs lds Iry 1s, 1gs (Feedback), | (feedback)

DSPL Basics

The DSPL command vi EWEC can be used to determine which one of the above
drive variablesis assigned to each of the drive control parameters. The
following DSPL code:

vi ewec (0x1,3)
var2 = vect8_parl

assign phase current |5 to var2.

Cam and Cubic Spline Table Counter

IDENTIFIER DESCRIPTION
CAMCOUNT1- 8 Cam dave axis tableindex
| CUBCOUNT Cubic spline table index

CAMCOUNT1- 8 indicates the table index for the slave axes (1-8) engaged in
camming.

The users utilizing Mx4' sinternal cubic command can benefit from the

I cuBCOUNT counter. This DSPL reserved word is used in conjunction with cubic
spline instructions and indicates the active cubic spline table index.

Constants

IDENTIFIER DESCRIPTION
PI Approximation to p (3.14159265)

The DSPL constant P is areserved word that can be used in arithmetic,
trigonometric, and conditional expressions as an approximation to the value p

(3.14159265).
varl = pi/2
var2 = cos(pi)
Timer

The keyword TI MER on Mx4/Mx42 (TI MERL, TI MER2, TI MER3, and TI MER4 ON
Octavia) may be read into a variable or used in conditional statements such as
IF, WH LE, or WAI T_UNTI L. The timer units are 200nmsec. The timer may be

DSPL Programmer's Guide v5.0 5-7

DSPL Basics

reset with the TI MER_RESET() command. Note that the timer is always running,
and that the 11 MeR_RESET() command will reset the timer value to 0.

For example, to turn on outputs O, 1, and 2 in succession 750msec apart, the
following Mx4/Mx42 code is used.

TI MER_RESET ()
OUTP_ON (0x0001)
WAI T_UNTI L (TIMER >= 3750)
OUTP_ON (0x0002)
WAI T_UNTI L (TIMER >= 7500)
OUTP_ON (0x0004)

DSPL Operators and Functions

The DSPL operators and functions act on either one or two of the DSPL
identifiers. A sample DSPL program using its operators and functions is

shown below:

varl
var 2
var 3

var 8
var5
var 6

-1.92
3.285e+003
var 1/ var 2 ;var3 is set to
; 0. 0005916795069
abs(var1) ;var8 is set to 1.92
sqrt (var2) ;var5 is set to 56.9689015
sin(2.1) ;var6 is set to 0.863209366

The following sections briefly describe each of the operators and functions.

Basic Arithmetic Operators

DESCRIPTION

OPERATOR

+

*

/

Assignment
Addition
Subtraction
Multiplication
Division

The assignment “=" operator is the smplest of the DSPL operators, and can be
used to set the value of a variable or atable entry equal to a constant value. For

example:

varl
var 2

-1.92
3. 285e+003

DSPL Basics

var3 = 0x38 ;var3 is set to a hexadeci mal nunber
val ue 38 = 52

The assignment operator can also be used to set the value of a variable equal to
the result of an arithmetic operation. For example:

varl = -1.92

var2 = 3.285e+003

var3 = varl + 11.1 ;var3 is set to 9.18
var8 = varl/var2 ;var8 is set to -

;0. 0005916795069

Elementary Math Functions

FUNCTION DESCRIPTION

ABS() Absolute value
FRAC() Fraction function

I NT() Integer function
SIGN() Sign function
SQRT() Square root function

The elementary math functions work on a single variable or constant value.
The examples in this section continue the example in the previous section.

The function ABs() finds the absolute value of a constant or a variable value.

var5 = abs(varl) ;var5 is set to 1.92

The function FRaC() extracts the fractional portion of a constant or a variable
value.

var6 = frac(varl) ;var6 is set to -0.92

The function | NT() extracts the integer portion of a constant or a variable
value.

var7 = int(varl) ;var7 is set to -1

The function si g\) returns +1, 0 or -1 depending on whether a constant or a
variable value is greater than, equal to, or less than 0.

var8 = sign(varl) ;var8 is set to -1

DSPL Programmer's Guide v5.0 59

DSPL Basics

5-10

The function sQrT() calculates the square root of a constant or a variable
value.

var9 = sqgrt(var?2) ;var9 is set to 56.9689015

Trigonometric Functions

FUNCTION DESCRIPTION

ARCTAN() Arctangent function
COos() Cosinefunction
SIN() Sinefunction
TAN() Tangent function

Trigonometric functions work on either constant or variable values. The
arguments in the functions si N, cos, and TAN are expressed in radians. The
result of ARCTAN s expressed in radians.

varl = 1.5707

var3 = sin(varl) ;var3 is set to 0.99999999
var8 = cos(varl) ;var8 is set to 0.000096326
var5 = arctan(varl) ;var5 is set to 1.00805632

Relational Operators

OPERATOR DESCRIPTION

< Lessthan

> Greater than

<= Lessthan or equal to
>= Greater than or equal to
== Equal to

I= Not equal to

Relational operators are used in conditional statementsin the DSPL conditional
structures | F, Wil LE and WAl T_UNTI L. For example:

wait_until (POS1 >= 38)

will prevent execution of the next instruction until the actual position of the
first axis (i.e. Pos1) is greater than or equal to 38 counts.

DSPL Basics

Bitwise and Logical Operators

OPERATOR DESCRIPTION

~ Bitwise complement

& Bitwise AND
AND Logica AND
OR Logical OR

Bitwise and logical operators are used with both input and interrupt registersin
conditional expressions. The bitwise operator “&” is used for masking a
selected number of bitsin an input or interrupt register. The bitwise operator
“~* complements the contents of aregister. Logical operators AND/ OR work on
the conditional statementsin the DSPL conditional structures | F, w4l LE, and
WAI T_UNTI L. For example, the DSPL conditional expression line below:

if ((inpl_reg & 0x3) AND (~inp2_reg & 0x1))
will first mask all but the two least significant bits of input register 1, then
mask all but the least significant bit of the complemented input register 2, and
finally perform alogical AnD of the results. For a bitwise condition to be true,

there must be an exact match between set bitsin the mask and corresponding
bits of the register (or ~register).

Bit Register Functionality

Bit Register Functionality enables variables to be manipulated as 16-bit bit
registers. Specifically, the following bit register operations are available.

VAR] 1- 128] = hex constant
for example, VAR41 = OxA055
VAR] 1-128] = bit register (registers ending with _reg, such asi np1_reg)

for example, VAR33
VARL5

| NP2_REG
MOTCP_REG

VAR[1-128] = VAR[1-128] & 16-bit mask

for example, VARL = VARL & OxOOFF
VARL2 = VARL2 & 0x0003

DSPL Programmer's Guide v5.0 511

DSPL Basics

5-12

VAR[1-128] = VAR[1-128] | 16-bit mask

for example, VAR51 = VAR3 | OxFF00
VAR2 = VAR2 | 0x0001

VAR[1- 128] = VAR] 1-128] & VAR] 1- 128]

for example, VARL = VARL & VAR44
VARL2 = VARL2 & VARL

VAR[1-128] = VAR 1-128] | VAR] 1-128]

for example, VAR21 = VAR3 | VARIL5
VARS8 = VAR72 | VARS2

VAR[1-128] = ~ VAR 1-128] bitwise complement
for example, VAR59 = ~ VAR3
VAR24 = ~ VARS8

Logica condition checksfor I F, WAI T_UNTIL, WHI LE
VAR 1-128] & 16-bit mask
VAR 1-128] | 16-bit mask
~VAR] 1- 128] & 16-bit mask
~VAR[1-128] | 16-bit mask

for example, WAI T_UNTI L(VAR24 & 0x0010)
WHI LE(~VARL & 0x0001)

O DsPL Program Development

Development Tools v5.x (see the Mx4Pro Development Tools

@ Note: This chapter assumes prior installation of the Mx4Pro
manual, Chapters 2 and 3).

Click button to open DSPL Program Development Tool

DSPL Programmer’s Guide v5.0 6-1

DSPL Program Devel opment

The DSPL Program Development Tool alows you to create, modify, compile,
download, and execute DSPL programs. The DSPL Development Tool may be
opened by clicking on the DSPL button on the Mx4Pro Development Tools tool
bar. The following window will appear:

DSPL Development |

File Build REun

tutar1 hill

C:mecdprone bl

Fig. 6-1: DSPL Development Tool

The DSPL Development tool displays the name of the open DSPL File, the
Path for the open file, and the Status of a compile and/or download performed
on the file. The following sections describe how to utilize the different features
of the DSPL Development Tool.

Opening DSPL Files

Before a DSPL program can be edited, compiled, or downloaded, it must be
opened by the user. To open a DSPL program:

1. Open the DSPL Selection window. This can be achieved by selecting
Open... under the File menu or in the popup menu (right click in the
DSPL Development window). Double-clicking inside one of the three black
areas (File, Path, or Status text boxes) inside the DSPL Development
window (Figure 4-1) will also open the DSPL Selection window.

2. Select the DSPL File. To open a file, browse your hard drive to the path
where your project will exist or does exist, then click on the filename or
enter the file name in the File Name text box. Note, there is a File Type
filter. After your file has been selected, click on the OK button to accept
your selection or the Cancel button to disregard (Figure 6-2).

DSPL Program Devel opment

M4 Development Tools, DSPL Selection

File Marme:

tutort kil

Fig. 6-2: DSPL Selection window

Editing Files

After a file has been opened, it may be edited. This can be achieved by
selecting Edit under the File menu or in the popup menu. The opened file will
then be placed into a text editor. To select the editor used for editing the DSPL
programs, refer to Mx4Pro Development Tools “Selecting an Editor” in
Chapter 12, Advanced Topics.

A file that has not been opened may also be edited via the DSPL Selection
window. Follow steps 1 and 2 above, then select the Edit button instead of the
OK button (Figure 6-2). The file will then be opened with the editor, but not
into the DSPL Development tool. This feature is useful when an “include’ file
needs to be edited or created.

Compiling Files

An opened DSPL file can be compiled using the DSPL Development tool, but
make sure you save the file first, if it has been edited. To compile the DSPL
file, select Compile under the Build menu or in the popup menu. For example,
by selecting Compile from within the popup menu, the DSPL compiler will
compile the opened DSPL program (Figure 6-3).

DSPL Programmer’s Guide v5.0 6-3

DSPL Program Devel opment

6-4

DSPL Development

File Build Eun

File| tutor hi Start DEPL

0 Cmecdp 4 Stop DSPL

Ediit
Open...

Compile

Do nilosd

Compile & Dovenlosd

Cancel Compile

Cloze

Fig. 6-3 Compiling DSPL Program

After the compile has started, it may be canceled by selecting Cancel Compile
under the Build menu.

If the DSPL compiler detects any warnings or errors during the compilation of
the opened file, the Status box in the DSPL Development Tool will display a
warning/error message and an edit session displaying the warnings and/or
errors will appear.

Downloading Files

If the opened file has been compiled successfully, it can be downloaded to the
Mx4 card by selecting Download under the Build menu or in the popup menu.

The opened DSPL file may also be compiled and downloaded if Compile and
Download is selected under the Build menu or in the popup menu.

DSPL Program Devel opment

@ Note: If Compile and Download was used and any warning(s)
and/or error(s) occurred, then the file will NOT be downloaded.
If only warnings were issued the file may still be downloaded,
but Download must be used instead of Compile and Download.

Executing DSPL Programs

There are several commands that may be issued to control the execution of a
downloaded DSPL program. The following commands may be issued to the
Mx4 via the DSPL Development Tool by selecting the appropriate command
under the Run menu,

Start DSPL - Starts the DSPL program execution

Stop DSPL - Stops the DSPL program execution

Signal DSPL - Signalsthe DSPL program, breaks out of a

WAIT_UNTIL_RTC command in aDSPL program.

AutoStart DSPL - Select AutoStart On or AutoStart Off to turn

the autostart option on or off, respectively.

A DSPL program may also be started or stopped by selecting Start DSPL or
Stop DSPL, respectively, from within the popup menu. Furthermore, the
function keys F1 through F3 may be used to issue the Start DSPL (F1), Stop
DSPL (F2), and Signal DSPL (F3) commands when the DSPL Development
Window is active.

Refer to the Mx4 User’ s Guide for more information on these commands.

Monitoring Execution of DSPL Program

The execution and run-time status of a DSPL program may be monitored by a
host computer. The line number of the PLC program and three motion
programs that are currently executing is available in the Mx4 Dual Port RAM
DSPL updates window (066h - 085h). DSPL run-time errors are reported to
the Mx4 DPR DSPSTAT?2 (009h) status register.

DSPL Programmer’s Guide v5.0 6-5

DSPL Program Devel opment

Closing the DSPL Development Tool

To close the Mx4Pro Development Tool, select Close under either the File
menu or in the popup menu. The opened DSPL file and path along with the
window dimensions and position are saved. When the window is started again
the same DSPL file will be opened and the window will appear in the same
location as when it was closed.

7 Tutorial

Session 1

Now that you have seen DSPL and the constructs, keywords, commands and
identifiers which make up DSPL application programs, you're ready to start
your own DSPL programming. The following tutorials illustrate different
functionalities of the DSPL language in working examples which may be
complied, downloaded, and executed with the Mx4pro DSPL Program
Development Tool (see chapter 6, DSPL Program Development). The
following tutorial DSPL files are located in the HLL folder and any referenced
datafiles are located in the DAT folder of the Mx4Pro install directory.

Getting Started

Asyou know, every DSPL program needs a section entitled PLC_PROGRAM The
PL C program includes calls to motion programs as well as Boolean operations
suchas! F, Wil LE, and wal T_UNTI L. For example, in the following program
the only function which the PLC performs is starting the execution of the
motion program “my_first”. Immediately following the start of execution of
the "my_first" motion program, the PLC execution terminates as the end line
command is reached. The "my_first" execution continues, however, until the
end line command in the "my_first" motion program is reached.

pl c_program
run_mprogram (my_first)

end

my_first:
pos_preset (1, 0) ;set position of axis 1 to O
ctrl (1, 0, 2000, 1000, 1000) ;set control gains for axis 1
axnove (1, 1, 20000, 5) ;nove axis 1 to |location 20000

end

Remember, this tutorial example program, tutor1.hll, as well as the examples
from sessions 2 through 11 are included with the Mx4 pro Development Tools
software.

DSPL Programmer's Guide v5.0 7-1

Tutorial

Session 2

The first line of motion program, “my_first”, clears any error, and presets the
axis 1 position counter to avalue of 0. The next line contains the control gain
settings ki=0, kp=2000, kd=1000, and kf=1000 for axis 1. If the Mx4
controller is aready connected to your system, you must make sure that the
control gains have been optimally selected. The next line, AXMOVE, specifies
acceleration, target position, and traveling speed for a trapezoidal move. This
simple program simply presets the current position, closes the loop by setting
control law parameters, and moves axis 1 to position location 20000.

Using Variables

7-2

In this session you will learn how to:

Use variables as arguments in DSPL commands
Use variables in mathematical expressions.

DSPL variables are used for real-time computation of system dynamics. The
arithmetic and geometric operators are used in conjunction with variables,
allowing application programs to compute motion parameters “on the fly”. The
following shows an example (tutor2a.hll) of a system in velocity mode.

pl c_program
run_m progran{var_speed)

end
var _speed
ctrl (1, 0, 2000, 1000, 1000) ;set control gains for axis 1
maxacc(1, 1) ; set maxi mum accel eration for
;axis 1 to 1 count/200usec”2
pos_preset (1, 0) ;preset position of axis 1
varl = 0
while (varl <= 1000)
var2 = 0.01*varl
var 23 = sin(var?2) ;conpute a sinusoi dal comrand
vel node (1, var23) ;use var23 for axis 1 speed

wend
end

The tutor2a.hll program runs axis 1 at a constant speed, asthe varl variable
value is not changed, and program calculations yield a constant value.

Tutorial

The same program may be modified to run axis 1 at a variable speed
determined by an arbitrary equation. In the following example (turor2b.hil) we
use trigonometric function si N to change the speed sinusoidally.

DSPL Programmer's Guide v5.0 7-3

Tutorial

Session 3

pl c_program
run_m progran{var_speed)
end

var _speed

ctrl (1, 0, 2000, 1000, 1000)

maxacc(1, 1)

pos_preset (1, 0)

varl = 0

while (varl <= 1000)
var2 = 0.01*varl
var 23 = sin(var?2)
vel node (1, var23)
varl = varl - 1

wend

end

;set control gains for axis 1
;set maxi mum accel eration for
;axis 1 to 1 count/200usec”2
;preset position of axis 1

;conmput e a sinusoi dal comrand
;use var23 for axis 1 speed
; decrenent varl

Mathematical Functions

7-4

In this session you will learn about:

Using DSPL arithmetic functions
Using DSPL trigonometric functions

The arithmetic functions and mathematical operators are used in conjunction
with real-time computation of arguments used in DSPL instructions. The
following example describes how the trigonometric expression:

1000* (1 - cos (2pt/T))

iscomputed. Also, this example (tutor3.hll) shows how the results are saved in

atable array.

mat h:
var2 = 0
varl0 = 0
var3 = 25
while (varl0 <= var3)
vard = 2*p
var5 = var4/var3

var7 = var5 * var10
var8 = cos(var7)
var9 =1 - var9

var9 = 1000*var9
tabl e_p(var10) = var9

;var10 indexes through table
;var3 holds the period in ns
;conmput e expression fromO to T

;compute 2p/ T
;2pt/ T

;1-cos(2*p*t/T))
; 1000* (1-cos(2*p*t/T))
;save val ues in consecutive

Tutorial

varl0 = var10 + 1 ;table | ocations
wend
ret()

The main program may access an element of the saved table array viaa DSPL
line such as:

var25 = table_p(3)

which simply reads location 3 of the tableinto var25. For more information
on arithmetic and trigonometric functions please refer to the command
descriptions for the following commands (chapter 8, DSPL Command Set):

ARCTAN cos SI'N

SQRT TAN TABLE_P

TABLE_V - x
Session 4 Electronic Gearing

Thistutorial illustrates the use of electronic gearing, as the following example
describes a packaging process that includes two conveyor belts. The upper belt
contains products which are equally positioned in between the logs. The master
motor moves the products and drops them into the bucket. The synchronization
between the belts requires gearing mechanism. The gear ratio in this example
is determined by the ratio of the space between the centers of the adjacent
buckets and the space between the products. The following program,
(tutor4.hll) upon setting a“ start switch,” puts the system in electronic gearing
and drives the master axis at a constant speed of 4 counts/200 ns. Upon
pushing a“stop switch,” the system terminates gearing and comes to a halt.

pl c_program
run_m progran(si npl e_gear)
end

si npl e_gear
maxacc(0x3, 1, 1) ;set maxi mum accel eration for stop
ctrl (0x3,0, 1000, 1000, 1000, O, 1000, 1000, 1000)
;set control gains for master and sl ave
wait_until (inpl_reg & 0x0001)
;wait for “start” switch, M4 INO

gear (1, 2,2) ;master axis is 1, slave axis is 2
;and gear ratio is 2
vel node(1, 4) ;nove naster at constant speed of 4

wait_until (inpl_reg & 0x0002)
;wait for the ‘stop’ switch

DSPL Programmer's Guide v5.0 7-5

Tutorial

stop(1) ;stop the master
gear _of f _acc(2) ;stop slave and di sengage the gear
end

Asisthe case with most DSPL commands, the arguments used in conjunction
with electronic gearing may be selected as DSPL variables.

Session 5 Cam Programming

In this session, through two examples you will learn how to:

- Fill the Mx4 memories with cam points (i.e. master/slave positions)
either off-line or on-line

- WriteaDSPL program to perform camming

Example 1: Cam Program, Using Host to Download
Positions

Consider atable of 10 master/slave position points for x (master) and y (slave)
formed as follows:

M aster Slave
0 0
1000 200
1500 400
2000 600
2500 700
3000 800
3500 600
4000 400
4500 200
5000 0

This table can be saved in an ASCII datafile (with .dat extension) under any
name (e.g. cam_tut5.dat). Using the Mx4pro cam table download utility, you
may download this file starting at any cam table index.

The following DSPL program will perform the cam function on axis 1 (the
master) and axis 2 (the slave).

7-6

Tutorial

pl c_program
run_m program (sinpl e_cam

end

si npl e_cam
chkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkk*

In this exanple, we assunme that you have used

the cam downl oad utility included in Md4pro, and
have downl oaded "cam tut5.dat" which includes 10
mast er/ sl ave cam points into the M4 data nenory

ckkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhkkhkhkhkhkhkkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkk*

ctrl (0x3,0,1000, 1000, 1000, 1000, 10000, 5000, 3000)

maxacc (0x3,1,1) ; set maxi mum accel

pos_preset (0x3, 0, 0) ;preset xy positions

vel node(1, 5) ;run master in velocity node
can(1, 2,100, 10) ;start cam function

end

Example 2: Cam Program, Using DSPL To Generate the

Cam Points in Real-Time

Thisis similar to example 1 with the exception that the cam points have been
defined (it is important to remember that they might have been computed) by
the DSPL program using the cam o NT command.

pl c_program
run_m program (sinpl e_cam

end

si npl e_cam
chkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkk*

DSPL Programmer's Guide v5.0

In this exanple, 10 cam points specified

by master and slave positions are defined by
the DSPL and put in the M4 cam nmenory.
Master is axis 1, slave is axis 2.

Master starts in velocity node. This is
followed by running cam function

chkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*

7-7

Tutorial

Session 6

Linear Moves

7-8

DSPL includes two forms of linear interpolated motion:

Li near _nove_s ;s-curve, acceleration
i near _nove ;constant accel eration

The linear motion commands are used in motions where the velocity
connecting point A to Point B islinear. The starting position/velocity (defining
point A) are those of an axis at the commencement of this command. The
ending position and velocity are the command’ s arguments. The following
example (tutor6a.hll) will trace a square shape as illustrated below.

A

30000

20000

D
10000 20000 30000 X

pl c_program
run_m program (square)
end_program

square
var 23=1
ctrl (0x3,0,1000, 1000, 1000, 0, 1000, 1000, 1000)
;set control gains for motor 1
pos_pr eset (0x3, 10000, 20000) ;point A
whi | e(var 23==1)

i near _nmove(0x3, 15000, 5, 25000, 5) ;point AB/2
i near _nmove(0x3, 20000, 0, 30000, 0) ;point B
i near _nmove(0x3, 25000, 5, 25000, - 5) ;point BC/ 2
i near _nmove(0x3, 30000, 0, 20000, 0) ;point C
I'i near _nmove(0x3, 25000, - 5, 15000, - 5) ;point CD/2
i near _nmove(0x3, 20000, 0, 10000, 0) ;point D
i near _nmove(0x3, 15000, - 5, 15000, 5) ;point DA/ 2
i near _nmove(0x3, 10000, 0, 20000, 0) ;point A

wend
end

Tutorial

A dlightly more involved linear move is one in which the velocity profileisan
“s-curve’ (i.e. jerk is programmable). The following program (tutor6b.hll)
moves axes 1 and 2 in a coordinated move from the initial position (1000,
1000) counts and velocity (0,0) counts/200 ns to the target position (3000,
2500) and velocity (0.8, 0.6).

pl c_program
run_m program (line)
end_program

I'ine:
ctrl (0x3,0,1000, 1000, 1000, 0, 1000, 1000, 1000)
;set the gains
pos_preset (0x3, 1000, 1000) ; preset the pos command
|'i near _nove_s (0x3, 1000,0 30000, 0.8, 5000, 0.0003
1000, 0, 2500, 0. 6, 5000, 0. 00022)
end

Session 7 Circular Moves

An example of acircular move can be generated by the following code:

pl c_program
run_m program (circl e_nove)
end_program

circle_nmove
|'i near _nove_s(0x3, 1000, 0, 2500, 0. 8, 5000, 0. 0003, 1000, 0, 3000, 0. 6
5000, 0. 0003)
circle(0x3, 1500, - 2000, 2500, - 3, 0, 0)

end

Axis 2 POS (counts)

3000 T

2500

2000 7 | r=2500

1000

500 \ @Q: 323 degrees
I\

} } Axis 1 POS (counts)
1000 200! 3000 4500 000

-2000

DSPL Programmer's Guide v5.0 7-9

Tutorial

The LI NEAR_MOVE_S arguments used in this example are initial position and
velocity for x (1000,0), final position and velocity for x (3000, 0.8), time to

complete x motion (5000), x acceleration value during constant acceleration
segment (0.0003), initial position and velocity for y (1000, 0), final position
and velocity for y (2500, 0.6), time to complete y (5000), y acceleration.

The arguments for ¢l RCLE command are: the x-y values for its center (centy =
4500 - 3000 = 1500, cent, = 500 - 2500 = -2000), radius (sqrt ((2000)° +
(1500) ?) = 2500), vector speed (1.0), and target position for x and y

(x = 3000 - 3000 = 0, y = 2500 - 2500).

Session 8 Table-Based Cubic Spline

In this session you will learn how to:

Form a cubic spline table and download it to the Mx4
Write aDSPL program to use a cubic spline datafile

1. Generate and Down Load A
Cubic Spline Table

Consider a simple application in which the x axis position and velocity are
tabulated as follows:

posx1 vel x1
posx2 vel x2
bosxn Qelyn

The position and velocity points are in encoder counts and encoder counts/s
respectively. Also, adjacent positions are spaced in time uniformly. For
example, the following ASCII datafile (cub_tut8.dat) includes 21 rows of
position and velocity for axis x.

0. 00000000000000e+000 0. 000e+000
1. 25000000000000e+003 2. 5000e+004
5. 00000000000000e+003 5. 0000e+004
1. 00000000000000e+004 5. 0000e+004

7-10

ORPURPRFPNNWWOWWRARWWWNNE

. 50000000000000e+004
. 00000000000000e+004
. 50000000000000e+004
. 00000000000000e+004
. 50000000000000e+004
. 87500000000000e+004
. 00000000000000e+004
. 87500000000000e+004
. 50000000000000e+004
. 00000000000000e+004
. 50000000000000e+004
. 00000000000000e+004
. 50000000000000e+004
. 00000000000000e+004
. 00000000000000e+003
. 25000000000000e+003
. 00000000000000e+000 0. 0000e+000

Tutorial

. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 5000e+004

0000e+004
. 5000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
. 0000e+004
5000e+004

The Mx4pro Development Tools software may be used to download thisfile
using the Tables, Cubic Spline menu option.

2. Write a DSPL Program to Use This Data Array

The following DSPL program (tutor8.hll) will run our previously generated

data array:

pl c_program

run_m program (cubi c)

END

cubi c:

ctrl (1,0, 1000, 1000, 1000)
pos_preset (0x1, 0)
cubi c_r at e(500)

cubi c_scal e(0x1, 1.5, 0)

cubic_int(21,0,3)

end

;set the gains

; preset the command

;time interval between adjacen
;points is 100 ns

;scale table values by 1.5 and
;include no shift

;starting fromlocation O (md
;argunment) 21 points to run 3
;tines

t

dl e

For more information on cubic spline and its use, please refer to Cubic Spline
Application Notes.

DSPL Programmer's Guide v5.0

7-11

Tutorial

Session 9

ASCII Terminal Communication

7-12

With the Acc4 serial communication option, the Mx4 controller includes an
ASCII terminal serial interface which includes ASCII terminal commands as
well as ASCII DSPL commands.

The ASCII terminal commands enable the ASCII terminal user to both read
and write DSPL variables. The reading and writing of the 128 DSPL variables
(VARL- VAR128) is done independently of the DSPL program execution.
Variable values can be queried during DSPL program execution to monitor
state variables or other program parameters of interest. Also, the ASCI|
terminal interface allows users to set DSPL program parameters and control
DSPL program flow from the terminal by writing variable values which are
utilized within the DSPL program.

The ASCII DSPL commands allow an executing DSPL program to write
values and character strings to the ASCII terminal display aswell as ‘input’
values sent from the ASCII terminal to DSPL variables.

The Mx4 controller can communicate viatwo (2) different serial modes:
ASCII mode and Protocol mode. The Protocol mode is the * standard’” mode of
communication supported by Mx4 family utilities such as the Mx4pro
development tools. The Protocol mode supports faster data rates with
multilayer error detection and correction for industrial environments.

The ASCII mode of communication is, as the name implies, for users who
would like to use an ASCII terminal for some basic information passing to the
Mx4 controller; that is, reading and writing DSPL variables.

Tutorial

ASCIl Mode Terminal Commands

The ASCII mode of communication supports four (4) terminal commands,

ECO
Echo Off. The eco command turns the echo mode off. The Mx4 upon
power-up or reset isin the Eco or echo off mode.

EC1
Echo On. The ect command turns the echo mode on. The Mx4 upon
power-up or reset isin the Eco or echo off mode.

VARX?

Read DSPL Variable. This command queries the specified DSPL

variable (x : 1to 128). The value displayed is an integer with 3

implied fractional digits. For example, 123456 is the value 123.456.
VARX=y

Write DSPL Variable. This command writesthevaluey (-
2147000000<=y<=2147000000) to the specified DSPL variable (x : 1
to 128). Thevaue written isan integer with 3 implied fractional
digits. For example VAR12=123456 Will set VAR12 to 123. 456.

ASCIl Mode DSPL Commands
The ASCII mode of communication supports three (3) Mx4 DSPL commands,

PRI NT, PRI NTS, AND | NPUT

The PRINT command is used to write (send) avalue to the ASCII terminal
display. The ASCII transmission to the terminal takes the format:

(value) + <CR> + <LF> + '>’

The value displayed is an integer with 3 implied fractional digits. For example,
123456 is the value 123.456.

DSPL Programmer's Guide v5.0 7-13

Tutorial

7-14

For example, to write the value 100.45 to the ASCII terminal:

PRI NT (100450)

To write the value contained in DSPL variable var128 to the ASCII terminal

PRI NT (VARL28)

The PRINTS command is used to write (send) a character string to the ASCII
terminal display. The ASCII transmission to the terminal takes the format:

(string) + <CR> + <LF> + '>

For example, write “hello world” to the ASCII terminal.

PRI NTS (“hello world”)

The INPUT command is used to write a value sent by the ASCII terminal to the
specified DSPL variable. The ASCII transmission to the terminal takes the
format:

¢ oy

The DSPL motion program from which the INPUT command was executed
will halt (wait) program execution until the value is returned from the ASCI|
terminal. The ASCII transmission from the terminal to the Mx4 must follow
the format:

I np=x
Where x may range from -2147000000 <= x <= 2147000000. Thevalue

written is an integer with 3 implied fractional digits. For example, i np=123456
will set the specified variable to 123. 456.

For example, request ASCII input, assign to VAR15.
| NPUT (VARL5)

Session 10

Tutorial

Vector Control

In this session you will learn:

Programming Vx4++ parameters with a #i ncl ude file
Reading Vx4++ state variablesin a DSPL program

When using the Vx4++ option, the user must program current loop parameters
in addition to the position loop initializations and gains. As the number of
parameters which must be initialized grows, the user may wish to incorporate
the #i ncl ude DSPL compiling option. With the #i ncl ude feature, the user
may link in common routines such as initialization and/or emergency halting
routines which exist in separate DSPL .hll files.

The following DSPL program (tutor10.hll) utilizes the #i ncl ude feature to link
in thefileinit10.hll. Included in theinit.hll file is the initialization motion
program INIT_V4. The Mx4/Vx4++ initialization is performed with the
subroutine call to INIT_V4.

#include "init10.hl "
pl c_program
run_m progran(test_v4)

end
test_v4:
varl = 0
call (init_v4) ;init_v4 is in the #include file
vinit.hll
wait_until(varl == 1) ;varl is a flag to let the main
;program know it is done initializing
vi ewec (0x1, 3) ;specify that the axis 1 Vx4++ state
;variable is Ids feedback
pos_preset (....) ;code as required by application
axmove (....)
etc., etc.
if (vectd_parl > 1250) ;the vect4_parl is the state variable
flux_current (0x1, 12) ;specified in the viewec comand ...
endi f ;1 ds feedback
end

DSPL Programmer's Guide v5.0 7-15

Tutorial

The init10.hll file contains the "init_v4" motion program which initializes the
system parameters,

init_v4
maxacc (0x1,1.9)
ctrl (0x1,0,8632,912,560) ;initialize position |oop gains (M4)
pos_preset (0x1,0) ;initialize current |oop parns.

i (Vx4++)
nmot or _tech (0x1, brushl ess_dc) ; brushl ess DC
nmot or _par (0x1, 0) ;notor paraneter is 0
curr_limt (0x1, 30) ;set current limt at 30%
curr_of fset (0x1,800) ;set offset to 800
curr_pid (0x1, 30000, 0, 3000) ;current |l oop pid gains
encod_mag (0x1, 1000, 4, 1) ;1000 lines, 4 poles, and comm1
flux_current (0x1,9) ;field command set to 9
pwm freq (0x1, 15000) ;set pwm frequency to 15 khz

var1=1
ret()
end

Y ou may have noticed that the above listed DSPL program includes a vi EWEC
command call. The vi Emvecisused (in aDSPL program) in conjunction with
the VECT4_PARx state variable identifiers. The vi Emvec command specifies the
Vx4++ state variables which are represented by the DSPL VECT4_PARX
identifiers. In the example program, the axis 1 Vx4++ state variable is defined
as l4s feedback. Subsequent uses of the VECT4_PAR1 identifier throughout the
program are referencing the Ids feedback state variable. For example, note the

I F code in the example program which utilizes the VECT4_PARL identifier.

7-16

Session 11

Tutorial

Using Interrupts

In this section you will learn about:

DSPL Interrupts, and
How they are used, disabled, and cleared

The DSPL interrupts are used when an immediate reaction to an external event
isrequired. An example application is mark registration. In this application,
the motor position is corrected by the amount measured at the time of receiving
an interrupt. The external pulse which, for instance, is originated from an
electronic eye, must be hardwired to a Mx4 interrupt (e.g. EXT1). The
instruction EN_PROBE enables this interrupt.

A typical DSPL program (tutor11.hll) for this application is as follows:

pl c_program
run_m progran(ptest)

end
ptest:
ctrl (1,0, 1000, 1000, 1000) ;set control gains
pos_preset (1, 0) ;preset the position of axis 1 to O
int_reg_all _clr() ;clear all interrupt registers
en_probe(0x1) ;enabl e EXT1, stop when EXT1 is set
vel node (1, 3) ;run axis one at 3 ¢/200 m
wait_until (probe_reg & 0x1) ;wait for the probe
;i.e. EXT1)interrupt
del ay (10000) ;wait until the axis comes to stop
var4 = probe_posl - posl ;find the difference between
;current pos and EXT1 position
rel _axmove(1l, 1, var4,5) ;nove the axis back to probe

;location at 5 ¢/200 ns speed
end

Similarly, you may use this technique in “homing” an axis where the reference
position is determined by the location of Index pulse.

Other interrupts which may be enabled in a DSPL program are:

en_encflt encoder fault

en_err error exceeding a programmed val ue
en_errhlt stop when error exceeds a progranmred val ue
en_i ndex occurrence of index pul se

en_not cp nmoti on conpl ete

DSPL Programmer's Guide v5.0 7-17

Tutorial

7-18

en_posbrk posi tion break point

Interrupts may be disabled or cleared by the commands:

di sabl _int di sable interrupts
di sabl e2_int di sable interrupts
int_reg_all _clr clear all interrupt registers
int_reg_clr clear sone interrupt registers

Interrupts such as:

en_i ndex en_posbrk
en_probe

are immediately disabled after their first occurrence. The rest remain enforced
and can only be disabled by instructions DI SABL_I NT and DI SABL2_| NT.

Tutorial

This page intentionally blank.

DSPL Programmer's Guide v5.0 7-19

8 DSPL Command Set

Reference
ABS . 8-14
ADCL, ADC2, ADC3, ADCA,....ccccommimiiinieniesienieeeenieneas 8-15
AND, OR ittt bbb b 8-16
ARCTAN L.t 8-18
AXMOVE ..ottt bbb e 8-19
AXMOVE._ Sttt e 8-21
AXMOVE T ittt 8-23
BTRATE ..ottt 8-25
CALL ottt 8-27
CAM. .t 8-28
CAM OFF .ttt 8-31
CAM OFF _ACC... .ottt 8-32
CAM POl NT ..ttt ne e 8-33
CAM POS ...ttt 8-35
CAM PROBE.ottt sttt sttt sne 8-37
CAMCOUNTL, .., CAMCOUNTS......cocemriirririenieniesiesieenieneens 8-39
ClRCLE ..t 8-40
160 ST TR USUUTURTURURRPRN 8-46
CPOSL, .., CPOSB ..ottt 8-47
CTRL ettt b bbb ee e 8-48
CTRL_KA et 8-51
CUBI C I NT ettt s 8-52
CUBI C_RATE ...ttt 8-54
CUBI C_SCALE ...ttt 8-58
CURR LI M T ettt 8-59
CURR _OFFSET ..ottt 8-60
CURR _PI Dttt 8-61
CVELL, .., CVELS ... 8-62
DDAC. ... ettt e bbb b e 8-63
DELAY ..ottt sttt e 8-65
DI SABL_INT ..ottt e 8-66
DSPL Programmer’s Guide v5.0

DSPL Command Set

DI SABL2 | NT .ottt s 8-68
ELSE ...ttt e 8-70
EN_BUFBRK ..ottt e e 8-71
ENCOD_IMAG... .ottt sttt sttt s 8-73
ENDI F..co et s 8-75
EN ENCELT .ottt e e 8-76
EN_ERR ..ottt e 8-78
EN_ERRHLT ..ottt e e 8-80
EN LT NDEX ..ottt e 8-82
EN_MOTCP....iiit ettt e 8-84
EN_POSBK ...ttt e 8-86
EN_PROBE.......coiiiiiieert e e 8-88
ERRL, .., ERRB ..ot 8-90
ESTOP_ACC... ..ottt sttt 8-91
ESTOP_REG......cooi ittt 8-93
FERR _REG.......coiiiiitiiieit it 8-93
FERRH REG......ccciiiitiiieit et 8-93
FLUX _CURRENT ..ottt 8-96
FRAC. ...t e 8-98
GEAR. ottt e bbb e 8-99
GEAR _OFF ettt 8-100
GEAR_OFF_ACC......o ettt 8-101
GEAR PGS ...ttt 8-102
GEAR _PROBE ..ottt 8-104
| CUBCOUNT ...ttt sttt sttt b sn b sne e 8-106
L s 8-107
| NDEX_PCS1, .., | NDEX_POSS8.....cccoriimiiiiiinienienieens 8-110
I NDEX_REG.....ccot ittt 8-93
I NP1_REG | NP2_REG.....ccoiiiiiiiiiienie e 8-111
I INP_STATE. ...ttt 8-113
I NPUT .t bbb 8-115
LN bbb 8-116
I INT _HOST e 8-117
I NT_REG ALL_CLR...oiiiiiiieieeieeee e 8-118
I NT_REG CLR...iiiiiieie e 8-119
KELEM T ot s e 8-121
LI NEAR _MOVE ..ottt e 8-123
LI NEAR_MOVE_S ..ottt 8-125
LI NEAR_MOVE T oottt 8-132
LOW PASS (0P T ON) ceeiiiiieiieeieeiee e 8-134

DSPL Programmer’s Guide v5.0

DSPL Command Set

IMAXACC ...ttt et bbb e 8-137
MOTCP_REG......cciiiitieeenie sttt e 8-93

MOTOR_PAR ...ttt e 8-139
MOTOR_TECH ..ottt e 8-140
NOTCH (0Pt i ON) et 8-141
OFFSET .ottt 8-144
OFFSET_REG......ciiiiiiieie ittt 8-93

OUTGAL Nttt sttt 8-146
OUTP_OFF .ttt 8-148
OUTP_ON .ttt ne e 8-150
OVERRI DE.....ooiiiiit ittt 8-152
Pl e 8-153
POSL, .., POSB ..ottt 8-154
POSBRK_OUT ..ottt 8-155
POSBRK_REG......cci ittt e 8-93

POS_PRESET ..ottt e 8-160
POS_SHI FT . e 8-161
PRI NT L e 8-162
PRINTS L e 8-163
PROBE_POS1, .., PROBE _POS8......cccciiiiiiiiieieeeeniee 8-164
PROBE._REG ..ottt 8-93

PV FREQ. ... ettt e e 8-165
REL_AXMOVE ..ottt e 8-166
REL_AXMOVE_S... .ottt e 8-167
REL_AXMOVE_SLAVE ..ot 8-169
REL_AXMOVE T ..ottt 8-171
RESET ... oottt bbbt 8-173
RET ettt bbb e 8-174
RUN_M PROGRAM......cciiiitirieeienie sttt 8-175
SI G 8-176
SE N e 8-177
SENE_OFF ottt s 8-178
SENE_ON ittt s 8-179
SR ettt et bbb e re e 8-180
START et ee e 8-181
STEPPER ON...oiiiiiiiiieie et 8-183
ST OP ettt e bbb e 8-184
STOP_ALL_M PROGRAM........eeiiiiitrienienie et 8-186
STOP_M PROGRAM.......coitiittriieie sttt sttt 8-187
SYNC .. e e 8-188

8-3

DSPL Command Set

8-4

TABLE _OFF ...t 8-190
TABLE_ON....ooiiiiiiiie e 8-191
TABLE_P, TABLE_V....ocoiiiiiii e 8-192
TABLE_SEL ..ot 8-194
TAN e 8-195
TIMER, TIMERL, .., TIMERA ... 8-196
TIMER _RESET ... 8-197
TRQ LIM T 8-198
VARL, .., VARILZ28.....ccciiiiiii e 8-199
VECCHG. ...ttt 8-200
VECT4_PAR1L, .., VECT4_PARScccociiiriiiiiiriieie, 8-202
VXA _BLOCK ...ttt 8-203
VELL, .., VELS8 . 8-204
VELMODEoiiiiiiii e 8-205
VI EWVEC ... e 8-206
WAL T_UNTT L e 8-207
VAL T_UNTI L_RTC oo 8-209
VAEND. ...ttt 8-210
VI LE. . e 8-211
PP PP PUROPRRTRIN 8-213
PO P PP PU R OPRRPRIN 8-215
PPN 8-217
SO PP P PP PTR PRI 8-219
L e 8-221
PP VPP PT R OPRRTRIN 8-223
&l 8-225
<, >, <E, 33 =3 S 8-227

DSPL Command Set

DSPL Command Summary

The Mx4 DSPL programming language includes many commands and
programming tools. DSPL consists of twelve major command categories. Each
category extends the power and flexibility of Mx4 in general areas of motion

Elow Interpolations

Coordinated
Motion - Gearing

Motor, Power
Sensors & Drive

control.
Coordinated PLC &
Motion - Cam Multi-Tasking
ASCII Interrupt
Interface Control
Filtering Control Law &
Optional Initialization
Simple Motion
Input/Output
Control
Program

Fig. 8-1: DSPL Command Categories

DSPL Programmer’s Guide v5.0 8-5

DSPL Command Set

Control Law & Initialization

Control gains, system parameters, time, position, and velocity units all fall in

this category.
COMMAND DESCRIPTION
CTRL position, velocity loop control law parameters
CTRL_KA program an accel eration feed-forward gain
ESTOP_ACC specify emergency stop maximum acceleration
KILIMT integral gain limit
MAXACC specify maximum acceleration
OFFSET amplifier offset cancellation
QUTGAI N position loop output gain
POS_PRESET preset position counters
POS_SHI FT position counter reference shift
RESET reset Mx4 controller card
STEPPER_ON select stepper / servo axes
SYNC define Mx4 master/save status
TRQLIMT specify atorque limit
Simple Motion

The instructions within this category control the torque, velocity, and position
of one or multiple axes with a trapezoidal profile. The commands in this
category may be classified as open and closed loop.

COMVAND

DESCRI PTI ON

AXNOVE
AXMOVE_S
AXMOVE_T
DDAC
REL_AXMOVE
REL_AXMOVE_S
REL_AXMOVE_T
sTOP

VELMODE

trapezoida axis move

S-curve axis move

time based axis move

direct 18-bit DAC command (open loop)
relative position axis move

relative s-curve axis move

time based relative axis move

stops the motion

velocity mode

DSPL Command Set

PLC & Multi-Tasking

The commands in this category start or stop one or several motion control
programs (multi-tasking). These commands are used within the PLC program.

COMMAND DESCRIPTION
PLC_PROGRAM indicates start of PLC program
RUN_M PROGRAM begin execution of specified program(s)

STOP_ALL_M PROGRAM
STOP_M PROGRAM

stop execution of all running motion programs
stop execution of specified motion program(s)

Input / Output Control

These commands are used to control the status of the Mx4 discrete inputs and

outputs.

COMMAND

DESCRIPTION

I NP_STATE
OUTP_OFF
OUTP_ON
POSBRK_OUT

configure logic state of inputs

set status of outputsto low logic level

set status of outputs to high logic level

set outputs after position breakpoint interrupt

Program Flow Control

The Program Flow Control commands simplify the Mx4 DSPL program flow.
Commands within this category include: subroutine call, conditional branching,
and other logical instructions. These directives help ssimplify the development
of motion control programs.

COMMAND

DESCRIPTION

CALL
DELAY

ELSE

END

ENDI F

IF

RET

WAI T_UNTI L

WAI T_UNTI L_RTC
VEND

WHI LE

initiate execution of subroutine

halt program execution for specified time
else operand of if-else-endif structure
indicates program end

endif operand of if-else-endif structure

if operand of if-else-endif structure

return from subroutine

halt program execution based on condition
halt program execution until signaled by host
wend operand of while-wend structure
while operand of while-wend structure

DSPL Programmer’s Guide v5.0

DSPL Command Set

Contouring

The Mx4 DSPL includes contouring commands for users who need to generate
arbitrary motion profiles. In these applications, a host computer generates
position and velocity data points for a complex contouring path in a periodic
basis. In CNC and robotics applications, motion trajectories may be computed
in rea time. These trgectories are transmitted to Mx4 in blocks of
position/velocity points. The ring buffer area of Mx4's dual port RAM is the
storage area for these motion blocks. Mx4 performs high order interpolation on
all these points and executes the trajectory path on a point to point basis.

COMMAND DESCRIPTION

BTRATE block transfer rate

CUBI C_I NT start theinterna cubic splinetable

CuBl C_RATE set cubic spline point transfer rate

CuBI C_SCALE scales position/vel ocities, also shifts positions
START start contouring motion

VECCHG contouring vector change

Motor, Power, Sensors and Drive
(available with Mx4/Vx4++, Octavia/Vx8++, and Mx42Turbo only)

Mx4, Octavia, and Mx42Turbo, when equipped properly, can perform all of the
signal processing functions of servo amplifier control boards. Control
capabilities include commutation, current loops, field current, torque current,
current limiting, pulse-width modulation frequency, etc. When properly
equipped, these controllers are compatible with all power devices, industrial
motors, and a majority of sensors on the market.

COMMAND DESCRIPTION

CURR LIMT current limit setting

CURR_OFFSET current loop offset adjustment

CURR_PI D program current loop control law parameters
ENCOD_MAG specify encoder lines, motor poles, comm. option
FLUX_CURRENT bipolar field flux value

MOTOR_PAR set the motor parameter

DSPL Command Set

Motor, Power, Sensors and Drive (cont.)

COMMAND DESCRIPTION
MOTOR_TECH define the motor technology
PWM_FREQ set output PWM signa frequency
Vx4_BLOCK block further instructions to Vx4++
VI EWEC specify Vx4++ parametersto view

Coordinated Motion - Gearing

Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. In addition to the electronic gearing master/dlaving
technique, compensation tables also help users specify their own application
specific "slaving function™.

COMMAND DESCRIPTION

GEAR unconditional 'electronic’ gearing
GEAR_OFF disengage 'electronic’ gearing
GEAR_OFF_ACC turns electronic gearing off and halt Slave(s)
GEAR_PCS ‘electronic’ gearing based on position value
GEAR_PROBE ‘electronic’ gearing based on external interrupt

REL_AXMOVE_SLAVE superimposes a relative axis move onto a slave engaged in gearing

Coordinated Motion - Cam

Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. A subset of table oriented master/daving is known
as "electronic cam".

COMMAND DESCRIPTION

CAM turns electronic cam on

CAM_OFF turns only electronic cam off

CAM _OFF_ACC turns electronic cam off and halts dave(s)
CAM_PO NT place CAM point into CAM table

CAM _PCs turns electronic cam on at a specified position
CAM_PROBE turns electronic cam on after PROBE is set high

DSPL Programmer’s Guide v5.0 89

DSPL Command Set

8-10

Single & Multi-Dimensional Interpolation

The Mx4 DSPL offers a comprehensive set of linear and circular interpolation
commands. All interpolations work on single or multi-dimensional moves. For
example, a four-dimensional linear move transfers the system from any
arbitrary position, velocity point to another position, velocity point (both
defined in multi-dimensional space) with the specified acceleration and jerk.
This powerful command yields a well-controlled landing from one trajectory to
another.

An example of such a move is rapid acceleration to a position at a specified
feed rate and turning to a new trajectory at the same feed rate. It is essential to
simultaneously control position, velocity, acceleration, and jerk trajectories in
applications like CNC, machine tool, and robotics. The Mx4 circular
interpolation command enables several circles to be cut simultaneoudly. In
addition, tables are provided for compensation for reversing error, friction,
machine non-linearities, or other forms of inherent mechanical inaccuracies.
Cubic splines are computed to interpolate between the intermediate points in a
motion segment. This interpolation provides the finest path between any two
points with no position, velocity, or acceleration discontinuity at segment
boundaries.

COMMAND DESCRIPTION

Cl RCLE circular interpolation motion

LI NEAR_MOVE constant accel linear motion

LI NEAR_MOVE_S linear, s-curve motion

LI NEAR_MOVE_T linear , simple time-based constant acceleration
OVERRI DE set feedrate override for LINEAR / CIRCLE

S| NE_OFF disable sinetables for circular interpolation

S| NE_ON enable sine tables for circular interpolation
TABLE_OFF disable circular interpolation compensation tables
TABLE_ON enable circular interpolation compensation tables
TABLE_SEL select acompensation table

DSPL Command Set

Interrupt Control

The Mx4 DSPL includes a comprehensive set of instructions to handle
interrupts. There are many system conditions that require the host's and/or
DSPL program's immediate attention for an executive (or system-level)
decision. Some interrupts will be issued concurrently requiring immediate
action by the Mx4. The complete set of interrupts provided by Mx4 facilitates
data reporting to the host for issues of system level significance.

COMMAND

DESCRIPTION

DI SABL_I NT
DI SABL2_| NT
EN_BUFBRK
EN_ENCFLT
EN_ERR
EN_ERRHLT

EN_I NDEX
EN_MOTCP
EN_POSBRK
EN_PROBE

| NT_HOST

I NT_REG ALL_CLR
| NT_REG CLR

disable the interrupts

disable the interrupts

contouring buffer breakpoint interrupt enable
encoder fault interrupt

following error interrupt enable

following error / halt interrupt enable

index pulse interrupt enable

motion complete interrupt enable

position breakpoint interrupt enable

genera purpose external probe interrupt enable
generate a host interrupt from DSPL program
clear all interrupt bit registers

clear specified interruptsin bit registers

ASCII Interface

COMMAND

DESCRIPTION

I NPUT
PRI NT
PRI NTS

receive valve from terminal value to termina
send value to terminal
send ASCI| string to terminal

Filtering (optional)

COMMAND

DESCRIPTION

LOW PASS
NOTCH

implement low passfilter at controller output
implement notch filter at controller output

DSPL Programmer’s Guide v5.0

8-11

DSPL Command Set

DSPL Command Set

8-12

The DSPL command set includes commands, functions, operators, and
identifiers listed in aphabetical order. The command listing follows this

format:

FUNCTION

EXECUTION

SYNTAX

USAGE

ARGUMENTS

DESCRI PTI ON

SEE ALSO

APPLICATION

EXAMPLE

indicates the command function

indicates the amount of time this function will require to
execute under worst-case circumstances

proper command syntax 1

indicates the command usage as follows:

Host host-programming command

DSPL DSPL programming command
(PLC) command may be used in PLC programs
(Motion) command may be used in Motion programs

command arguments (if any) are defined

explanation of command operation, functionality

listing of related commands

some helpful suggestions as to for which applications a
command may be useful

an example illustrating the command in use

@ Note: Operators and Identifiers are labeled as such in the listing.

The syntax for many multi-axis commands includes an n argument that
specifies the command axes and the data arguments for each of the specified

DSPL Command Set

axes. For example, the proper syntax for the following error interrupt command

IS,

EN_ERR (n, ferq,

where fer, is the data argument for axis x. The data arguments follow n in a
lower to higher axis order. For example, a following error interrupt command

involving axes 2 and 4 would appear as,

EN_ERR(OxA, fer,, fery,)

The n argument is a hexadecimal bit coding following the format 0x? where ?

is the axis mask,

axis mask bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

axis 1
axis 2
axis 3
axis4
axis b5
axis 6
axis7
axis 8

For example, 0x3 bit codes axes 1 and 2; OXE bit codes axes 2, 3, 4, etc.

DSPL Programmer’s Guide v5.0

8-13

DSPL Command Set

8-14

ABS

FUNCTION Calculate the Absolute Value of a Constant or a Variable
Vaue.

EXECUTION 10 microseconds

SYNTAX ABS(val u) or -ABS(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number
ora

variable (vVARL through vAR128)

DESCRIPTION

This mathematical function calculates the absolute value of a constant
or a variable value. If a minus sign appears to the left of the ABS
function, the result of the absolute value calculation is multiplied by -
1

Note: This function can only be used with a variable assignment
statement. For example:

VARS5 = ABS(VAR32)

SEE ALSO FRAC, INT, SIGN, SQRT
EXAMPLE

The first example calculates the absolute value of the value stored in
VAR36 and stores the negated result in vAR49:

VAR49 = - ABS(VAR36)

The second example finds the absolute value of -6.751 and stores the
result (6.751) in VARS1:

VARS1 = ABS(- 6. 751)

DSPL Command Set

ADC1, ADC2, ADC3, ADC4 IDENTIFIER

IDENTIFIER Analog-to-digital input values.
USAGE DSPL (PLC, Motion)
DESCRIPTION

If the Mx4 controller includes the Mx4 Quad ADC Acc4 option, four
(4) analog-to-digital (ADC) values are available in DSPL programs.
The value (in Volts) that is stored in each of the ADC values
corresponds to the voltage applied to the ADC input.

Name Description

ADC1 analog input 1
ADC2 analog input 2
ADC3 analog input 3
ADC4 analog input 4

SEE ALSO none
EXAMPLE

The ADC values can be used as follows:

To assign the value of avariable:

VAR23 = ADC3

sets VAR23 to the value (in Volts) of the analog-to-digital input 3
voltage. For instance, applying -1.25 volts across the ADC3 input
would result in vaR23 being set to -1.25.

as one of the values used in conjunction with a DSPL arithmetic
operation:

VAR12 = ADC2 - 1.5

as one of the argumentsin a DSPL conditional expression:
WHI LE(ADC4 <= VAR33)

DSPL Programmer’s Guide v5.0 8-15

DSPL Command Set

8-16

AND, OR OPERATOR

OPERATOR Logical AND, Logical OR

SYNTAX (expressionl) AND (expression2)

(expressionl) OR (expression2)
USAGE DSPL (PLC, Motion)
ARGUMENTS

expressionl A DSPL conditional expression
expression2 A DSPL conditional expression

DESCRIPTION

This operator performs the logical AND or the logica OR of two
DSPL conditional expressions. For the operator AND, the result is
TRUE (1) only if both of the conditional expressions evaluated as
TRUE, otherwise the result is FALSE (0). For the operator oR, the
result is FALSE (0), only if both of the conditional expressions
evaluated as FAL SE (0), otherwise the result is TRUE (1).

statement inside of a DSPL conditional structure (i.e. I F,

(I;n] Note: These operators can only be used in a DSPL conditional
WHI LE, Or WAl T_UNTI L). For example:

WHI LE((1| NP1_REG & 0x09) AND (I NP2_REG & 0x02))

SEE ALSO ~ & |F, WHILE, WAIT_UNTIL

DSPL Command Set

AND, OR cont. OPERATOR

EXAMPLE

DSPL Programmer’s Guide v5.0

The wal T_UNTI L statement below will stop the execution of the DSPL
code as long as both of the following are true: the actual position of
axis 1 is less than 1000, and the actual velocity of axis 2 is greater
than the value stored in VAR29:

WAI T_UNTI L((POS1 < 1000) AND (VEL2 > VAR29))

The next wal T_UNTI L statement will stop the execution of the DSPL
code as long as either of the following is true: the actual velocity of
axis 2 is less than or equal to 2.5, or the actual position of axis 2 is
greater than the value stored in VAR9:

WAI T_UNTI L((CVEL1 <= 2.5) OR (POS2 > VAR9))

8-17

DSPL Command Set

8-18

ARCTAN

FUNCTION Calculate the Arctangent of a Constant or a Variable Vaue.
EXECUTION 50 microseconds

SYNTAX ARCTAN(val u) or - ARCTAN(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number
ora

variable (vVARL through vAR128)

DESCRIPTION

This mathematical function cal cul ates the arctangent of a constant or a
variable value. The result will be in the range -p/2 to p/2. If valuisa
constant and a minus sign appears to the left of the ARcTAN function,
the result of the arctangent calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR62 = - ARCTAN(83. 33)

SEE ALSO CoS, SIN, TAN
EXAMPLE

The first example calculates the arctangent of the value stored in VARS
and stores the result in vAR14:

VAR14 = ARCTAN(VAR5)

The second example finds the arctangent of -49.63 and stores the
result (-1.55064995) in VAR31:

VAR31 = ARCTAN(-49. 63)

DSPL Command Set

AXMOVE

FUNCTION Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX AXMOVE (n, accq, posq, velq, ... , accg, posg, velg)
USAGE DSPL (Mation), Host (command code: 60h)
ARGUMENTS

n bit coding of the specified axis(es)

accy unsigned value specifying the maximum halting

acceleration (deceleration) for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos target position for axis x

-2147483648 £ pos, £ 2147483647 counts
vely unsigned target velocity for axis x

0 £ vel, £ 255.99998 counts/200ns

When used in DSPL, arguments acc,, pos, and vel, may be selected as
variables.

DESCRIPTION

The axmove command alows for trapezoidal command generation
with specified endpoint position, slew rate velocity, and acceleration
for each axis. This command is suitable for linear moves.

SEE ALSO AXMOVE_S, AXMOVE_T, REL_ AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

DSPL Programmer’s Guide v5.0 8-19

DSPL Command Set

8-20

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time
there is a need for a linear move from point A to point B in a multi-
dimensional space. To name a few applications: pick and place robots
(e.0., in component insertion), rapid traverse (e.g., in machining), and
master/slaving (e.g., in paper processing and packaging) applications.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gain values

KILIMT ()

AXMOVE () ;run system in axis move (linear trapezoidal) mode

EN_MOTCP () ;enable motion complete
;upon the completion of this (command) trajectory
;Mx4 generates motion complete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567 and axis 2 to the target position
of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200us for axis 1
and 3.50 counts/200ps for axis 2, and an acceleration of 0.005
counts/(200 ps)2 for both axes.

AXMOVE (0x3, 0. 005, 234567. 0, 0. 005, - 3000, 3. 50)

EXAMPLE 2

The user can issue a new axis move command before the motion of the
previous AxvMove command is completed. For example, assume the
Axvove command of Example 1 is executed. Now, the DSPL Motion
program 'decides to stop axis two at a new target position of -50000
counts with a new dlew rate of 8.0 counts200pus and a new
acceleration of 0.035 counts/(200rrs)2. While the axvove of Example 1
isin progress, the DSPL Motion program issues the new command.

AXMOVE (0x2, 0. 035, - 50000, 8. 0)

DSPL Command Set

AXMOVE_S

FUNCTION S-Curve Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX AXMOVE_S (n, accq, posq, velq, ... , accg, posg,
vel 8)
USAGE DSPL (Mation), Host (command code: 82h)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the acceleration/deceleration
for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos target position for axis x
-2147483648 £ pos, £ 2147483647 counts

vely unsigned target velocity for axis x

0 £ vely £ 255.99998 counts/200ns

When used in DSPL, arguments acc,, pos,, and vel, may be selected as
variables.

DESCRIPTION

The AXMOVE_S command allows for s-curve command generation
with specified endpoint position, slew rate velocity, and acceleration
for each axis. This command is suitable for linear moves where s-
curve acceleration is desired.

DSPL Programmer’s Guide v5.0 821

DSPL Command Set

8-22

AXMOVE_S cont.

velx AXMOVE_S

‘\AXE!l\ég(VE
/ o accx/ i POSK

t

The figure above illustrates the velocity profile of the AXMOVE_S
along with the linear velocity ramp of the AXMOVE command. With
AXMOVE_S, the acceleration will reach a value of 2*accx for a
maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_T, REL_ AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION
Refer to DSPL Application Programs.

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 200000 counts and axis 2 to the target
position of -3000 counts. Let's also assume that we want this move to
be accomplished with the dew rate velocity of 4.0 counts/200 ps for
axis 1 and 2.0 counts/200 s for axis 2. Use an acceleration reference

of 0.05 counts/(200 ps)2 for both axes.

AXMOVE_S (0x3, .05, 200000, 4.0, .05, -3000, 2.0)

DSPL Command Set

AXMOVE_T

FUNCTION Time-Based Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX AXMOVE_T (n, accq, posq, tm, ... , accg, posg, tng)
USAGE DSPL (Mation), Host (command code: 8Fh)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the acceleration/deceleration
for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos target position for axis x
-2147483648 £ pos, £ 2147483647 counts

tmy motion time for axis x

0 £ tm, £ 5000000 (200ns)
When used in DSPL, arguments acc,, pos,, and tm, may be selected as

variables.

Note: The time argument, tm,, is an unsigned value with a unit of
200rrsec.

DESCRIPTION

The AXMOVE_T commands allow for trapezoidal command generation
with specified endpoint position, acceleration, and time to complete
the move for each axis. This command is suitable for linear moves
where endpoint position and motion time are the specifying
parameters.

DSPL Programmer’s Guide v5.0 8-23

DSPL Command Set

8-24

AXMOVE_T cont.

The AXMOVE_T command is similar to AXMOVE, with the exception
that the velocity argument is replaced with a time argument.
AXMOVE_T will automatically calculate a suitable slew rate velocity to
achieve the programmed endpoint position in the programmed amount
of time, following atrapezoidal velocity profile (similar to AXMOVE).

SEE ALSO AXMOVE, AXMOVE_S, REL_ AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP
APPLICATION
Refer to DSPL Application Programs.

EXAMPLE

Move axis 1 to the target position of 10000 counts and axis 3 to the
target position of 3599 counts. Let's assume that we want this move to
be accomplished with the acceleration reference of 0.56 counts/(200

us)2 and atime of 50msec (250* 200msec) for both axes.

AXMOVE_T (0Ox5, .56, 10000, 250, .56, 3599, 250)

DSPL Command Set

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate
EXECUTION 10 microseconds

SYNTAX BTRATE (m)
USAGE DSPL (Mation), Host (command code: 73h)
ARGUMENTS

m selects the block transfer rate for all of the axes.

m is an integer ranged from 0 to 3

block transfer rate is 5 ms per point

block transfer rate is 10 ms per point
block transfer rate is 15 ms per point
block transfer rate is 20 ms per point

3333
n 71T
WN RO

DESCRIPTION
This command sets the 2nd order contouring block transfer rate for the
system. For example, if the block transfer rate is set at 10 ms, the time
interval between each point in the ring buffer is '10 ms (e.g., the DSP
will interpolate each point for 10 ms).

Note1: The host should not adjust the block transfer rate when
contouring is in process.

| [Note 2: The default block transfer rateis set at 5 ms per point.

SEE ALSO CUBI C_RATE

DSPL Programmer’s Guide v5.0 8-25

DSPL Command Set

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly,
slower CPUs are capable of breaking down geometries to position and
velocity points that are widely spaced in time. This instruction makes
the time interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15 or 20 ms), Mx4 will
internally perform a high-order interpolation of the points breaking
them down to 200 rs.

Command Sequence Example
See EN_BUFBRK

EXAMPLE

Set a contouring interpolation interval of 10 ms.

BTRATE (1)

8-26

DSPL Command Set

CALL

FUNCTION Subroutine Calls
EXECUTION 10 microseconds

SYNTAX CALL (program | abel)
USAGE DSPL (Motion)
ARGUMENTS

program label the name of the subroutine to be called

DESCRIPTION

This instruction is used to call a subroutine from a Motion program.
Program flow after a cALL instruction continues at the start of the
subroutine called. Program flow returns to the calling Motion program
after the RET instruction.

SEE ALSO RET

EXAMPLE

Call the subroutine"HALT_AX1".

CALL (HALT_AX1)

DSPL Programmer’s Guide v5.0 8-27

DSPL Command Set

8-28

CAM

FUNCTION Engage Electronic Cam
EXECUTION 200 microseconds

SYNTAX CAM (n, m tablestartq, tablesize; ...
tabl estartg, tablesizeg)
USAGE DSPL (Mation), Host (command code: A4h)
ARGUMENTS
n bit coding the ONLY master axis
m bit coding the slave axis(es)

tablestart, specifies cam table start index for slave axis x
0 <= tablestart, <= 1600

tablesize, specifies cam table size for slave axis x
3 <= tablesize, <= 1600

When used in DSPL, arguments tablestart and tablesize may be either
constants or DSPL variables.

DESCRIPTION

The commands making up the electronic cam feature are; caM CAM OFF,

CAM OFF_ACC, CAM PO NT, cAM POS, and cam PROBE. DSPL keywords
[CAMCOUNT1-8, M4 Cctavia] [CAMCOUNT1-4, M4] [CAMCOUNT1-2, M42].

The Mx4 controller is capable of storing up to 1600 cam points. Each cam
point consists of a master relative position, and an associated slave relative
position. A cam table can be between 3 and 1600 cam points long, and the user
may define any number of cam tables in the 1600-point cam table capacity.
Cam commands utilize tablestart and tablesize arguments to specify which
‘portion’ of the 1600-point cam table region to ‘run’ on.

Cam table points may be downloaded in file format from within Mx4pro or
built from within DSPL using the cam po NT command. The cAm PO NT
command may aso be used to modify cam points ‘on the fly’. The

DSPL Command Set

CAM cont.

DSPL identifiers CAMCOUNT1, 2, 3, et c. indicate at which cam table indices the
dave axes(es) are ‘at’ (caMcounTl isfor axis 1, etc.).

The cam points consist of relative position values for master and slave. The
first cam point in atable must be 0, 0. The last point in a cam table is the cycle
length for master and slave. For example, if the full cam cycle for a master
axis is 5000 counts and the slave would travel -1024 counts in that cycle, the
last cam point in that cam table would be 5000, -1024. Note that the
master/slave position ratios can not exceed the range [-256 to 255,999]. Also,
the minimum ratio is +/- 1/128. For example, for 1000 counts of the master
axis, the slave axis(es) can not have more than -256000 counts in the negative
direction or 255999 counts in the positive direction.

The dave axes utilize the mMaxacc acceleration value as the maximum
acceleration the slave axes can reach while following the electronic cam
trajectory, and therefore must be programmed before cam operation. This
command turns on the mechanical cam function for the selected master and
dave(s). The dave(s) follow the master according to the master/slave position
pairs stored in the cam table. The dave axis(es) utilize maxacc as the
maximum acceleration they can achieve in following the master trajectory.

master axis, and subsequently the slave axis(es). Slave(s)

@ Note: Activation of *ESTOP during cam operation will halt the
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM OFF, CAM OFF_ACC, CAM PO NT, CAM POS, CAM PROBE,
MAXACC, SYNC

APPLICATION

General master/dlaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

DSPL Programmer’s Guide v5.0 8-29

DSPL Command Set

CAM cont.

EXAMPLE

Set axis 1 as the master axis, axes 2 and 3 as daves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
dslave will use the 25 point cam table beginning at index 100.

CAM 0x1, 0x6, 0, 10, 100, 25)

8-30

DSPL Command Set

CAM_OFF

FUNCTION Turns Off, Disengages Cam Slave Axis(es)
EXECUTION 10 microseconds
SYNTAX CAM COFF (n)
USAGE DSPL (Mation), Host (command code: A7h)
ARGUMENTS

n bit coding the slave axis(es) to be disengaged

DESCRIPTION
This command disengages the system that was under master save
control.

SEE ALSO CAM CAM OFF_ACC, CAM POl NT, CAM POS, CAM PROBE,
SYNC

APPLICATION

General master/dlaving, in particular packaging, synchronous cutting,

flying shear, and mark registration, require the coordination of several

axes in cam fashion. For these applications, the user is required to load

the cam function along with the position spacing that defines the

distance between the adjacent gear ratios stored in the cam table.
EXAMPLE

Immediately disengage slave axes 3 and 4 from the master axis.

CAM OFF(Oxc)

DSPL Programmer’s Guide v5.0 8-31

DSPL Command Set

8-32

CAM_OFF_ACC

FUNCTION Turns Off, Disengages Cam Slave Axis(es) With Acceleration
EXECUTION 50 microseconds
SYNTAX CAM OFF_ACC (n)
RTC CODE DSPL (Mation), Host (command code: A8h)
ARGUMENTS
n bit coding the slave axis(es) to be disengaged

DESCRIPTION

This command disengages the system that was under master save
control. The dave axis(es) will come to a stop at the maximum
acceleration rate programmed by MAXACC.

SEE ALSO CAM CAM OFF, CAM POl NT, CAM PCS, CAM PROBE, SYNC

APPLICATION

General master/dlaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Disengage with acceleration profile slave axes 3 and 4 from the master
axis.

CAM_OFF_ACC(0xc)

DSPL Command Set

CAM_POINT

FUNCTION Place Cam Point Into Cam Table
EXECUTION 200 microseconds

SYNTAX CAM PO NT (tablestart, tablesize, index, masterpos,
sl avepos)

USAGE DSPL (Motion), Host (command code: B3h)

ARGUMENTS

tablestart specifies cam table start index
0 <= tablestart <= 1600

tablesize gpecifies cam table size
3 <= tablesize <= 1600

index specifiesindex at which to place the cam point
0 <= index <= (tablesize-1)

masterpos cam point master axis relative position
slavepos cam point slave axis relative position

When used in DSPL, arguments tablestart, tablesize, index, masterpos,
and slavepos may be either constants or DSPL variables.

DESCRIPTION

DSPL Programmer’s Guide v5.0

The cam Pal NT allows the user to either build entire cam tables from
within the DSPL environment or alternatively, edit cam table points
(i.e.: change cam points ‘on the fly’). Cam table points consist of
master, slave position pairs, and cam tables can be anywhere from 3 to
1600 cam points long. The first point of a cam table (index = 0) must
be 0,0. The last point of a cam table (index = tablesize-1) is
mastercyclelength, slavecyclelength; where the cycle lengths for the
master and slave are the relative cam cycle lengths (i.e.: master cycle
length is 4096 counts, the slave cycle length is 1024 counts, for a full

8-33

DSPL Command Set

cycle ratio of 4:1). Cam master/dave position ratios can not exceed
therange [-256 to 255,999]. Also, the minimum ratio is +/- 1/128.

DSPL Command Set

CAM_POINT cont.

SEE ALSO CAM CAM OFF, CAM OFF_ACC, CAM PCS, CAM PROBE, SYNC
APPLICATION
See Application Notes.

EXAMPLE

A 10-point cam table exists at table start index 500. Replace the 3rd
point of the table with the master, slave point 1000, 3000.

CAM_PO NT (500, 10, 2, 1000, 3000)

DSPL Programmer’s Guide v5.0 8-35

DSPL Command Set

8-36

CAM_POS

FUNCTION Turns Electronic Cam On at a Specified Position
EXECUTION 200 microseconds

SYNTAX CAM POS (n, m nasterpos;, tablestartq,
tabl esizeq ,... , posg, tablestartg, tablesizeg)
USAGE DSPL (Mation), Host (command code: A5h)
ARGUMENTS
n bit coding the ONLY master axis
m bit coding the slave axis(es)

masterpos, specifying the master position value for slave axis x that

the electronics cam engages
tablestart, specifies cam table start index for slave axis x

0 <= tablestart, <= 1600
tablesize, specifies cam table size for slave axis x
3 <= tablesize, <= 1600

When used in DSPL, arguments masterpos, tablestart and tablesize
may be either constants or DSPL variables.

DESCRIPTION

This command engages at the specified master position the
mechanical cam function for the selected master and save(s). The
dave(s) follow the master according to the master/dave position pairs
stored in the cam table. The slave axis(es) utilizes maxacc as the
maximum acceleration they can achieve in following the master
trajectory.

master axis, and subsequently the slave axis(es). Slave(s)

(I;n] Note: Activation of *ESTOP during cam operation will halt the
remain “engaged” in cam mode after the input-triggered halt.

DSPL Command Set

CAM_PQOS cont.

SEE ALSO CAM CAM OFF, CAM OFF_ACC, CAM POl NT, CAM PROBE, SYNC

APPLICATION

General master/dlaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Set axis 4 as the master axis, axes 2 and 3 as daves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
dave will use the 25-point cam table beginning at index specified in
VARS8. Axis 2 dave should engage when the master axisis at position
1000, and axis 3 slave should engage when the master axis is at
position 4096.

CAM_PCs(0x8, 0x6, 1000, 0, 10, 4096, VARS, 25)

DSPL Programmer’s Guide v5.0 8-37

DSPL Command Set

8-38

CAM_PROBE

FUNCTION Turns Electronic Cam On After Probe Input
EXECUTION 200 microseconds

SYNTAX CAM PROBE (n, m g, tablestart,, tablesize; ... ,
tabl estartg, tablesizeg)

USAGE DSPL (Mation), Host (command code: A6h)

ARGUMENTS

n bit coding the ONLY master axis
m bit coding the slave axis(es)
a specifies the *EXTx probe interrupt to be used

[Mx4]

g=1 : *EXT1
g=2 : *EXT2
[Mx4 Octavia

g=1 : *EXT1
g=2 : *EXT2
g=4 ;. *EXT3
g=8 . *EXT4

tablestart, specifies cam table start index for slave axis x
0 <= tablestart, <= 1600

tablesize, specifies cam table size for slave axis x
3 <= tablesize, <= 1600

When used in DSPL, arguments tablestart and tablesize may be either
constants or DSPL variables.

DSPL Command Set

CAM_PROBE cont.

DESCRIPTION

This command engages at the occurrence of the specified external
interrupt (*EXT1, 2, 3, 4) the mechanical cam function for the
selected master and slave(s). The dlave(s) follow the master according
to the master/slave position pairs stored in the cam table. The save
axis(es) utilizes maxacc as the maximum acceleration they can achieve
in following the master trajectory.

previously enabled EN_PROBE interrupt. Probe input (*EXT1,

@ Note: Execution of the cam ProBE command will disable any

*EXT2, *EXTS3, or *EXT4) activation does not generate an
interrupt with the cam PROBE command.

master axis, and subsequently the slave axis(es). Slave(s)

@ Note: Activation of *ESTOP during cam operation will halt the

remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM CAM OFF, CAM OFF_ACC, CAM POl NT, CAM PCS, SYNC

APPLICATION

General master/dlaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

DSPL Programmer’s Guide v5.0

Set axis 2 as the master axis, set axes 1 and 3 as slaves. The axis 1
slave will use the 100-point cam table beginning at index O, while the
axis 3 dave will use the 250-point cam table beginning at index
specified in VAR38. Engage slave axes in cam at occurrence of *EXT2
interrupt.

CAM 0x2, 0x5, 0x2, 0, 100, VAR38, 250)

8-39

DSPL Command Set

8-40

CAMCOUNT], ..., CAMCOUNTS8 IDENTIFIER

IDENTIFIER Slave Axis Table Index Counter
USAGE DSPL (PLC, Motion)

DESCRIPTION

When engaged in CAM motion, the dave axis (es) derive their
position with respect to the master position from the master/save
position points which make up the CAM table. The camMCOUNTx
identifiers indicate at which CAM point the respective slave axis (es)
is located within the CAM table.

SEE ALSO
CAM CAM PO NT, CAM PCS, CAM PROBE, CAM OFF, CAM OFF_ACC

EXAMPLE

Delay DSPL program flow until the axis2 slave axis passes index 19 of
the CAM table.

WAI T_UNTI L (CAMCOUNT2 > 19)

CIRCLE

DSPL Command Set

FUNCTION
EXECUTION
SYNTAX

USAGE
ARGUMENTS

cent

centy

radius

feedrate

Circular Trajectory Motion
Depends on size and feedrate of circle

CI RCLE (n, centy, centy, radius, feedrate, target,,
targety)
DSPL (Motion)

bit coding the two axes in circular motion
the circle center's x-axis position component relative to

the current x-axis command position

-536870912 <= centy, <= 536870912 counts

the circle center's y axis position component relative to
the current y-axis command position

-536870912 <= centy <= 536870912 counts

positive value specifying circle radius

radius <= 536870912 counts

circle feedrate (velocity), may be positive or negative

-256 <= feedrate <= 255.99998 counts/200ns

(I;n] Note: circle period must be >2 seconds

target,

DSPL Programmer’s Guide v5.0

relative (x-axis component) distance of target from the
current x-axis command position

-1073741824 <= targety <= 1073741824 counts

8-41

DSPL Command Set

8-42

CIRCLE cont.

targety relative (y-axis component) distance of target from the
current y-axis command position

-1073741824 <= targety <= 1073741824 counts

When used in DSPL, arguments, cent,, cent,, radius, feedrate,
target,, and targety, may be either constants or DSPL variables.

DESCRIPTION

cl RCLE allows the user to program circular motion for two axes. In
order to perform the circular interpolation, the user has the option of
choosing which interpolation tables are used for the generation of the
command position and command velocity. The choices are:

1. Standard sine tables only

2. Sine tables plus user-defined position and velocity
compensation tables

3. User-defined position and velocity compensation tables only

The user-defined compensation tables allow the individual user to
compensate for both position and velocity non-linearities of the
particular system's mechanical parts.

tables, the users may define their own interpolation scheme

@ Note: By sdlecting to use only the user-defined compensation
based on the position and velocity compensation tables.

The command position and velocity profiles are illustrated in Figs. 8-2
and 8-3 for the standard sine table case. Fig. 8-2 depicts the profiles
for a positive feedrate while Fig. 8-3 illustrates the profiles for a
negative feedrate. It is important to note that with the addition of the
compensation tables, the position and velocity profiles of the following
figures would be altered.

DSPL Command Set

CIRCLE cont.

Y axis
A
A (0%
D (270)
X axis
B (909
C (180)
X-Axis Component Y-Axis Component
Command Command
Position Position
A B Pn =radius xsin Q Pn=radiusxcos Q
B D
Degrees -
9 0 oy 180 2f0 Degrees
C
Command Command
Velocity Velocity
Vn =feedrate x cos Q Vn = -feedrate x sin - Q
D
Degrees A ¢ » Degrees
90 0 270

Fig. 8-2: Profiles for Positive Feedrate

DSPL Programmer’s Guide v5.0 8-43

DSPL Command Set

CIRCLE cont.

Y axis

A

/ A(0Y
D (270") / o
- axis

\ B (909

C (180)
X-Axis Component Y-Axis Component
Command Command
Position Position
Pn=radius xsin Q Pn = radius x cos Q
A
A C B D
= D -
0 90 1 270 cgrees 0 9 180 0 Degrees
D c
Command Command
Velocity Velocity
A Vn = -feedrate x cos Q i Vn = feedrate x sin Q
B
Degrees A c » Degrees

Fig. 8-3: Profiles for a Negative Feedrate

DSPL Command Set

CIRCLE cont.

Upon execution of a ¢ RCLE or LI NEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a C RCLE or LI NEAR related command, it will be
executed immediately. If the following command is a cl RCLE or
LI NEAR related command, it will be executed after the previous ¢ RCLE/
LI NEAR motion is complete.
SEE ALSO CLEAR POS_TABLE, CLEAR VEL_TABLE, LI NEAR_MOVE_,
LI NEAR_MOVE_S, LI NEAR_MOVE_T, LOAD_POS_TABLE,
LOAD VEL_TABLE (Mx4 User’s Guide), SINE_OFF, SINE_ON,
TABLE_OFF, TABLE ON

APPLICATION
See Application Notes
EXAMPLE

Move (axis one, axis two) from a current position of (6000, 0) to a
final position of (0, 6000) using circular interpolation with a feedrate
equal to 1.5 counts/200ns. The radius of the circle is 6000 counts.
Assume standard sine table interpolation.

Note: The axis two velocity must be -1.5 counts/200ns at the
starting point of the circle (see velocity profiles asillustrated
in Fig. 5-2 and 5-3).

DSPL Programmer’s Guide v5.0 8-45

DSPL Command Set

CIRCLE cont.
AXxis 2
'“‘\(\?16000)
l > Axis 1
(6000,0)
s
n 0x3
centy -6000 counts
centy 0 counts
radius 6000 counts
feedrate 1.5 counts/200ns
targety -6000 counts

targety 6000 counts

TABLE_OFF (0x3) ; Disabl e conpensation tables
SI NE_ON (0x3) ; Enabl e standard sine tables
Cl RCLE (0x3, -6000, 0, 6000, 1.5, -6000, 6000)

8-46

DSPL Command Set

8-46

COS

FUNCTION Calculate the Cosine of a Constant or aVariable Value.
EXECUTION 75 microseconds

SYNTAX COS(val u) or -COS(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
vau A constant
ora

variable (vVARL through vAR128)

DESCRIPTION

This mathematical function calculates the cosine of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the cos function, the result of the cosine
calculation ismultiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VARLY = COS(4. 963)

SEE ALSO ARCTAN, SIN, TAN
EXAMPLE

The first example calculates the cosine of the value stored in vAR23
and stores the result in VAR42:

VARA2 = COS(VAR23)

The second example finds the cosine of -0.529 radians and stores the
negated result (-0.863312172) in VARS:

VARS = - COS(- 0. 529)

DSPL Command Set

CPOS1, ..., CPOSS8 IDENTIFIER

IDENTIFIER Command Position State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

A command position state variable holds a 32-bit two's complement
integer value that represents the position (in encoder edge counts) that
DSPL is commanding the specified axis to reach.

Name Description

CPOS1 axis 1 command position
CPOS2 axis 2 command position
CPCS3 axis 3 command position
CPCS8 axis 8 command position

SEE ALSO ERR1, | NDEX PCS1, POS1, PROBE_POS1, etc.

EXAMPLE
The command position state variables can be used as follows:

as one of the values used in conjunction with a DSPL arithmetic
operation:
VARL2 = CPCS3 + 33000

as one of the argumentsin a DSPL conditional expression:
WAI T_UNTI L(CPCS1 > 100000)

DSPL Programmer’s Guide v5.0 8-47

DSPL Command Set

CTRL

FUNCTION Control Law Parameters
EXECUTION 200 microseconds

SYNTAX CTRL (n, parqi, ... , pari4, ... , pargi,
par g4)

USAGE DSPL (Motion), Host (command code: 62h)
ARGUMENTS

n bit coding of the specified axis(es)

paryq unsigned value for Ki gain

paryo unsigned value for Kp gain

parys unsigned value for Kf gain

pary4 unsigned value for Kd gain

0 £ par,, £ 32767

When used in DSPL, arguments pary;, pary, parxs and paryys may be
selected as variables.

DESCRIPTION

This command performs a state feedback control algorithm combined
with amodified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide a raobust control, which is smooth and stable over a wide range
of servo operation. In addition, this algorithm performs a modified
PID with the saturation threshold set for integral action. A common
PID includes two zeros and one pole, which may not be suitable for
systems with noisy feedback. Also, the integral part of a common PID
algorithm may saturate the registers creating overshoots or other forms
of instability. A modified PID includes a second pole to solve the latter
problem and a programmable integral limit to solve the former one.

In the modified PID algorithm; parq, parp, pars, and par, are values

representing the integral, proportional, velocity state feed forward, and
differential gains, respectively.

8-48

DSPL Command Set

CTRL cont.

Scaling Factors
The DSP uses an internal scaling factor for each gain. These factors
have been optimaly selected for worst case numerical conditions.

These factors are:
GAIN SCALING FACTOR VALUE
K¢ 1.525E-08 vi(cls)
Kp 0.595E-06 v/c
K; 3.308E-05 (v/s)lc
Kq 1.9875E-08 vi(cls)
Output Loop Gain integer NA

v =volts, c=encoder edge counts, s= seconds

For example,

100 counts of position error and K, of 1000 (other gains are zero) will
result in an output voltage of 59.5 millivolts.

i.e. 100" 1000 " 0.595E-06 = 59.5

to DAC

Output
Loop Gain

—+

K jLimit

Kalman

Filter
Sampling Period

PACTUAL
Block Diagram of Control Law

SEE ALSO KILIMT, OFFSET, OUTGAIN

DSPL Programmer’s Guide v5.0 8-49

DSPL Command Set

CTRL cont.

APPLICATION

This command is used in all position/velocity control tuning
applications. For more information on the effectiveness of each gain
on system dynamic response, please refer to the Mx4Pro: Tuning
Expert manual. This manual will help you understand the significance
of gains in tuning. Please read this even if you cannot run Mx4Pro on
your machine because it lacks the DOS operating system.

Command Sequence Example
See AXMOVE and VELMODE

EXAMPLE
Set the following modified PID gain values for axes 2 and 4:

Ki = 100
K, = 4000
K¢ = 3000
Kg = 2500
Ki = 20
K, = 8000
Ki = 5500
Kg = 7000

CTRL (0xA, 100, 4000, 3000, 2500, 20, 8000, 5500, 7000)

8-50

DSPL Command Set

CTRL_KA

FUNCTION Acceleration Feedforward Control Law Parameter
EXECUTION 200 microseconds

SYNTAX CTRL_KA (n, kag, ... , kag)
USAGE DSPL (Mation), Host (command code: 59h)
ARGUMENTS
n bit coding of the specified axis(es)
kay unsigned value for Ka gain

0 <= ka, <= 32767
When used in DSPL, the arguments ka, may be selected as a variable.

DESCRIPTION

The CTRL_KA command alows the user to program an acceleration
feedforward gain for the specified axis(es).

SEE ALSO CTRL, KILIMT, OFFSET, OUTGAIN

EXAMPLE
Program a Ka of 5000 for both axes 1 and 3.

CTRL_KA (0x5, 5000, 5000)

DSPL Programmer’s Guide v5.0 8-51

DSPL Command Set

8-52

CUBIC_INT

FUNCTION Start the Internal Cubic Spline Contouring Execution
EXECUTION 100 microseconds

SYNTAX CUBIC INT (m si, n)
USAGE DSPL (Motion), Host (command code: B1h)
ARGUMENTS
m specifies the number of pointsin the cubic spline table to

run. Each point is characterized by the position and
velocity for only one motor. The maximum number of
pointsis 2,000.

s specifies the starting index in the table

n specifies the number of times m points of a spline table
will be looped over

n £ 32767
When used in DSPL, arguments m, si, and n may be selected as

variables.

(I;n] Note: n = 0 means run the specified number of points infinite
number of times.

DSPL Command Set

CUBIC_INT cont.

DESCRIPTION

This command starts execution of the points stored in the cubic spline
table immediately. It takes DSPL (or RTC) approximately 5 ms to
interpret this command. After interpretation of this command, DSPL
will move on to the next command line. The command sequence for
thisinstruction is as follows:

1) cuBl C_RATE
2) cuBl C_SCALE ;if necessary
3) cuBl C_I NT

We assume that user has already downloaded the table points to the
cubic spline table location.

Upon execution of a cusl c_I NT command, the DSPL program flow
will not proceed to a following cCuBI C_INT, CUBIC RATE, oOr
CUBI C_ SCALE command until the current cuBl C_INT motion is
completed. If the command following the cusl C_I| NT command is not a
CUBI C_INT, CUBIC RATE, OfF CUBIC SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBI C_I NT command execution.

SEE ALSO CLEAR_cuBl C (Mx4 User’s Guide), CuBl C_RATE,

CUBI C_SCALE, CuUBI C_TSCALE

APPLICATION

Refer to Cubic Spline

EXAMPLE

DSPL Programmer’s Guide v5.0

Refer to Cubic Spline Application Notes.

8-53

DSPL Command Set

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate
EXECUTION 50 microseconds

SYNTAX CUBI C_RATE (m)
USAGE DSPL (Mation), Host (command code: A1h)
ARGUMENTS
m parameter coding the value for cubic spline transfer rate.

DESCR

"m" codes the time interval between the adjacent
position/velocity points. Its value ranges between 5 and
511 and when divided by 5 it represents the interval in
ms. For example, m=5 represents the time interval of 1
msand m=25isa5 msinterval.

When used in DSPL, the argument m may be selected as a variable.

IPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent points in the ring
buffer. The two adjacent points can be spaced anywhere between 1.0 to
102.4 ms. Mx4's cubic spline interpolates between the two adjacent
points a 200 us increments. This means for example, Mx4
interpolates 500 points between two adjacent points 100 ms apart.
Position and velocity points in the ring buffer are organized similar to
the way they are in ordinary contouring. That is, every point is
represented by eight bytes - four for position and four for velocity.

Since velocity is humerically presented by a 25-bit two's complement
number (8 bits (absolute) integer, 16 bits fractional) the upper most
significant four bits of 32-bit long velocity are used to code the axes
for which the position/velocity points have been specified. For
example, the following 32-bit number, 30 55 66 77h specifies velocity
value 0 55 66 77h in cubic spline interpolation involving axis 1 and
axis 2 (i.e., 3 = 0011). Note that the 4-bit axis coding is only used in
cubic spline - ordinary contouring lacks this feature. Mx4's other
contouring feature (i.e., 2nd order) uses the veccHG command to
encode the axes involved in a contouring task.

DSPL Command Set

CUBIC_RATE cont.

The contouring strategy can be switched between cubic spline and 2nd
order using cusl C_RATE and BTRATE, respectively. It may take up to
500 ms to execute a cuBl C_RATE. Once a CUBI C_RATE is issued, thereis
no need to re-issue this command.

The ring buffer breakpoint interrupt cannot detect less than 5 ms
worth of points. This imposes a constraint on the minimum number of
points for short block transfer rates such as 1 ms. For example, for al
ms block transfer rate, a minimum of 5 points in the ring buffer is
required.

buffer_break point(m) mis number of pos/vel pointsin ring buffer
for b.t. rate of 1 ms 5£ m £ 84 points
for b.t. rate of 5ms 1£ m £ 84 points

Upon execution of a cusl c_I NT command, the DSPL program flow
will not proceed to a following CuBIC_INT, CUBIC RATE, oOr
CUBI C_SCALE command until the current cuBl C_INT motion is
completed. If the command following the cusl C_I| NT command is not a
CUBI C_INT, CUBIC RATE, OfF CUBIC SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBI C_I NT command execution.

SEE ALSO EN_BUFBRK, BTRATE, CLEAR cuBl C (Mx4 User’s Guide),

CUBI C_I NT, CuUBI C_SCALE

APPLICATION

DSPL Programmer’s Guide v5.0

Refer to Cubic Spline Application Notes.

8-55

DSPL Command Set

CUBIC_RATE cont.

Fress ESC to stop the motion

15

16 points; b.t. rate = 80 ms

Fress ESC to stop the motion

32 points; b.t. rate = 40 ms

8-56

DSPL Command Set

CUBIC_RATE cont.

Fress ESC to stop the motion

64 points; b.t. rate = 20 ms

Fress ESC to stop the motion

128 points; b.t. rate = 10 ms

DSPL Programmer’s Guide v5.0 8-57

DSPL Command Set

CUBIC_SCALE

FUNCTION Scales Positions/'V el ocities, also Shifts Positions
EXECUTION 200 microseconds

SYNTAX CUBI C_SCALE (n, pv_mult,, pos_shift,, ...)
USAGE DSPL (Mation), Host (command code: BOh)
ARGUMENTS

n bit coding the axes involved

pv_mult, position/velocity scaling multiplier for axis x
-2 £ pos_mult, < 2

pos_shifty position shift for axis x. This is a 32-bit two’s
complement integer number that transfers the position to
anew origin.

When used in DSPL, the arguments pv_mult, and pos_shift, may be
selected as variables.

DESCRIPTION

This command scales those table points involved in a cubic spline
operation. This command also shifts the positions involved by a user
defined position shift value.

Upon execution of a cusl c_I NT command, the DSPL program flow
will not proceed to a following cuBIC INT, CUBIC RATE, Or
CUBI C_ SCALE command until the current cusl C_INT motion is
completed. If the command following the cusl C_I| NT command is not a
CUBI C_INT, CUBIC RATE, OF CUBIC SCALE command, the DSPL
program flow will proceed to that command immediately after the
CUBI C_I NT command execution.

SEE ALSO CLEAR_cuBl C (Mx4 User’s Guide), CUBI C_ | NT, CUBI C_RATE,
CUBI C_TSCALE

EXAMPLE

8-58

DSPL Command Set

Refer to Cubic Spline Application Notes
CURR_LIMIT

FUNCTION Set Output Drive Current Limit
EXECUTION 200 microseconds
SYNTAX CURRLIMT (n, clnmty, ... , cintg)
USAGE DSPL (Mation), Host (command code: 77h)
ARGUMENTS
n bit coding of the specified axis(es)
clmty unsigned value specifying the current limit percentage

0 £ clmt, £ 100(%)

DESCRIPTION

This command sets the current limit for the axes specified. The current
limit is defined as a percentage of the maximum desired current
(which in turn is defined by the current feedback mechanism). In the
case that the current in any phase of a specified axis exceeds the set
value, the PWM signals for that axis will turn off for at least one full
period and turn on only if the sensed current is reduced below the
current limit.

Note: Mx4 with Vx4++ will not execute the cCURR LI M T command
if the vxa_BLock command is active for the axes in question.

SEE ALSO Vx4_BLOCK
APPLICATION
See Vx4++ User's Guide

EXAMPLE

For current feedback designed for full scale at 10 amps, set current
limits of 3 and 4 amps for axes one and two, respectively.

DSPL Programmer’s Guide v5.0 8-59

DSPL Command Set

(3/10) * 100% = 30% (4/10) * 100% = 40%

CURR_LI M T (0x3, 30, 40)

8-60

DSPL Command Set

CU RR_OFFSET Vx4++ option command

FUNCTION Compensate Current Feedback Offset
EXECUTION 200 microseconds

SYNTAX CURR_OFFSET (n, val1, ... , valg)
USAGE DSPL (Mation), Host (command code: 85h)
ARGUMENTS
n bit coding of the specified axis(es)
val, offset value for axis x
-32768 £ val, £ 32767

When used in DSPL, the argument val, may be selected as a variable.

DESCRIPTION

The currR_oFFSET command allows the user to compensate for any
offset generated by the current feedback path.

command if the vx4_BLocK command is active for the axes in

(I;n] Note: Mx4 with Vx4++ will not execute the CURR OFFSET
guestion.

SEE ALSO Vx4_BLOCK
APPLICATION
See Vx4++ User's Guide

EXAMPLE

Program an offset compensation value of 2500 for axis one and -1500
for axisfour.

CURR_OFFSET (0x9, 2500, -1500)

DSPL Programmer’s Guide v5.0 8-61

DSPL Command Set

8-62

CURR_P'D Vx4++ option command

FUNCTION Current Loop Control Law Parameters
EXECUTION 200 microseconds

SYNTAX CURR PID (n, pariq, ... , paris, ..., pargi, ... ,
par g3)

USAGE DSPL (Motion), Host (command code: 7Bh)
ARGUMENTS

n bit coding of the specified axis(es)

par,q unsigned value for K gain

par, o unsigned value for K; gain

par,3 unsigned value for K4 gain

0 £ pary1 23 £ 32767

DESCRIPTION

This command performs a vector control algorithm combined with a
modified PID.

SEE ALSO CTRL
APPLICATION
See Vx4++ User's Guide

EXAMPLE

Set the following modified current loop PID gain values for axis three.

Kp = 10000
Ki = 20
Kg = 9500

CURR_PI D (0x4, 10000, 20, 9500)

DSPL Command Set

CVEL1], ..., CVELS IDENTIFIER

IDENTIFIER Command Velocity State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

A command velocity state variable holds a 25-bit two’s complement
value (sign extended to 32 bits, the least significant 16 bits represent
the fractional portion of the value) that represents the velocity (in
encoder edge counts/200ms) that DSPL is commanding the specified
axisto reach. For example:

CVEL1 = 000A8000h = 10.5 counts/200ms

Name Description

CVEL1 axis 1 command velocity
CVEL2 axis 2 command velocity
CVELx axis x command velocity
CVELS axis 8 command velocity

SEE ALSO VEL1
EXAMPLE
The command velocity state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic

operation:
VARL2 = CVEL2 + 0.5

as one of the argumentsin a DSPL conditional expression:
WAI T_UNTI L(CVEL1 > 1.5)

DSPL Programmer’s Guide v5.0 8-63

DSPL Command Set

DDAC

FUNCTION Direct DAC Output
EXECUTION 200 microseconds

SYNTAX DDAC (n, valq, ... , valg)
USAGE DSPL (Motion), Host (command code: 63h)
ARGUMENTS
n bit coding for the specified axis(es)
valy DAC output voltage for axis x
-10.0 £ val, £ 9.9997 volts

When used in DSPL, the argument val, may be selected as a variable.

DESCRIPTION

The pbac command places the axis(es) in open loop, with DAC(X)
output voltage determined by the val, command argument. DDAC
specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of approximately 0.3 millivolts.

After execution of a bbAC command, in order to return the axis(es) to
closed loop operation, a closed-loop command such as AXMOVE or
VELMODE must be executed. The following procedure serves as an
example:

1. dlow or halt the axis(es) motion:
-execute bbAC with Ov specified

2. minimize built-up following error:
-execute POS_PRESET command

3. return axis(es) to closed loop:
-execute AXMOVE command with target position
specified as that used in the preceding
POS_PRESET command.

SEE ALSO none

DSPL Command Set

DDAC cont.

APPLICATION

This command can be used in applications where the voltage
command provides adequate control. Voltage commands can be
applied to a torque loop (for torque control applications in robotics) or
avelocity loop (to a spindle axis in machine tool applications).

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE
Output +3.75 voltsto the axis 4 DAC.

DDAC (0x8,3.75)

DSPL Programmer’s Guide v5.0 8-65

DSPL Command Set

8-66

DELAY

FUNCTION Program Flow Delay
EXECUTION Depends on user arguments

SYNTAX DELAY (del)
USAGE DSPL (Motion)
ARGUMENTS
del value specifying the number of 200ns intervals to delay

0 £ del £ 65535 (200nsintervals)
When used in DSPL, the argument del may be selected as a variable.

DESCRIPTION

DSPL Motion program flow stops at the DELAY command for the
specified amount of time.

SEE ALSO WAl T_UNTI L

APPLICATION
See Application Notes

EXAMPLE
Set adelay of 0.400 seconds.

0.400/ (200 e-006) = 2000

DELAY (2000)

DSPL Command Set

DISABL_INT
FUNCTION Disable Interrupts
EXECUTION 10 microseconds
SYNTAX DI SABL_INT (n, m, ... , ng)
USAGE DSPL (Motion), Host (command code: 64h)
ARGUMENTS
n bit coding of the specified axis(es)
My bit coding of the interrupts to disable for axis x (setting a
bit to 1 indicates disabling an interrupt)
bit 7 not used
bit 6 motion complete
bit 5 index
bit 4 probe
bit 3 position breakpoint
bit 2 following error
bit 1 following error / halt
bit 0 buffer breakpoint
DESCRIPTION

This command disables some or al of the servo control card
interrupts.

SEE ALSO DI SABLE2_| NT, EN _BUFBRK, EN PROBE, EN ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also, a few

enabled i

Comma

nterrupts may have to be disabled based on external events.

nd Sequence Example

No preparation is required before running this instruction.

DSPL Programmer’s Guide v5.0

8-67

DSPL Command Set

DISABL_INT cont.

EXAMPLE

Disable the previously enabled axis 1 following error and axis 3 index
pulse interrupts.

DI SABL_I NT (0x5, 0x04, 0x20)

8-68

DISABL2._|

DSPL Command Set

NT

FUNCTION
EXECUTION
SYNTAX
USAGE
ARGUMENTS

n
My

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit O

DESCRIPTION

Disable Interrupts

10 microseconds

DISABL2_INT (n, m, ... , ng)

DSPL (Mation), Host (command code: 5Ah)

bit coding of the specified axis(es)
bit coding of the interrupts to disable for axis x (setting a
bit to 1 indicates disabling an interrupt)

not used
not used
not used
not used
not used
not used
not used
encoder fault [EN_ENCFLT]

This command disables the selected enabled interrupts.

SEE ALSO DI SABL_I NT, EN_ENCFLT

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also, a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

DSPL Programmer’s Guide v5.0

8-69

DSPL Command Set

DISABL2_INT cont.

EXAMPLE

Disable the previously enabled axis 1, axis 3, and axis 4 encoder fault
[EN_ENCFLT] interrupts.

DI SABL2_|I NT (0Oxd, 0x01, 0x01, 0x01)

8-70

DSPL Command Set

ELSE

FUNCTION Else Condition in IF-(then)-(EL SE)-ENDIF Structure
EXECUTION 10 microseconds
SYNTAX I F (conditional expression)

program code to execute if the IF condition is True
ELSE
program code to execute if the IF condition is Fal se
ENDI F
USAGE DSPL (PLC, Motion)
ARGUMENTS

none

DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. The ELSE operand allows selective program execution as a
result of a False IF conditional expression.

SEE ALSO IF, ENDIF

APPLICATION
See Application Notes

EXAMPLE

Preset the position of axis one to 100 counts if the command position
of axis two is > 1000 counts; otherwise preset the position of axis one
to 200 counts.

I F (CPCS2 > 1000)
POS_PRESET (0x1, 100)
ELSE
POS_PRESET (0x1, 200)
ENDI F

DSPL Programmer’s Guide v5.0 871

DSPL Command Set

8-72

EN_BUFBRK

FUNCTION Enable Buffer Breakpoint Interrupt
EXECUTION 10 microseconds

ARGUMENTS

SYNTAX EN_BUFBRK (buf f br k)
USAGE DSPL (Mation), Host (command code: 61h)
buffbrk a positive value which represents the delta position for

the remaining number of bytes in the ring buffer. Since
each contouring point requires 8 bytes, this number must
be multiplied by 8 to indicate the real number of bytes
left in the ring buffer.

1 £ buffbrk £ 84 contouring data points

DESCRIPTION

This command will cause an interrupt when the number of contouring
data points in the contouring ring buffer falls below a preset
breakpoint. The buffer breakpoint interrupt status will appear in bit O
of the DPR interrupt flag location [Mx4:7FEh] [Mx4 Octavia:1FFEh].
This bit gets set if a buffer breakpoint interrupt occurs.

SEE ALSO DI SABL_| NT
APPLICATION

This command must be used in both 2nd order and cubic spline
contouring applications. To maintain continuity in a contouring
application, Mx4 must be constantly updated by the host processor
with a set of new (position/velocity) points on the contour. Since no
application can afford to run out of points, the host must set the buffer
breakpoint interrupt to a value such that running the remaining points
(what is left in the ring buffer) will give the host enough time to
update the buffer. For slower hosts, the argument for this command
must be relatively larger.

DSPL Command Set

EN_BUFBRK cont.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMT ()
;load the ring buffer with contouring points,
. ;(position and speed)
BTRATE () ;set the 2nd order contouring block transfer rate to 5,

10, 15 or 20 ms
EN_BUFBRK () ;set the breakpoint in buffer

START (n) ;start contouring

EXAMPLE

DSPL Programmer’s Guide v5.0

Enable a contouring ring buffers breakpoint interrupts for the case that

the number of segment move commands in the ring buffer falls below

30.

EN_BUFBRK (30)

8-73

DSPL Command Set

ENCOD_MAG Vx4++ option command

FUNCTION Define Encoder Line Count, Motor Poles, Commut. Option
EXECUTION 200 microseconds

SYNTAX ENCOD_MAG (n, pl1, p21, P31, ... , plg, p24, p34)
USAGE DSPL (Mation), Host (command code: 80h)
ARGUMENTS
n bit coding of the specified axis(es)
p1, number of encoder lines/rev on axis x
0 £ p1, £ 65535
P2, number of motor poles on axis x
0£p2, £256
p3, brushless DC commutation option

p3, =0 : brushtype DC or AC induction motor tech
p3, =0 : comm option 0
p3,=1 : comm option 1

DESCRIPTION

The Vx4++ option card interfaces to the motors with any number of
magnetic poles and encoders with any number of encoder pulse
numbers. An example of this is a brushless DC machine with eight
poles, a 1,000 line encoder, and hall sensors mounted in a special
configuration. This command alows the user to define the encoder,
commutation, and motor pole parameters for the specified axis(es).

Note: Mx4 with Vx4++ will not execute the ENCOD_MAG command if
the vx4_BLock command is active for the axes in question.

SEE ALSO VX4_BLOCK

8-74

DSPL Command Set

ENCOD_MAG cont.

APPLICATION
See Vx4++ User's Guide

EXAMPLE

Axis four is an AC induction motor with a 1024 line encoder and 4
motor poles.

ENCOD_MAG (0x8, 1024, 4, 0)

DSPL Programmer’s Guide v5.0 8-75

DSPL Command Set

8-76

ENDIF

FUNCTION Designates End Of |F-(then)-(EL SE)-ENDIF Structure
EXECUTION 10 microseconds

SYNTAX I F (conditional expression)
program code to execute if the IF condition is True
ELSE
program code to execute if the IF condition is
Fal se
ENDI F
USAGE DSPL (PLC, Motion)
ARGUMENTS
none
DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. ENDIF designates the last line of the IF-(then)-ELSE
structure. An ENDIF statement must be included with every IF
statement.

SEE ALSO | F, ELSE

APPLICATION

See Application Notes

EXAMPLE

Preset the position of axis one to 100 if vARL isequal to O. If VARL is
not equal to 0 and vAR2 is equal to 1, preset the axis one position to
200.

I F (VARL == 0)
POS_PRESET (0x1, 100)
ELSE
IF (VAR2 == 1)
POS_PRESET (0x1, 200)
ENDI F
ENDI F

DSPL Command Set

EN_ENCFLT

FUNCTION Encoder Fault Interrupt
EXECUTION 50 microseconds

SYNTAX EN_ENCFLT (m n, ferg, ... , ferg)
USAGE DSPL (Mation), Host (command code: 58h)
ARGUMENTS
m bit coding of the axes interrupt condition (see
Description)
n bit coding of the specified axis(es)
fery unsigned following error value for axis x

0 <= fer, <= 65535 counts
DESCRIPTION

This command enables the encoder fault interrupt for the specified
axes.

With the respective axis bit of argument m equal to O, the encoder
fault interrupt istriggered for the axis in question if,

1. abg[following error] > ferr, threshold, and
2. hardware encoder status bit is set

With the respective axis bit of argument m equal to 1, the encoder
fault interrupt istriggered for the axis in question if,

1. abg[following error] > ferr, threshold
If an encoder fault interrupt condition is present for an axis, the axis

will be put into open loop with DAC output of 0 volts, and an interrupt
will be generated. If, however, the axisin question is already in open

DSPL Programmer’s Guide v5.0 8-77

DSPL Command Set

8-78

EN_ENCFLT cont.

loop prior to the interrupt condition, an interrupt will be generated but
no action will be taken (ie: DAC voltage is unaffected).

The encoder fault interrupt is sustained until the EN_ENCFLT
command is reissued to the Mx4. Reissuing the EN_ENCFLT
command also allows the affected axis(es) to be put back into closed
loop following the execution of the command.

The hardware encoder status bits are reported to the lower nibble of
DPR location 113h (see Mx4 DPR Organization). A set bit indicates
that Mx4 has detected an encoder hardware failure. Mx4 reports an
“encoder status’ error if for the axisin question,

1. the encoder feedback to Mx4 is losing encoder pulses or
one of the encoder signals (A or B) actively toggles while
the other one isinactive.

The DPR interrupt status locations 009h (bit 4) and O0Eh record the
occurrence and source of this interrupt, respectively. Bit 6 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFER] is also set.

SEE ALSO Dl SABL2_| NT
APPLICATION

A necessary diagnostic feature for all servo control applications.
Command Sequence Example
No preparation is required before running this instruction.
EXAMPLE

Enable the encoder fault interrupt for both axis 3 and axis 4. Set the
following error threshold at 500 counts, using the encoder hardware
status bits in the interrupt conditions.

EN_ENCFLT (Oxc, Oxc, 500, 500)

DSPL Command Set

EN_ERR

FUNCTION Enable Following Error Interrupt
EXECUTION 50 microseconds

SYNTAX EN_ERR (n, ferq, ... , ferg)
USAGE DSPL (Motion), Host (command code 67h)
ARGUMENTS
n bit coding of the specified axis(es) for which the interrupt
is enabled
fery unsigned following error value for axis x
0 £ fer, £ 65535 counts

When used in DSPL, the argument fery may be selected as a variable.

DESCRIPTION

Upon the execution of this command, if at any time the following error
for a specified axis exceeds its programmed value, the servo control
card will generate an interrupt. This condition is recorded in DPR
interrupt status register location 000h. The DPR status register
location 02h will identify the axis(es) responsible. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFER] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERR REG
bit register.

Note: EN_ERRIis not disabled after it occurs. The host is responsible
for disabling the interrupt.

SEE ALSO DI SABL_I NT, EN_ERRHLT
APPLICATION

This command may be used in all applications for two reasons. First,
EN_ERR reports a run-away or any other out-of-control condition.

DSPL Programmer’s Guide v5.0 8-79

DSPL Command Set

EN_ERR cont.

Second, it makes sure that position error is within a specified tolerance
(i.e. the value in argument fer,.)

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Set aEN_ERRinterrupt value of 200 encoder counts for axis 1.

EN_ERR (0Ox1, 200)

8-80

DSPL Command Set

EN_ERRHLT

FUNCTION Enable Following Error Interrupt and Halt
EXECUTION 50 microseconds

SYNTAX EN_ERRHLT (n, ferq, ... , ferg)
USAGE DSPL (Mation), Host (command code: 66h)
ARGUMENTS
n bit coding of the specified axis(es) for which the interrupt
is enabled
fery unsigned following error value for axis x
0 £ fer, £ 65535 counts

When used in DSPL, the argument fery may be selected as a variables.

DESCRIPTION

Upon execution of this command, if at any time the following error for
a specified axis exceeds it's programmed value, the system will halt
and generate an interrupt. The halt brings the motion of the axis in
guestion to a stop using the programmed maximum acceleration rate.
This interrupt condition is recorded in DPR interrupt status register
location 000h. The DPR status register location 001h reveds the
axis(es) responsible. Bit 1 of DPR location [Mx4:7FEh] [Mx4
Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERRH_REG
bit register.

Note1l: EN ERRHLT will be ignored if the respective axis abort
maximum acceleration is zero.

Note2: EN ERRHLT is not disabled after it occurs. The host is
responsible for disabling the interrupt.

DSPL Programmer’s Guide v5.0 8-81

DSPL Command Set

EN_ERRHLT cont.

SEE ALSO DI SABL_I NT, EN_ERR, ESTOP_ACC
APPLICATION

Applications of this command are similar to EN_ERR. However, as a
result of this command's interrupt, the system will come to a stop. Stop
trajectory uses the programmed abort maximum acceleration. Please
see ESTOP_ACC. Please note that this command is not appropriate to
prevent system run-away in case of encoder loss, since in the absence
of the encoder, the system cannot be stopped reliably.

Command Sequence Example

ESTOP_ACC () ;set the maximum accel. so system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMT () ;set gains

EN_ERRHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 1, 2 and 3 with a
threshold of 100, 120 and 200 counts, respectively.

EN_ERRHLT (0x7, 100, 120, 200)

8-82

DSPL Command Set

EN_INDEX

FUNCTION Enable Index Pulse Interrupt
EXECUTION 200 microseconds

SYNTAX EN_I NDEX (n)

USAGE DSPL (Mation), Host (command code: 69h)
ARGUMENTS

n bit coding the only axis for which the interrupt is enabled

DESCRIPTION

Upon the execution of this command, the servo control card will
search for the first index pulse edge from the specified axis. The pulse
edge generates an interrupt and registers the actual position for al
axes in DPR locations 103h - 112h. The DPR interrupt status register
locations 000h and 003h record the occurrence and source of this
interrupt. Bit 1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEhN] is
also set.

The interrupt condition is also axis bit-coded in the DSPL | NDEX_REG
bit register.

time. The EN_INDEX command enables the index pulse
interrupt for the axis specified and automatically disables the
previous one (if any).

(I;n] Note 1: Only one index pulse can generate an interrupt at any given

Note 2: The EN_I NDEX and EN_PROBE commands CAN BE ENABLED
simultaneously.

SEE ALSO DI SABL_|I NT, POS_PRESET, PCS_SHI FT

DSPL Programmer’s Guide v5.0 8-83

DSPL Command Set

EN_INDEX cont.

APPLICATION

This command is used in homing applications. As a result of this
instruction, Mx4 will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. This instruction must be used in conjunction
with Pos_PRESET to perform homing for linear table (or other index-
based) position calibration.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.

EN_I NDEX (0x8)

DSPL Command Set

EN_MOTCP

FUNCTION Enable Motion Complete Interrupt
EXECUTION 10 microseconds
SYNTAX EN_MOTCP (n)

USAGE

DSPL (Mation), Host (command code: 65h)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any closed
loop motion other than ring buffer 2nd order or ring buffer cubic
spline contouring comes to a stop. The DPR interrupt status register
locations 000h and 005h record the occurrence and source of this
interrupt. Bit 1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEhN] is
also set.

The interrupt condition is aso bit-coded in the DSPL MoTcP_REG bit
register.

responsible for disabling the interrupt.

(I;n] Note: EN MOTCP is not disabled after it occurs. The host is

SEE ALSO Dl SABL_| NT
APPLICATION

DSPL Programmer’s Guide v5.0

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z-
axes will start moving only when the x-y table has moved to a target
position.

Command Sequence Example

8-85

DSPL Command Set

See AXMOVE and STOP

8-86

DSPL Command Set

EN_MOTCP cont.

EXAMPLE

Enable the motion complete interrupt for al four axes.

EN_MOTCP (OxF)

DSPL Programmer’s Guide v5.0 8-87

DSPL Command Set

EN_POSBRK

FUNCTION Enable Position Breakpoint Interrupt
EXECUTION 100 microseconds

SYNTAX EN_POSBRK (n, posi, ... , posg)
USAGE DSPL (Motion), Host (command code: 6Bh)
ARGUMENTS
n bit coding of the specified axis(es) for which the interrupt
is enabled
pos, position breakpoint position value for axis x

-2147483648 £ pos, £ 2147483647 counts
When used in DSPL, arguments posy may be selected as a variable.

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position, for a specified axis, passes the programmed
breakpoint. The DPR interrupt status register locations 000h and 004h
record the occurrence and source of this interrupt. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFER] is also set.

The interrupt condition is also axis bit-coded in the DSPL POSBRK_REG
bit register.

Note 1: The position breakpoint is calculated as the absolute distance
from the present position (position at the moment at which
the EN_POSBRK RTC is interpreted) to the position breakpoint
value entered. The breakpoint interrupt is set when the axis
in question travels (in either direction) a distance equal to the
calculated absol ute distance.

8-88

DSPL Command Set

EN_POSBRK cont.

interrupt is generated. To activate this interrupt again, the

|||t Note 2: EN _PCsSBRK is automatically disabled after the breakpoint
host must issue a new EN_POSBRK command.

position breakpoint interrupt. The user is responsible for re-

|||t Note 3: pos_PRESET and PoS_sH FT will automatically disable the
enabling the intterupt.

SEE ALSO DI SABL_|I NT, POS_PRESET, PCS_SHI FT

APPLICATION

This instruction may be used in applications such as robotics, indexing
machine tools, etc. The CPU must be notified that the system has
passed an intermediate position. Based on this interrupt, the CPU will
execute a task. For example, in a robotics painting application, the
paint mixture may have to change based on the robot's arm location.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMT ()
OUTGAIN ()
EXAMPLE

Enable a breakpoint interrupt with a value of 60,000 counts for axis 1
and 500,000 for axis 2.

EN_POSBRK (0x3, 60000, 500000)

DSPL Programmer’s Guide v5.0 8-89

DSPL Command Set

EN_PROBE

FUNCTION Enable General Purpose External Interrupt
EXECUTION 200 microseconds

SYNTAX EN_PROBE (m
USAGE DSPL (Mation), Host (command code: 6Ch)
ARGUMENTS
m bit coding of the only * EXTx input signal enabled
[Mx4]
m=1h . from*EXT1
m=2h . from*EXT2
[Mx4 Octavia)
m=1h . from*EXT1
m=2h . from*EXT2
m=4h . from*EXT3
m=8h . from*EXT4
DESCRIPTION

Upon the execution of this command, the servo control card will
search for the first *EXTx pulse edge. The pulse edge generates an
interrupt, and registers the actual position for al axes in DPR
locations 0A7h-0B6h. (The hand shaking bytes are 0C8h and 0ODOh
for Mx4 and host, respectively.) DPR interrupt status register locations
000h and 006h record the occurrence and source of this interrupt. Bit
1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is aso set.

The interrupt condition is also axis bit-coded in the DSPL PROBE_REG
bit register.

8-90

DSPL Command Set

EN_PROBE cont.

interrupt at any given time. The EN_PROBE command
enables the external interrupt specified and automatically
disables the previous one (if any).

@ Note 1: Only one general purpose external interrupt can generate an

Note2: The EN PROBE and EN INDEX can be enabled
simultaneously.

SEE ALSO DI SABL_| NT, ESTOP_ACC
APPLICATION

This instruction is useful in probing applications. Since EN_PROBE
registers all positions when an interrupt occurs (falling pulse edge is
detected) it can be used in accurate recording of surface dimensions by
aprobe.

Command Sequence Example

CTRL () ;these instructions enable system to stop motion
KILIMT ()

EN_PROBE ()
END

EXAMPLE
Enable the *EXT2 external interrupt.

EN_PROBE (0x2)

DSPL Programmer’s Guide v5.0 8-91

DSPL Command Set

ERR1, ..., ERR8 IDENTIFIER

IDENTIFIER Following Error State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

A following error state variable holds a 32-bit two's complement
integer value that represents the difference between the current
position and the actual position (in encoder edge counts) of the

specified axis.

Name Description

ERRL axis 1 following error
ERR2 axis 2 following error
ERRX axis x following error
ERRS axis 8 following error

SEE ALSO CPCS1, | NDEX_POS1, POS1, PROBE_POS1
EXAMPLE

The following error state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic
operation:

VARL = ERR4 / VAR3

as one of the argumentsin a DSPL conditional expression:
| F(ERR3 <= VAR2)

8-92

DSPL Command Set

ESTOP_ACC

FUNCTION Abort Motion Maximum Acceleration
EXECUTION 100 microseconds

SYNTAX ESTOP_ACC (n, accq, ... , accg)
USAGE DSPL (Mation), Host (command code: 86h)
ARGUMENTS
n bit coding of the specified axis(es) for which the interrupt
is enabled
accy unsigned value specifying the maximum halting

acceleration (deceleration) for axis x
0 £ acc, £ 1.999969 counts/(200ns)?

(I;n] Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

When used in DSPL, argument acc, may be selected as a variable.
DESCRIPTION

This command specifies the maximum halting acceleration
(deceleration) for the axes specified. The maximum acceleration
values are used in the following cases: EN_ERRHLT, and ESTOP_ACC.

(I;n] Note: EsTor_acc will be ignored if the specified argument is zero.

SEE ALSO EN_ERRHLT, MAXACC, STOP, VELMODE

DSPL Programmer’s Guide v5.0 8-93

DSPL Command Set

ESTOP_ACC cont.

APPLICATION

This command sets the maximum possible deceleration for a
mechanical actuator. This RTC is used to set the deceleration rate for
an emergency case. In contrast to MAXACC, ESTOP_ACC provides a
sharper deceleration such that the entire system comes to a stop as
rapidly as possible. Please remember that the STOP and VELMODE RTCs
use Maxacc for their accel eration/decel eration.

Command Sequence Example

ESTOP_ACC () ;set the abort maximum acceleration
CTRL () ;make sure the system isin closed loop
EN_ERRHLT () ;set the maximum tolerance for the following error

;if the following error exceeds the ABORTACC
;parameter, the system will stop immediately

EXAMPLE

Set an abort motion maximum acceleration for axes 2 and 3 of 0.5
encoder counts/(200 neec)2.

ESTOP_ACC (0x6, 0. 5, 0. 5)

8-94

DSPL Command Set

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, PROBE_REG IDENTIFIER

IDENTIFIER DSPL interrupt registers

USAGE

DSPL (PLC, Motion)

DESCRIPTION

DSPL Programmer’s Guide v5.0

The status of a variety of Mx4 interrupt conditions is available to the
DSPL programmer. All of the DSPL interrupt bit registers, with the
exception of ESTOP_REG, are 16-bit registers (bit 0-15) that specify the
axis(es) responsible for the interrupt. The least significant four bits of
each of these registers follow an LSB (axis 1), MSB (axis 8) format
(the most significant 8 bits are unused). For example:

bit O: Axis 1 interrupt
bit 1: AXis 2 interrupt
bit 2: Axis 3 interrupt
bit 3: Axis 4 interrupt
bit 4: AXxis 5 interrupt
bit 5: AXis 6 interrupt
bit 6: AXis 7 interrupt
bit 7: Axis 8 interrupt

Since there is only one estop signal for all four (8) axes, ESTOP_REG iS
a single-bit (bit 0) register (the most significant 15 bits are unused).
In all of the interrupt registers, a set bit (bit = 1) indicates an interrupt.

The bit register may be used with the bitwise operators in conditional
expressions within the bspL | F, w4l LE and wal T_UNTI L conditional
structures. The user defined bit mask used in conjunction with the
bitwise operator & must follow the format 0x????, where ??7?is a 16-
bit hexadecimal value. For example, a mask value of 0x0006 will
mask out all bits except bits 1 and 2.

8-95

DSPL Command Set

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX_REG, MOTCP_REG, OFFSET_REG,

POSBRK_REG, PROBE_REG cont. IDENTIFIER
Name Bit Values Description
The ESTOP_REG interrupt bit is set if an emergency stop is being
signaled.
ESTOP_REG bits 0 Emergency stop interrupt

bits1 - 15 unused

An FERR REG interrupt bit is set if the following error for a specified
axis exceeds a programmed value.

FERR_REG bits0 - 7 Following error interrupt
bits 8 - 15 unused

An FERRH_REG interrupt bit is set if the following error for a specified
axis exceeds a programmed value. The system is halted.

FERRH_REG bits0 - 7 Following error & halt interrupt
bits 8 - 15 unused

An | NDEX_REG interrupt bit is set when an index pulse edge is reached.

| NDEX_REG bits0 - 7 Index pulse interrupt
bits 8 - 15 unused

A MOTCP_REG interrupt bit is set when any closed loop motion comes to
astop.

MOTCP_REG bits0- 7 Motion complete interrupt
bits 8 - 15 unused

8-96

DSPL Command Set

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, PROBE_REG cont. IDENTIFIER

An OFFSET_REGinterrupt bit is set when offset tuning has completed.

OFFSET_REG hits0-7 Offset finished interrupt
bits 8 - 15 unused

A POSBRK_REG interrupt bit is set when the actual position for a
specified axis has passed a certain point.

POSBRK_REG bits0- 7 Position breakpoint interrupt
bits 8 - 15 unused

A PROBE_REG interrupt bit is set when the first *EXT pulse edge is

found.
[Mx4]
PROBE_REG bits0 - 1 External probe interrupt
bits 8 - 15 unused
[Mx4 Octavia]
PROBE_REG bits0 - 3 External probe interrupt
bits 8 - 15 unused
SEE ALSO ~, & AND, OR |F, WHLE, WAIT_UNTIL
EXAMPLE

The conditional expression in the DSPL |1 F statement below will
evaluate to TRUE if bit 0 or 2 is set (bit = 1) in the motion complete
interrupt register:

| F (MOTCP_REG & 0x0005)

DSPL Programmer’s Guide v5.0 8-97

DSPL Command Set

8-98

FLUX_CURRENT Vx4++ option command

FUNCTION Set Field Compensation Or Flux Value
EXECUTION 200 microseconds

SYNTAX FLUX_CURRENT (n, fvalq, ... , fvalg)
USAGE DSPL (Mation), Host (command code: 79h)
ARGUMENTS
n bit coding of the specified axis(es)
fval, for AC induction motor, defines a bipolar flux value for

the field producing component of the current
-32768 £ fval, £ 32767

for brushless DC motor, defines a unipolar field
compensation parameter

0 £ fval, £ 65535
When used in DSPL, the argument fval, may be selected as a variable.

DESCRIPTION

The FLUX_CURRENT command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines a bipolar flux value for the field producing
component of the current. If the axis is a brushless DC motor, the
command sets a unipolar field compensation parameter.

Note: The FLUX CURRENT command does not need to be
programmed for brushtype DC motors.

SEE ALSO none
APPLICATION
See Vx4++ User's Guide

DSPL Command Set

FLUX_CURRENT cont.

EXAMPLE

Set aflux value or -5000 for axis one (AC induction motor) and a field
compensation value of 1300 for axis two (brushless DC motor).

FLUX_CURRENT (0x3, -5000, 1300)

DSPL Programmer’s Guide v5.0 8-99

DSPL Command Set

8-100

FRAC

FUNCTION Extract the Fractional Portion of a Constant or a Variable
Vaue.

EXECUTION 10 microseconds

SYNTAX FRAC(val u) or -FRAC(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number
ora

variable (vVARL through vAR128)

DESCRIPTION

This function extracts the fractional portion of a constant or a variable
value. The fractional portion of a number consists of all of the digits
to the right of the decimal point. The returned value will therefore
always have an absolute value that is less than 1. If a minus sign
appears to the left of the FRAC function, the fractional portion of valu is
multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VARS5 = FRAC(17.283)

SEE ALSO ABS, |INT, SIGN, SQRT
EXAMPLE

The first example extracts the fractional portion of the value stored in
VAR27, and stores the result in VAR1S8:

VARLS = FRAC(VAR27)

The second example finds the fractional portion of -882.619 and stores
the negated result (0.619) in VAR3S:

VAR38 = - FRAC(-482. 619)

DSPL Command Set

GEAR

FUNCTION Electronics Gear On
EXECUTION 200 microseconds

SYNTAX GEAR (n, m rq, ... , rg)

USAGE DSPL (Mation), Host (command code: 09Ch)

ARGUMENTS
n bit coding the ONLY axis as LEADER gear
m bit coding the axis(es) as FOLLOWER gears
Iy gear ratio between master and slave

-256 £ ratio, < 255.999
minimum gear ratio is +/- 1/128
When used in DSPL, argument r, may be selected as variable.

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by ry. Upon receiving
this command, the electronic gearing is engaged at once.

SEE ALSO GEAR_OFF, GEAR POS, GEAR PROBE
APPLICATION
See Application Notes

EXAMPLE

Axis2 isadave axisto axis 1 with agear ratio of 2.5.

GEAR (0x1, 0x2, 2. 5)

DSPL Programmer’s Guide v5.0 8-101

DSPL Command Set

8-102

GEAR_OFF

FUNCTION Electronics Gear Off
EXECUTION 10 microseconds
SYNTAX GEAR_CFF (n)
USAGE DSPL (Mation), Host (command code: 09Fh)
ARGUMENTS
n bit coding of the FOLLOWER axis(es) to be disengaged

DESCRIPTION

This command disengages the specified follower axes at once.

SEE ALSO GEAR, GEAR _POS, GEAR PROBE
APPLICATION
See DSPL Application Notes

EXAMPLE

Axis 1 isthe leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF (0x8)

DSPL Command Set

GEAR_OFF ACC

FUNCTION Turns Electronic Gearing Off and Halt Slave(s)
EXECUTION 50 microseconds
SYNTAX GEAR_OFF_ACC (n)
USAGE DSPL (Mation), Host (command code: AOh)
ARGUMENTS

n bit coding of the axis to be disengaged

DESCRIPTION
This command disengages the system that was under master save
control. The slave axes will come to a complete stop at the maximum
acceleration rate specified by maxacc command.

SEE ALSO GEAR, GEAR OFF, GEAR PCS, GEAR PROBE, SYNC

APPLICATION

Axis 1l isthe leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

GEAR_OFF_ACC (0x8)

DSPL Programmer’s Guide v5.0 8-103

DSPL Command Set

GEAR_POS

FUNCTION Electronics Gear On at a Specified Leader Position
EXECUTION 200 microseconds

SYNTAX GEAR_PCS (n, m rq, tp1, ... , rg, tpg)
USAGE DSPL (Mation), Host (command code: 09Dh)
ARGUMENTS

n bit coding of the ONLY axis as LEADER gear

m bit coding of the FOLLOWER axis(es)

Iy gear ratio between leader and follower(s) (ratio, : 1)

-256 £ ratio, < 255.999
minimum gear ratio is +/- 1/128

tpx leader axis position value at which the electronic gearing
engages for the specified axis(es)

-2147483648 £ tp, £ 2147483647

When used in DSPL, arguments ry and tp, may be selected as
variables.
DESCRIPTION

This command emulates a mechanical gear function. The follower
follows the leader with the gear ratio specified by ry. Upon receiving
this command, the electronic gearing starts engaging at the specified
master position (tpy).

SEE ALSO GEAR, GEAR OFF, GEAR PROBE

APPLICATION

See DSPL Application Notes

8-104

DSPL Command Set

GEAR_POS cont.

EXAMPLE

Axes 3 and 4 should follow axis 2 with gear ratios 2.0 and 4.0,
respectively. Both axes three and four should “engage” when axis 2
position is equal to 10,500 counts.

GEAR_PCs (0x2, 0xC, 2. 0, 10500, 4. 0, 10500)

DSPL Programmer’s Guide v5.0 8-105

DSPL Command Set

8-106

GEAR_PROBE

FUNCTION Electronics Gear On After Probe Input
EXECUTION 200 microseconds

SYNTAX GEAR PROBE (n, m ¢, r1, ... , rg)
USAGE DSPL (Mation), Host (command code: 09Eh)
ARGUMENTS

n bit coding the ONLY axis as LEADER gear
m bit coding the FOLLOWER axis(es)
a the *EXTx probe input to be used

[Mx4]

g=01h : *EXT1
g=02h : *EXT2
[Mx4 Octavial

g=01h : *EXT1
g=02h : *EXT2
g=03h : *EXT3
g=04h : *EXT4

Iy gear ratio between master and slave(s)

-256 £ ratio, < 255.999
minimum gear ratio is +/- 1/128

When used in DSPL, argument r, may be selected as variable.

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by ry. The GEAR_PROBE
command engages the mechanical gear function for selected master
and slave axes after the specified external signal (*EXTX) is activated.

DSPL Command Set

GEAR_PROBE cont.

Note 1: Execution of the GeAR PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe (*EXT1,2,3,4)
activation does not generate an interrupt with the GEAR_PROBE
command.

Note 2: Activation of *ESTOP during a GEAR operation will halt the

master axis, and subseguently the slave axis(es). Slave(s)
remain “engaged” in GEAR mode after the input-triggered
halt.

SEE ALSO GEAR, GEAR_OFF, GEAR PCS
APPLICATION

See DSPL Application Notes
EXAMPLE

Axis 8 isthe leader, axis lis the follower with a gear ratio of 4.0. Axis
1 should “engage” at the occurrence of probe interrupt * EXT2.

GEAR_PROBE (0x8, 0x1, 2, 4. 0)

DSPL Programmer’s Guide v5.0 8-107

DSPL Command Set

8-106

ICUBCOUNT IDENTIFIER

IDENTIFIER Cubic Spline Table Index Counter
USAGE DSPL (PLC, Motion)
DESCRIPTION

I CUBCOUNT is a DSPL reserved word that is used to indicate to the
DSPL program at which index the internal cubic spline (cusi C_I NT) is
running.

SEE ALSO none

EXAMPLE

The DSPL line below checks the range of | cUBCOUNT as part of a
conditional expression:

I'F ((1CUBCOUNT > 1) AND (1 CUBCOUNT < 5))

DSPL Command Set

IF

FUNCTION IF Operand of |F-(then)-(EL SE)-ENDIF Structure
EXECUTION 200 microseconds

SYNTAX I F (conditional expression)
program code to execute if the IF condition is True
ELSE
program code to execute if the IF condition is
Fal se
ENDI F
USAGE DSPL (PLC, Motion)

ARGUMENTS
conditional expression
The conditional expression must be boolean, equating to True or False.

The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

> greater than

< less than

>= greater than or equal
<= less than or equal
== equal

I= not equal

AND logical AND

OR logical OR

& bit-wise AND

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

DSPL Programmer’s Guide v5.0 8-107

DSPL Command Set

8-108

IF cont.

Note:

If nested parentheses are not used to indicate evaluation
precedence in a conditional expression, the expression will be
evaluated from left-to-right.

For example,

IF ((VARL > 100) AND (PCS2 > 100) AND
(ERRL == 200) OR (IN_REGL & 0x3) AND
(CVELL > 10))

Thislineisinterpreted in DSPL as:

IF ({{{[(VARL > 100) AND (PCS2 > 100)]
AND (ERRL == 200) } OR
(IN_REGL & 0x3) }AND ((CVEL1 > 10) })

DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. When IF-(then)-ENDIF statements are used, Mx4 will test
the boolean condition(s). The instruction(s) after the | F statement will
be executed if the conditional expression is True, otherwise the
instruction(s) after the ENDIF statement will be executed. If the
complete 1F-(then)-ELSE-ENDIF structure is used, the instruction(s)
following the ELSE operand will be executed if the conditional

expressi

on evaluates to False, program flow will then continue to the

next instruction following the ENDI F statement.

| F-(then)-(EL SE)-ENDIF structures may be nested.

SEE ALSO

APPLICATION

ELSE, ENDI F

See Application Notes

DSPL Command Set

IF cont.

EXAMPLE

DSPL Programmer’s Guide v5.0

Bring the motion of axis three to a halt if vart is equal to 0 and the
following error of axis three is greater than 1000 counts. If the above
condition is False, preset the position of axis one to 100000, and if
VAR2 isequal to 1, preset the position of axis two to 2000 counts.

IF ((VARL == 0) AND (ERR3 > 1000))
STOP (0x4)
ELSE
POS_PRESET (0x1, 100000)
| F (VAR2==1)
POS_PRESET (0x2, 2000)
ENDI F
ENDI F

8-109

DSPL Command Set

INDEX_POS], ..., INDEX_POS8 IDENTIFIER

IDENTIFIER Index Position State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

An index position state variable holds a 32-bit two’'s complement
integer value that represents the index position (in encoder edge
counts) of the specified axis.

Name Description

| NDEX_POS1 axis 1 index position
| NDEX_POS2 axis 2 index position
| NDEX_POS3 axis 3 index position
| NDEX_POS4 axis 4 index position
| NDEX_POS8 axis 5 index position
| NDEX_POS6 axis 6 index position
| NDEX_POS7 axis 7 index position
| NDEX_POS8 axis 8 index position

SEE ALSO CPCS1, ERR1, POS1, PROBE_POS1
EXAMPLE
The index position state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic

operation:
VARL = | NDEX_POS2 + 1000

as one of the argumentsin a DSPL conditional expression:
WAI T_UNTI L(| NDEX_PCS3 >= VAR22)

8-110

DSPL Command Set

INP1_REG, INP2_REG IDENTIFIER

IDENTIFIER DSPL Input Registers 1 and 2.
USAGE DSPL (PLC, Motion)
DESCRIPTION

The real time status of [Mx4:22] [Mx4 Octavia:32] external user-
defined inputs is available in DSPL in the 16-bit registers | NP1_REG
and | NP2_REG. A set bit (bit = 1) indicates an active input condition.

The input bit registers may only be used with the bitwise operators in
conditional expressions within the DSPL conditional structures, | F,
VWH LE, and wal T_UNTI L. A user defined bit mask that must be used in
conjunction with the bitwise operator & must follow the hexadecimal
format Ox????, where ???? is a 16-bit hexadecimal mask. For
example, a mask value of 0x0204 will mask out all bits except bits 2

and 9.

Name Bit Format Input

i npl_reg bit 0 INO
bit 1 IN1
bit 2 IN2
bit 3 IN3
bit 4 IN4
bit 5 IN5
bit 6 IN6
bit 7 IN7
bit 8 IN8
bit 9 IN9
bit 10 IN10
bit 11 IN11
bit 12 IN12
bit 13 IN13
bit 14 IN14
bit 15 IN15

DSPL Programmer’s Guide v5.0 8-111

DSPL Command Set

INP1_REG, INP2_REG cont. IDENTIFIER
Name Bit Format Input
i np2_reg bit 0 IN16

bit 1 IN17
bit 2 IN18
bit 3 IN19
bit 4 IN20
bit 5 IN21
bit 6 IN22
bit 7 IN23
bit 8 IN24
bit 9 IN25
bit 10 IN26
bit 11 IN27
bit 12 IN28
bit 13 IN29
bit 14 IN30
bit 15 IN31

SEE ALSO ~ & AND, R

EXAMPLE

The conditional expression in the DSPL IF statement below will
evaluate to TRUE if bit 0, 5, or 14 in input register 1 is set (bit = 1):

I F (I NPL_REG & 0x4021)

8-112

DSPL Command Set

INP_STATE

FUNCTION Configure Logic State of Inputs
EXECUTION 10 microseconds

SYNTAX I NP_STATE (inpy, inpy)
USAGE DSPL (Mation), Host (command code: B4h)
ARGUMENTS
inp; bit coding the logic state of inputs
bit=0 : active LOW input
bit=1 : active HIGH input
bit 15 : IN15
bit O : INO
inp, bit coding the logic state of inputs
bit=0 : active LOW input
bit=1 : active HIGH input
bit 15 : IN31
bit O : IN16

When used in DSPL, arguments inp; and inp, may be selected as
variables.

DSPL Programmer’s Guide v5.0 8-113

DSPL Command Set

8-114

INP_STATE cont.

DESCRIPTION

This command allows the user to define the logic state of the [Mx4:22]
[Mx4 Octavia:32] inputs. Each input may be configured as active
LOW or active HIGH (TTL logic levels) (the Mx4 inputs are level
sensitive).

(I;n] Note: At power-up and reset, Mx4 inputs default as active LOW.

SEE ALSO none
EXAMPLE

Configure the INO input as active HIGH input. The remaining inputs
are to be configured as active LOW.

| NP_STATE (0x0001, 0x0000)

DSPL Command Set

INPUT Acc4 option command

FUNCTION read value from ASCII terminal
EXECUTION 200 microseconds

SYNTAX I NPUT (dvar)
USAGE DSPL (Motion)
ARGUMENTS
dvar VAR1- VARL128. Specifies DSPL variable in which the

value returned from the terminal is stored.

DESCRIPTION

The 1 NPUT command is used to write a value sent by the ASCII
terminal to the specified DSPL variable. The ASCII transmission to
the terminal takes the format:

‘?

The DSPL motion program from which the INPUT command was
executed will halt (wait) program execution until the value is returned
from the ASCII terminal. The ASCII transmission from the terminal
to the Mx4 must follow the format:

Inp=x

Where x may range from =2147000000 <=x <= 2147000000. The
value written is an integer with 3 implied fractional digits. For
example inp=123456 will set the specified variable to 123.456.

EXAMPLE
Request ASCII input, assign to VAR15

| NPUT (VARL5)

DSPL Programmer’s Guide v5.0 8-115

DSPL Command Set

8-116

INT

FUNCTION Extract the Integer Portion of a Constant or a Variable
Value.

EXECUTION 10 microseconds

SYNTAX INT(val u) or -1NT(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant or avariable (VARL through vAR128)
DESCRIPTION

This function extracts the integer portion of a constant or a variable
value. The integer portion of a number consists of all of the digits to
the left of the decimal point. If a minus sign appears to the left of the
INT function, the integer portion of valu is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VARS5 = | NT(VAR22)

SEE ALSO ABS, FRAC, SIGN, SQRT
EXAMPLE

The first example extracts the integer portion of the value stored in
VARG64, and stores the negated result in var2:

VAR2 = - | NT(VAR64)

The second exampl e finds the integer portion of -61.839 and stores the
result (-61) in VARs:

VARS = | NT(-61. 839)

DSPL Command Set

INT_HOST

FUNCTION Generate an Interrupt to the Host from DSPL
EXECUTION 10 microseconds

SYNTAX I NTHOST (i d)
USAGE DSPL (PLC, Motion)
ARGUMENTS

id interrupt signature or identifier

0x00 £ id £ OxFF

DESCRIPTION

The I NT_HoST command generates a hardware interrupt to the host
upon its execution. The 8-bit identifier id will be copied to the Dual
Port RAM at location OXO0E, and bit 4 in the interrupt register 2
(009h) will be set.

SEE ALSO none
APPLICATION
See Application Notes

EXAMPLE
Generate an interrupt to the host with an identifier byte equal to ABh.

| NT_HOST (OxAB)

DSPL Programmer’s Guide v5.0 8-117

DSPL Command Set

INT_ REG_ALL_CLR

FUNCTION Clearsthe DSPL Interrupt and Input Bit Register Variables
EXECUTION 10 microseconds

SYNTAX INT_REG ALL_CLR ()
USAGE DSPL (PLC, Motion)
ARGUMENTS
none
DESCRIPTION
The INT_REG ALL_CLR command clears the DSPL interrupt bit
registers:
| NDEX_REG MOTCP_REG
ESTOP_REG OFFSET_REG
FERR_REG POSBRK_REG
FERR_REG PROBE_REG

SEE ALSO I NT_REG CLR
APPLICATION
See Application Notes

EXAMPLE
Clear the DSPL Bit Register Variables.

I NT_REG ALL_CLR ()

8-118

DSPL Command Set

INT_ REG_CLR

FUNCTION Clears the Specified DSPL Bit Register Variables
EXECUTION 10 microseconds

SYNTAX INT_REG CLR (m masky, ... , maskg)
USAGE DSPL (PLC, Motion)
ARGUMENTS
m bit coding specifying the interrupt registers to modify,
bit 9-15: unused
bit8 : ENCFLT_REG
bit7 : ESTOP_REG
bit6 : FERRH_REG
bit5 : FERR_REG
bit4 : OFFSET_REG
bit3 : PROBE_REG
bit2 : MOTCP_REG
bitl : POSBRK_REG
bit0O : INDEX_REG
mask a hexadecima bit mask specifying which bits of the

specified bit register are to be cleared. A set bit (bit=1) in
the mask indicates the corresponding bit in the variable
bit register isto be cleared.

DESCRIPTION

The I NT_REG_CLR command is used to clear only the specified bits of
selected variable bit register(s).

SEE ALSO INT_REG ALL_CLR

DSPL Programmer’s Guide v5.0 8-119

DSPL Command Set

INT_REG_CLR cont.

APPLICATION
See Application Notes

EXAMPLE

Clear the axis two and axis four following error interrupt bits of the
OFFSET_REG bit register. Also, clear the | NDEX_REG bits for al 4
axes.

| NT_REG_CLR(0x0011, OXF, 0xA0)

8-120

KILIMIT

DSPL Command Set

FUNCTION Integral Gain Limit
EXECUTION 200 microseconds

SYNTAX KILIMT (n, valq, ... , valg)
USAGE DSPL (Mation), Host (command code: 74h)
ARGUMENTS
n bit coding of the specified axis(es)
valy value setting the limit of the integral action for each axis

d;n] Note: OE£val £14

val = 0 indicates no limit on integration channels
val = 14 indicates maximum limit on integration channels

For example,

Kilimitval =0
Kilimitval =1
Kilimit val = 2
Kilimit val =3

DESCRIPTION

+/- 10v DAC action from K; control law parameter
+/- 5v DAC action from K; control law parameter
+/- 2.5v DAC action from K; control law parameter
+/- 1.25v DAC action from K; control law parameter

This command is used to set the limit for integral action related to the
choice of par,; in the CTRL RTC. Integral limit is specified for each
axis. Default val, are set to zero (i.e, no limit on integration

channels).

SEE ALSO CTRL

DSPL Programmer’s Guide v5.0

8-121

DSPL Command Set

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the
channel's depletion time. Using this instruction is essential where
large integral gain is required. Clamping the integral channel will let
the system zero position error without a lengthy "creeping motion" to
its target position.

Command Sequence Example

CTRL () ;set the gains
KILIMT () ;thisinstruction may be used before or after CTRL

EXAMPLE

Set a maximum limit on the integral action of axis 2, 3 and 4.

KILIMT (OxE, 14, 14, 14)

8-122

DSPL Command Set

LINEAR_MOVE

FUNCTION Simple Constant Acceleration Linear Motion
EXECUTION 200 microseconds

SYNTAX LI NEAR_MOVE (n, posq, velq, ..., posg, velg)
USAGE DSPL (Motion)
ARGUMENTS

n bit coding of the specified axis(es)

pos, target position for axis x

-2147483648 <= pos, <= 2147483647 counts
vely, target velocity for axis x
-256 <= vel, <= 255.99998 counts/200mnmsec

When used in DSPL, arguments pos, and vel, may be selected as
variables.

DESCRIPTION

The LI NEAR_ MOVE command allows the user to program a constant
acceleration linear profile in any or all of the four axes. The user
simply enters the target position and target velocity for the axis in
guestion. The Mx4 will automaticaly calculate the required
acceleration to accomplish the motion.

Upon execution of a ¢ RCLE or LI NEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a C RCLE or LI NEAR related command, it will be
executed immediately. If the following command is a cl RCLE or
LI NEAR related command, it will be executed after the previous ¢ RCLE/
LI NEAR motion is complete.

DSPL Programmer’s Guide v5.0 8-123

DSPL Command Set

LINEAR_MOVE Cont.

Note: A LI NEAR_MOVE command may not pass through the same
position more than once. For example, a LI NEAR_MOVE
motion may not decelerate to zero velocity and continue
decelerating (ie: change velocity polarity). If the above
condition is violated, the LI NEAR _MOVE motion will not be
executed.

Note: The LI NEAR_MOVE command will automatically calculate
the acceleration for the motion. If the calculated acceleration
is approximated to zero (ie: too small to be represented in the
16-bit fractional numerical range), the LI NEAR_MOVE
motion will not be executed.

SEE ALSO Cl RCLE, LINEAR MOVE_S, LINEAR MOVE_T
APPLICATION

See DSPL Application Notes

EXAMPLE

From the present positions and velocities, move axes 1 and 4 to zero
position with velocities of 1 and -2 counts/200mnsec, respectively.

LI NEAR MOVE (0x9, 0, 1, 0, -2)

8-124

DSPL Command Set

LINEAR_MOVE_S

FUNCTION
EXECUTION
SYNTAX

USAGE
ARGUMENTS

n
Piy

Vi

pty

DSPL Programmer’s Guide v5.0

Linear, S-Curve Motion
200 microseconds

LI NEAR_MOVE_S (n,
pig, vig, ptg, vtg,

DSPL (Motion)

Vi 1,
ag)

pi1, pta,

tg,

vtq, ti1, ag,

bit coding of the specified axis(es)
initial starting position of axisx

-2147483648 £ pi, £ 2147483647 counts

initial starting velocity of axis x

-256 £ vi, £ 255.99998 counts/200ms

target position for axis x

-2147483648 £ pt, £ 2147483647 counts

target velocity for axis x

-256 £ vt, £ 255.99998 counts/200ms

time for linear move motion to complete for axis x

0.1ms£t, £ 223 minutes

8-125

DSPL Command Set

8-126

LINEAR_MOVE_S cont.

(I;n] Note: ty hasadefault unit of 200ns, however the t, value must be a

multiple of 5ms. If ty is not a multiple of 5ms, t, will be
truncated by the compiler.

a unsigned value specifying acceleration for linear move
motion

0 £ a £ 1.999969 counts/(200rs)?

DESCRIPTION

The LI NEAR_MOVE_S command is a general purpose motion command
that allows the user to accomplish S-Curve, constant acceleration, or
constant velocity motion in any or al of the four axes.

Upon execution of a ¢ RCLE or LI NEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a C RCLE or LI NEAR related command, it will be
executed immediately. If the following command is a cl RCLE or
LI NEAR related command, it will be executed after the previous ¢ RCLE/
LI NEAR motion is complete.

S-Curve Motion

The LI NEAR_ MOVE_S command can generate S-curve motion with the
proper tx and a, argument values.

DSPL Command Set

LINEAR_MOVE_S cont.

S-Curve Velocity Profile

For S-curve motion, the t, and a, value must meet the following
reguirements:

_2%(pty - piy)
vt i,
a, ,min =|vtX - vix|/tX
a, , max =2*|th - vix|/tX

a, mnf£ a £a, max

If the above t, and a, conditions are not met, the compiler will give a
warning and recal cul ate the offending parameter(s).
Constant Acceleration Motion

A constant acceleration velocity profile may be achieved with the
LI NEAR_MOVE_S command by following these conditions:

t, = 0
a = 0
vi, ! vt

DSPL Programmer’s Guide v5.0 8-127

DSPL Command Set

LINEAR_MOVE_S cont.

The compiler calculates the t, and a, values based on the P-V-T
calculations,

_2%(pty - piy)

vt, +vi,
pt, =pi, +(vt, +vi)*t /2
a, =(vt, -vi,)/t

X

REMEMBER, t, must evaluate to a multiplier of 5ms in the above
equations.

Constant Acceleration Velocity Profile

Constant Velocity Motion

LI NEAR_MOVE_S generates a constant velocity profile when the
following conditions are met:

t, = 0
a = 0
Vi = vt

X X

8-128

DSPL Command Set

LINEAR_MOVE_S cont.

The compiler calculates the t, value based on the P-V-T calculation,

pty =piy +Viy*ty
_ Pty - pix

ty =
X
Vty

Again, REMEMBER that t, must evaluate to a multiple of 5msin the
above equation. Therefore, choose the P and V values accordingly.

Constant Velocity Profile

SEE ALSO Cl RCLE, LI NEAR_MOVE, LINEAR MOVE_T
APPLICATION
See Application Notes

EXAMPLE 1 Constant Velocity

Move axis one from a current position of 50,000 counts to a target
position of 100,000 counts with a constant velocity equal to 2.5
counts/200rs.

DSPL Programmer’s Guide v5.0 8-129

DSPL Command Set

LINEAR_MOVE_S cont.

n Ox1

pi1 50,000 counts

Vil 2.5 counts /200ns
pt1 100,000 counts
vt 2.5 counts /200ns
t1 0 (200ms units)

a1 0 counts/ (200rs)2

LI NEAR_MOVE_S (0x1, 50000, 2.5, 100000, 2.5, 0, 0)

executing the LI NEAR_MOVE_S command ... remember vi; =

@ Note: The axis one velocity must equa 2.5 counts/200ms before
2.5.

EXAMPLE 2 Multi-Axis Motion

In addition to executing the axis one motion of Example 1, move axis
three from an initial position, initial velocity (0,0) to target position,
target velocity (10000, 5.0) with constant acceleration.

n 0x5

pi1 50,000 counts
Vil 2.5 counts /200ns
pt1 100,000 counts
vt 2.5 counts /200ns

t1 0 (200ms units)
a1 0 counts/ (200rs)2
pi3 0 counts

8-130

DSPL Command Set

LINEAR_MOVE_S cont.

Vi3 0 counts /200s
pt3 10,000 counts

vt3 5.0 counts /200ns
t3 0 (200ms units)

ag 0 counts/ (200rs)2

LI NEAR_ MOVE_S (0x5, 50000, 2.5, 100000, 2.5, 0, 0, 0, 0, 10000,
5.0, 0, 0)

EXAMPLE 3 S-Curve Motion

Move axis four from initial position, initial velocity (1000, 1.0) to
target position, target velocity (11000, 4.0) with S-curve velocity
profile utilizing minimum acceleration.

n 0x8

pig 1,000 counts

Vig 1.0 counts /200ns
pt4 11,000 counts
vtg 4.0 counts /200rs

t4 w = 4,000(200n'5unit5)
4.0+10
ay ay, min =|4.0- 1.0 / 4,000 = 0.0075 counts/ (200m8)2
LI NEAR_MOVE_S(0x8, 1000, 1.0, 11000, 4.0,

4000, 0. 00075)

DSPL Programmer’s Guide v5.0 8-131

DSPL Command Set

8-132

LINEAR_MOVE_T

FUNCTION Simple Time-Based Constant Acceleration Linear Motion
EXECUTION 200 microseconds

SYNTAX LINEAR_MOVE_T (n, posq, tmy, ..., posg, tnmy)
USAGE DSPL (Mation)
ARGUMENTS
pos, target position for axis x
-2147483648 <= pos, <= 2147483647 counts
tmy motion time for axis x

0 £ tm, £ 5000000 (200ns)

200usec.

(I;n] Note: The time argument, tm,, is an unsigned value with a unit of

DESCR

When used in DSPL, arguments pos, and tm, may be selected as
variables.

IPTION

The LI NEAR_MOVE_T command allows the user to program a constant
acceleration linear profile in any or all of the four axes. The user
simply enters the target position and time to compl ete the move for the
axisin question, and the Mx4 will automatically calculate the required
acceleration and velocity to accomplish the motion.

Upon execution of a ¢ RCLE or LI NEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a C RCLE or LI NEAR related command, it will be
executed immediately. If the following command is a cl RCLE or
LI NEAR related command, it will be executed after the previous ¢ RCLE/
LI NEAR motion is complete.

DSPL Command Set

LINEAR_MOVE_T cont.

Note:

Note:

4

SEE ALSO

A LI NEAR_MOVE_T command may not pass through the
same position more than once. For example, a
LI NEAR_MOVE_ T motion may not decelerate to zero
velocity and continue decelerating (ie: change velocity
polarity). If the above condition is violated, the
LI NEAR_MOVE T motion will not be executed.

The LINEAR MOVE_ T command will automatically
calculate the acceleration for the motion. If the calculated
acceleration is approximated to zero (ie: too small to be
represented in the 16-bit fractional numerical range), the
LI NEAR_MOVE T motion will not be executed.

Cl RCLE, LI NEAR _MOVE, LINEAR MOVE_ S

APPLICATION

See Application Notes

EXAMPLE

From the present positions and velocities, move axes 1 and 4 to zero
position in 1.5 seconds.

DSPL Programmer’s Guide v5.0

LI NEAR_ MOVE_T (0x9, 0, 7500, 0, 7500)

8-133

DSPL Command Set

8-134

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output
EXECUTION 200 microseconds

SYNTAX LOW PASS (n, freqy)

USAGE DSPL (Mation), Host (command code: 8Eh*)

Note: This RTC code (8Eh) is the same as the one used with NOTCH,
therefore one option (either Low PASS or NOTcH) can be used

at any time.
ARGUMENTS
n bit coding of the only specified axis
freg, unsigned value specifying the low pass filter cut-off

frequency for axis x
0 £ freq, £ 1850

When used in DSPL, the argument freg, may be selected as avariable.

DESCRIPTION

This command implements a low pass filter at the controller output for
the specified axis.

Low Pass Output
Filter Loop Gain toDAC

Kalman
Filter
Sampling Period

PACTUAL

Mx4 Block Diagram with Low Pass Filter

DSPL Command Set

LOW_PASS cont.

The low pass filter implements the following transfer function:

2
Wn

S+ 2Zwy, s+ Wﬁ

G(s) =

where, w,, = 2pf,,, f,, = cut-off frequency, and z = 0.6

The frequency and bandwidth of the low passfilter is programmable.

Note: By programming a cut-off frequency of O, the low pass filter
for the specified axisis disabled.

SEE ALSO none
EXAMPLE: DSPL Programming Low Pass
1) Setalow passfilter at 250 Hz for axis 2 (see below).

LOW PASS (0x2, 250)

2) Disablethelow passfilter of axis 1.

LOW PASS (0x1, 0)

Note: Mx4 default setting for low pass filter is no filter (or filter
disabled.

DSPL Programmer’s Guide v5.0 8-135

DSPL Command Set

LOW_PASS cont.

100

I 1o

ety N N N N Lo N N N N N
107 1TO# 10w
FREGUEMCY M)

Magnitude Diagram

-0 |

Ear:100

w0 b

o0k ; ; ST
FRE QUM G [H 2]

Phase Diagram of 250 Hz Low Pass Filter

8-136

DSPL Command Set

MAXACC

FUNCTION Maximum Acceleration
EXECUTION 100 microseconds

SYNTAX MAXACC (n, accq, ... , accg)
USAGE DSPL (Motion), Host (command code: 71h)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the maximum acceleration /

deceleration for axis x

0 £ acc, £ 1.999969 counts/(200ns)?

(I;n] Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

When used in DSPL, argument accy may be selected as a variable.

DESCRIPTION

This command specifies the maximum acceleration / deceleration for
the axes specified. The maximum acceleration values are used in the
sTopP and VELMODE commands.

(I;n] Note: maxacc will beignored if the specified argument is zero.

SEE ALSO ESTOP_ACC, STOP, VELMODE

DSPL Programmer’s Guide v5.0 8-137

DSPL Command Set

8-138

MAXACC cont.

APPLICATION

This command sets the maximum acceleration affordable by the servo
drive and motor combination. It is useful to program this parameter
such that the system will not go to control saturation during VELMODE
or STOP.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains

KILIMT ()

AXMOVE () ;run system in axis move

VELMODE () ;run system in velocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200ns)2.

MAXACC (0x6, 0. 25, 0. 25)

DSPL Command Set

MOTOR_PAR Vx4++ option command

FUNCTION Motor Parameter
EXECUTION 200 microseconds
SYNTAX MOTOR_PAR (n, nparq, ... , nparg)
USAGE DSPL (Mation), Host (command code: 76h)
ARGUMENTS
n bit coding of the specified axis(es)
mpar, for AC induction motor, defines the motor slip gain

-32768 £ fval, £ 32767

for brushless DC motor, defines the commutation angle

-32768 £ fva, £ 32767
When used in DSPL, the argument mpar, may be selected as a
variable.
DESCRIPTION

The MoTOR_PAR command defines motor technol ogy-dependent
parameters. If the axis in question is an AC induction motor, the
command defines the motor dlip gain. If the axis is a brushless DC
motor, the command defines the commutation angle (in encoder
counts).

Note: The MoTOR_PAR command does not need to be programmed
for brushtype DC motors.

SEE ALSO none
APPLICATION

See Vx4++ User's Guide
EXAMPLE

Program a dlip gain equal to 5500 for axes two, three, and four (the
motors are identical AC induction motors)

DSPL Programmer’s Guide v5.0 8-139

DSPL Command Set

MOTOR_PAR (OxE, 5500, 5500, 5500)

8-140

DSPL Command Set

MOTOR_TECH Vx4++ option command

FUNCTION Motor Technology
EXECUTION 200 microseconds
SYNTAX MOTOR_TECH (n, ntechq, ... , ntechg)
USAGE DSPL (Mation), Host (command code: 7Ch)
ARGUMENTS
n bit coding of the specified axis(es)
mtech, for AC induction, mtech, = AC_| ND
for brushless DC, mtech, = BRUSHLESS_DC
for brushtype DC, mtech, = bc
DESCRIPTION

Mx4 with the Vx4++ drive control option is capable of controlling
brushtype DC, AC induction, and brushless DC motors. This
command allows the motor technology of each axis to be programmed.

Note: Mx4 with Vx4++ will not execute the MoTOR_TECH command
if the vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK
APPLICATION
See Vx4++ User's Guide

EXAMPLE

Select brushless DC technology for axis one, brushtype DC for axis
two, and AC induction technology for axis four.

MOTOR _TECH (0xB, BRUSHLESS DC, DC, AC_|ND)

DSPL Programmer’s Guide v5.0 8-141

DSPL Command Set

8-142

NOTCH (option)

FUNCTION Implement Notch Filter at Controller Output
EXECUTION 200 microseconds

SYNTAX NOTCH (n, fredy, dy)

USAGE DSPL (Mation), Host (command code: 8Eh*)

Note: This RTC code (8Eh) is the same as the one used with
LOw PASS, therefore one option (either NOTCH or LOW PASS)
can be used at any time.

ARGUMENTS
n bit coding of the only specified axis
freg, unsigned value specifying the notch filter frequency for
axis x
0 £ freq, £ 1650 Hz
Oy unsigned value specifying the notch filter quality factor
for axis x
g =1 ~25% bandwidth filter
Oy =2 ~10% bandwidth filter
When used in DSPL, the arguments freq, and g, may be selected as
variables.
DESCRIPTION
This command implements a notch filter at the controller output for
the specified axis.
Y <]

Notch Output
Filter Loop Gain o DAC

—+

K jLimit

Kalman
Filter
Sampling Period

PACTUAL

Mx4 Block Diagram with Notch Filter

DSPL Command Set

NOTCH cont.

The notch filter implements the transfer function:

S +w?

W
32+6”s+wﬁ

G(s) =

where, w,, = 2pf,, and f,, = notch frequency

The frequency and bandwidth of the notch is programmable.

Note: By programming a notch frequency of O, the notch filter for
the specified axisis disabled.

SEE ALSO none
EXAMPLE: DSPL Programming Notch

1) Set anotch filter at 750 Hz with a narrow bandwidth (q = 2) for
axis 2 (see Fig. 4-3 below).

NOTCH (0x2, 750, 2)

2) Disablethe notch filter of axis 1.

NOTCH (0x1, 0, 1)

Note: The Mx4 default setting for notch filter is no notch (or notch
disabled.

DSPL Programmer’s Guide v5.0 8-143

DSPL Command Set

NOTCH cont.

1o

o e

ety N N N o L N N Lo N
107 R e 10
FREGQUEMCY [Hz]

(@

100

B0

G0

40

b (3

B

50, i The 10

FREGUEMNGY [Hz]

(b)

Frequency Response of Discrete 750 Hz, Q=2 Notch Filter

8-144

DSPL Command Set

OFFSET

FUNCTION Amplifier Offset Cancellation
EXECUTION 200 microseconds
SYNTAX OFFSET (n)
USAGE DSPL (Mation), Host (command code: 5Fh)
ARGUMENTS

n bit coding the ONLY axis involved

DESCRIPTION

This command minimizes the offset generated by the D/A Converter
(DAC). Upon completion of offset tuning, an interrupt is generated to
the host. The condition is recorded in DPR interrupt status register
location 009h. DPR status register location 00Ch will identify the axis
responsible. Bit 6 of DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh]
isalso set.

The interrupt condition is also axis bit-coded in bits 0-3 of the DSPL
OFFSET_REG hit register.

Note: OFFSET may be run with only one axis at atime. The status of
the remaining three axesis not affected by running oFFSET.

To run oFrseT, the following steps should be followed for the
corresponding axis:

1. Theaxisshould bein closed loop with optimal gains set.

2. K;j must be non zero for the axis.

3. The axis should be 'stopped’, with no motion commands in
progress.

4. Start oFFseT with the specified axis.

5. Offset adjust is complete when a host interrupt is generated.

SEE ALSO CTRL

DSPL Programmer’s Guide v5.0 8-145

DSPL Command Set

8-146

OFFSET cont.

APPLICATION

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET you may neutralize amplifier offset. To make this
happen, you must:

1. enable oFFseT for the axis whose offset is to be
neutralized, and

2. use anon-zero K; gain that maintains stability and zeros
position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel until position error
is forced to zero. In the absence of amplifier offset, the DAC voltage
that would have achieved zero position error is zero. Any non-zero
DAC value is due to an error caused by amplifier offset voltage. Mx4
measures the voltage, reports satisfactory completion of the OFFSET
command (generates an interrupt) and uses this measured voltage
value to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine is turned on.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMT () ;put system in a position loop, make sure integral

;gain is non-zero

OFFSET ()

EXAMPLE

After verifying that oFFSeT Steps 1-3 (see DESCRIPTION, above)
have been followed, do offset tuning for axis 3.

OFFSET (0x4)

DSPL Command Set

OUTGAIN

FUNCTION Output Loop Gain
EXECUTION 200 microseconds

SYNTAX QUTGAIN (n, m, ... , ng)
USAGE DSPL (Mation), Host (command code: 81h)
ARGUMENTS
n bit coding of the specified axis(es)
my value which defines the output gain for axis x
m=0 gain=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gain=16

When used in DSPL, argument my, may be selected as a variable.

DESCRIPTION
This command is used to set the gain for the output of the position
loops. The default mis set to zero (gain = 1).

Note: Please see block diagram with cTRL command.

SEE ALSO CTRL
APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself as a low gain. This may be
compensated for by aloop gain adjustment. In practice, this command
may use an argument greater than 1 if the encoder line number is less
than 1000.

DSPL Programmer’s Guide v5.0 8-147

DSPL Command Set

OUTGAIN cont.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMT ()
OUTGAIN ()
EXAMPLE

Program output loop gains of eight for axis 3 and two for axis 4.

OUTGAI N (0xC, 3, 1)

8-148

DSPL Command Set

OUTP_OFF
FUNCTION Set Outputs to 'Off' State
EXECUTION 25 microseconds
SYNTAX [Mx4]
QUTP_OFF (outpq)
[Mx4 Octavia]
QUTP_OFF (outpq, outpy)
USAGE
ARGUMENTS
outpq bit coding of the outputs
if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage
bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUT?7 output
bit 6 OUT6 output
bit 5 OUTS5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUTO output

DSPL Programmer’s Guide v5.0

DSPL (PLC, Mation), Host (command code: 55h)

8-149

DSPL Command Set

OUTP_OFF cont.

outpy bit coding of the outputs

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 15 OUT31 output
bit 14 OUT30 output
bit 13 OUT29 output
bit 12 OUT28 output
bit 11 OUT27 output
bit 10 OUT26 output
bit 9 OUT25 output
bit 8 OUT24 output
bit 7 OUT23 output
bit 6 OUT22 output
bit 5 OUT21 output
bit 4 OUT20 output
bit 3 OUT19 output
bit 2 OUT18 output
bit 1 OUT17 output
bit 0 OUT16 output

When used in DSPL, arguments outp; and outp, may be selected as

variables.

DESCRIPTION

This command alows the 'OFF status of all [Mx4:13] [Mx4
Octavia:32]outputs to be set.

SEE ALSO OUTP_ON, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
EXAMPLE

Turn 'off' the OUTO, OUT5, OUT6, and OUT12 outputs.

OUTP_OFF (0x1061, 0x0000)

8-150

DSPL Command Set

OUTP_ON
FUNCTION Set Outputs to 'On’ State
EXECUTION 25 microseconds
SYNTAX [Mx4]
QUTP_ON (out pq)
[Mx4 Octavia]
QUTP_ON (outpq, outpy)
USAGE
ARGUMENTS
outpq bit coding of the outputs
if bit=0 no change in output status
if bit=1 output = LOW TTL voltage
bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUTY7 output
bit 6 OUT®6 output
bit 5 OUTS5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUTO output

DSPL Programmer’s Guide v5.0

DSPL (PLC, Mation), Host (command code: 56h)

8-151

DSPL Command Set

OUTP_ON cont.

outpy bit coding of the outputs

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 15 OUT31 output
bit 14 OUT30 output
bit 13 OUT29 output
bit 12 OUT28 output
bit 11 OUT27 output
bit 10 OUT26 output
bit 9 OUT25 output
bit 8 OUT24 output
bit 7 OUT23 output
bit 6 OUT22 output
bit 5 OUT21 output
bit 4 OUT20 output
bit 3 OUT19 output
bit 2 OUT18 output
bit 1 OUT17 output
bit 0 OUT16 output

When used in DSPL, arguments outp; and outp, may be selected as

variables.

DESCRIPTION

This command allows the 'ON' status of al [Mx4:13] [Mx4
Octavia:32] outputs to be set.

SEE ALSO OUTP_COFF, POSBRK_OUT

APPLICATION

This command can be used for a general purpose logical output
operation.
EXAMPLE

Enable or turn 'on’' the OUT1, OUT11, and OUT12 outputs.
OUTP_ON (0x1802, 0x0000)

8-152

DSPL Command Set

OVERRIDE

FUNCTION Feedrate override for ¢l RCLE/ LI NEAR
EXECUTION 10 microseconds

SYNTAX OVERRI DE (Val)
USAGE DSPL (PLC, Mation), Host (command code:8Bh)
ARGUMENTS
Val Feedrate override multiplier
0.1£ Val £10

When used in DSPL, argument val may be selected as a variable.

DESCRIPTION

This command is used to set the feedrate override for the ¢ RCLE and
LI NEAR related commands.

SEE ALSO Cl RCLE, LINEAR_MOVE, LINEAR MOVE_S, LINEAR MOVE T

APPLICATION

none

EXAMPLES

Set afeedrate override of 4x.
OVERRI DE (4. 0)

DSPL Programmer’s Guide v5.0 8-153

DSPL Command Set

Pl IDENTIFIER

IDENTIFIER DSPL Constant representing p
USAGE DSPL (PLC, Motion)
DESCRIPTION

The identifier Pl is a DSPL reserved word that provides a floating
point approximation to the value p (3.14159265).

EXAMPLES
The identifier Pl can be used as follows:

to replace constant values in arithmetic expressions:

VAR3 = PI
VAR4 = 2 * Pl
VAR9 = PI - 2

to specify the value of an argument in aDSPL function:
VARL = SIN(PI)

to replace a constant value in a conditional expression:

WAI T_UNTI L(VARL2 > PI)

8-154

DSPL Command Set

POS], ..., POSS8 IDENTIFIER

IDENTIFIER Actual Position State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

An actual position state variable holds a 32-bit two's complement
integer value that represents the current position (in encoder edge
counts) of the specified axis.

Name Description

POS1 axis 1 actual position
POS2 axis 2 actual position
POSxX axis x actual position
POS8 axis 8 actual position

SEE ALSO CPCS1, ERR1, | NDEX _PCS1, PROBE_POS1
EXAMPLE

The actual position state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic
operation:

VARL = PCS2 + VAR3

as one of the argumentsin a DSPL conditional expression:
| F(POS1 <= VARR)

DSPL Programmer’s Guide v5.0 8-155

DSPL Command Set

POSBRK_OUT

FUNCTION Set Outputs After Position Breakpoint Interrupt
EXECUTION 50 microseconds

SYNTAX [Mx4]

POSBRK_QUT (n, outpong,q, outpoffq, ...)

[Mx4 Octavia)

PCSBRK_QUT (n, out ponpyq, out ponyo, out pof f 4,

outpoff o, ...)
USAGE DSPL (Mation), Host (command code: 7Dh)
ARGUMENTS

n bit coding of the specified axis(es)

outpony bit coding the outputs to turn ‘on’ upon occurrence of
position breakpoint interrupt (EN_PGOSBRK) for axis X.

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUTY7 output
bit 6 OUT®6 output
bit 5 OUTS5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUTO output

8-156

POSBRK_OUT cont.

DSPL Command Set

DSPL Programmer’s Guide v5.0

outpon,,

if bit=0
if bit=1

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit O

no change in output status
output = LOW TTL voltage

OUT31 output
OUT30 output
OUT29 output
OUT28 output
OUT27 output
OUT26 output
OUT25 output
OUT?24 output
OUT23 output
OUT22 output
OUT21 output
OUT20 output
OUT19 output
OUT18 output
OUT17 output
OUT16 output

bit coding the outputs to turn ‘on’ upon occurrence of
position breakpoint interrupt (EN_PCOSBRK) for axis X.

8-157

DSPL Command Set

POSBRK_OUT cont.

outpoffy, bit coding the outputs to turn ‘off’ upon occurrence of
position breakpoint interrupt (EN_PCOSBRK) for axis X.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUT?7 output
bit 6 OUT®6 output
bit 5 OUTS5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUTO output

8-158

DSPL Command Set

POSBRK_OUT cont.

outpoffy, bit coding the outputs to turn ‘off’ upon occurrence of
position breakpoint interrupt (EN_PCOSBRK) for axis X.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 15 OUT3L output
bit 14 OUT30 output
bit 13 OUT29 output
bit 12 OUT28 output
bit 11 OUT27 output
bit 10 OUT26 output
bit 9 OUT25 output
bit 8 OUT24 output
bit 7 OUT23 output
bit 6 OUT22 output
bit 5 OUT21 output
bit 4 OUT20 output
bit 3 OUT19 output
bit 2 OUT18 output
bit 1 OUT17 output
bit 0 OUT16 output

When used in DSPL, arguments outpon and outpoff may be selected as
variables.

DESCRIPTION

DSPL Programmer’s Guide v5.0

This command enables the output status of selected outputs to be
activated by the occurrence of a position breakpoint interrupt
(en_PosBRK) for a specified axis. The posBrR<_out need only be
executed once (ie: during initialization) unless the on/off output status
desired changes. The specified outputs will change state as
programmed through the outpon, and outpoff, arguments when an
axis (axis x) generates a position breakpoint interrupt. The position
breakpoint interrupt (EN_POSBRK) must be enabled for the output status
changes to occur.

8-159

DSPL Command Set

8-160

POSBRK_OUT cont.

SEE ALSO EN_POSBRK, OUTP_OFF, OUTP_ON
APPLICATION

This command can be used for an output operation where the output
status must be tightly coupled to the position of one or more axes.

Command Sequence Example

EN_POSBRK ;enable the pos breakpoint int for specified axis(es)
POSBRK_OUT ;set the desired output status changes
EXAMPLE

If a position breakpoint interrupt occurs on axis 1, turn on OUTO-
OUT3 and turn off OUT4.

POSBRK_OUT (0x1, O0x000F, 0x0000, 0x0010, 0x0000)

DSPL Command Set

POS_PRESET

FUNCTION Preset Position Counter
EXECUTION 200 microseconds

SYNTAX POS_PRESET (n, psety, ... , psetg)
USAGE DSPL (Motion), Host (command code 68h)
ARGUMENTS
n bit coding of the specified axis(es)
psety position counter preset value for axis x

-2147483648 £ psety £ 2147483647 counts
When used in DSPL, argument pset, may be selected as a variable.

DESCRIPTION

This command will define the present position point for the axes
specified.

breakpoint interrupt (if enabled). Pos PReSET should be

(I;n] Note: Pos PRESET will automatically disable the position
executed only when the axes specified are not in motion.

SEE ALSO POS_SHI FT, EN_POSBRK
APPLICATION

This command is useful when the position counter must be forced to a
new value. POS_PRESET may be used in the establishment of a new
reference position. Please also see POS_SHI FT.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Preset the axis 1 and axis 4 positions to 20000 and -45999 counts,
respectively.

POS_PRESET (0x9, 20000, - 45999)

DSPL Programmer’s Guide v5.0 8-161

DSPL Command Set

8-162

POS_SHIFT

FUNCTION Position Reference Shift
EXECUTION 200 microseconds

SYNTAX POS_SHI FT (n, psftq, ... , psftg)
USAGE DSPL (Mation), Host (command code: 5Dh)
ARGUMENTS

n bit coding of the specified axis(es)

psfty position reference value for axis x

-2147483648 £ psft, £ 2147483647
When used in DSPL, the argument psft, may be selected as a variable.

DESCRIPTION

This command will shift the present position for the axes specified.
Note: Pos_sHI FT will automatically disable the position breakpoint
interrupt (if enabled) of the specified axes.

SEE ALSO POS_PRESET, EN_POSBRK
APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new value
without losing position integrity (i.e., no counter information is lost).
See also EN_| NDEX and POS_PRESET.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

The current axis one position is 45000 counts. Shift the axis 1 position
to 50000 counts. The current axis 3 position is 55000 counts. Shift the
axis 3 position to 50000 counts.

POS_SHI FT (0x5, 5000, - 5000)

DSPL Command Set

PRINT Acc4 option command

FUNCTION Write (send) value to terminal
EXECUTION 200 microseconds

SYNTAX PRI NT (vaue)

USAGE DSPL (Motion)
ARGUMENTS

value 32-bit two's complement constant or (integer) contents of
specified DSPL variable.

DESCRIPTION

The PRINT command is used to write (send) a value to the ASCII

termina display. The ASCII transmission to the terminal takes the
format:

(value) + <Ccr> + <LF>+'>’

The value displayed is an integer with 3 implied fractional digits. For
example, 123456 is the value 123.456.

EXAMPLE
Write the value 100.45 to the ASCII terminal.

PRI NT (100450)

Write the value contained in DSPL variable vare2 to the ASCII
terminal.

PRI NT (VAR62)

DSPL Programmer’s Guide v5.0 8-163

DSPL Command Set

8-164

PRINTS Acc4 option command

FUNCTION Write (send) ASCII String to Terminal
EXECUTION 200 microseconds

SYNTAX PRI NTS (“string”)
USAGE DSPL (Maotion)
ARGUMENTS
string character string up to 26 characters in lengths. The
string must consist of the printable ASCII characters (32-
126).
DESCRIPTION

The PRI NT command is used to write (send) a character string to the
ASCII transmission to the terminal takes the format:

(string) + <CR> + <LF>+'>’

EXAMPLE
Write “hello world” to the ASCII terminal.

PRI NT (“hello world”)

DSPL Command Set

PROBE_POS], ..., PROBE_POSS8 IDENTIFIER

IDENTIFIER Probe Position State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

A probe position state variable holds a 32-bit two’'s complement
integer value that represents the probe position (in encoder edge
counts) of the specified axis.

Name Description

PROBE_POS1 axis 1 probe position
PROBE_POS2 axis 2 probe position
PROBE_PQOSx axis x probe position
PROBE_POS8 axis 8 probe position

SEE ALSO CPCS1, ERR1, | NDEX _PCS1, POS1
EXAMPLE
The probe position state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic
operation:

VAR1 = PROBE_PCS2 + 1000

as one of the argumentsin a DSPL conditional expression:
WHI LE(PROBE_PCS4 > VAR42)

DSPL Programmer’s Guide v5.0 8-165

DSPL Command Set

8-166

PWM_FREQ Vx4++ option command

FUNCTION Set Pulse Width Modulation (PWM) Frequency
EXECUTION 200 microseconds

SYNTAX PWM _FREQ (m pwmy, pwp)
USAGE DSPL (Mation), Host (command code: 7Fh)
ARGUMENTS

m bit coding of the specified axis groups

m = 0x3 set axes one, two PWM frequency
m=0xC set axesthree, four PWM frequency
m = OxF set axes one, two, three, four PWM

frequency
pwm;y PWM frequency for axes one, two
pwmy PWM frequency for axes three, four
1.0 £ pwm, £ 31.0 kHz

DESCRIPTION

The frequency of the Vx4++ pulse width modulation outputs may be
programmed via the Pwv FREQ command. The outputs may be
programmed in axis pairs.
Note: Mx4 with Vx4++ will not execute the P FREQ command if
the vx4_BLock command is active for the axes in question.

SEE ALSO Vx4_BLOCK
APPLICATION
See Vx4++ User's Guide

EXAMPLE
Set a PWM frequency of 15.4 kHz for axes three and four.

PWV_FREQ (0xC, 15.4)

DSPL Command Set

REL_AXMOVE

FUNCTION Relative Position Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX REL_AXMOVE (n, acci, pos;, veli, ... , acCs, pOSs,
vel g)
USAGE DSPL (Mation), Host (command code: B7h)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the maximum halting

acceleration (deceleration) for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos incremental position for axis x

-805306367 £ pos, £ 805306367 counts
vely unsigned target velocity for axis x

0 £ vel, £255.99998 counts/200ms

When used in DSPL, arguments acc,, pos, and vel, may be selected as
avariable.
DESCRIPTION

The REL_AXMOVE command is similar to the AxMoveE command with the
exception that relative (or incremental) position is specified, rather
than an end position as with AXMOVE.
SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE_S,
REL_AXMOVE_T, STOP
EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200us)?
and atarget slew rate of -3.5 counts/200ps.

REL_AXMOVE (0x2, 1. 0, - 8000, 3. 5)

DSPL Programmer’s Guide v5.0 8-167

DSPL Command Set

8-168

REL_AXMOVE_S

FUNCTION Relative S-Curve Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_S (n, accq, posq, velq, ... , accg, posg,
vel 8)
USAGE DSPL (Mation), Host (command code: 75h)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the acceleration/deceleration
for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos relative position for axis x

-2147483648 £ pos, £ 2147483647 counts
vely unsigned target velocity for axis x

0 £ vel, £ 255.99998 counts/200ns

When used in DSPL, arguments acc,, pos,, and vel, may be selected as
variables.

DESCRIPTION

The REL_AXMOVE_S RTC adlows for s-curve command generation
with relative (to current position) endpoint position, slew rate velocity
and acceleration for each axis. This command is suitable for linear
moves where s-curve acceleration is desired.

DSPL Command Set

REL_AXMOVE_S cont.

velx AXMOVE_S

‘\AXE!l\ég(VE
/ o accx/ i POSK

t

The figure above illustrates the velocity profile of the
REL_AXMOVE_S daong with the linear velocity ramp of the
REL_AXMOVE command. With REL_AXMOVE S, the acceleration
will reach avalue of 2*accx for a maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_ AXMOVE,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200us)?
and atarget velocity of (unsigned) 3.5 counts/200ps.

REL_AXMOVE_S (0x2, 1.0, -8000, 3.5)

DSPL Programmer’s Guide v5.0 8-169

DSPL Command Set

8-170

REL_AXMOVE_SLAVE

FUNCT

ION Superimposes a Relative Axis Move onto a Slave Engaged in
Gearing

EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_SLAVE (n, acc, rel _pos, rel _vel)
USAGE DSPL (Mation), Host (command code: AEh)
ARGUMENTS

n bit coding the axes involved

acc relative move acceleration

rel_pos position value relative to current position

rel_vel velocity value relative to current velocity

DESCR

SEE AL

When used in DSPL, arguments acc, rel_pos and rel_vel may be
selected as variables.

IPTION

This command is similar to AxMovE with two exceptions. First, it is
relative not absolute; and second, it works only on the slave axis(es)
involved in electronically geared or cam applications. This command
allows the dlave to momentarily disengage from the gearing process
and compensate for its position short comings.

SO CAM CAM OFF, CAM OFF_ACC, CAM POS, CAM PROBE, GEAR,
GEAR_OFF, GEAR OFF_ACC, GEAR POS, GEAR _PROBE, SYNC

APPLICATION

General master/slaving in particular flying shear applications can
benefit from this instruction. Flying shear with registration marks is
handled similarly to that of synchronous cutting. That is, the measured
cutting error is used in the next cycle as an added function to
compensate for the motion's shortcomings.

REL_AXMOVE_SLAVE cont.

DSPL Command Set

Slave Jerk

Slave Accel.

Slave Speed

Master Speed

Gear Ratio

/

Ii One Full CAM Cycle

|

—

[

Y

Y

@ \ REL_AXMOVE

- Time

- Time

Number of Points

|l

DSPL Programmer’s Guide v5.0

8-171

DSPL Command Set

REL_AXMOVE_T

FUNCTION Time-Based Relative Axis Move with Trapezoidal Trajectory
EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_T (n, accq, pos;, tm, ... , accg, posg,
tmg)
USAGE DSPL (Motion), Host (command code: 78h)
ARGUMENTS
n bit coding of the specified axis(es)
accy unsigned value specifying the acceleration/deceleration
for axis x

0 £ acc, £ 1.999969 counts/(200ns)?
pos relative position for axis x

-2147483648 £ pos, £ 2147483647 counts
tmy motion time for axis x

0 £ tm, £ 5000000 (200rs)

Note: The time argument, tm,, is an unsigned value with a unit of
200usec.

When used in DSPL, arguments acc,, pos,, and tm, may be selected as
variables.

DESCRIPTION

The REL_AXMOVE T RTC alows for trapezoida command
generation with relative (to current position) endpoint position,
acceleration, and time to complete the move for each axis. This

8-172

DSPL Command Set

REL_AXMOVE_T cont.

command is suitable for linear moves where relative endpoint position
and motion time are the specifying parameters.

The REL_ AXMOVE_T command is similar to REL_ AXMOVE, with the
exception that the velocity argument is replaced with a time argument.
REL_AXMOVE_T will automaticaly calculate a suitable slew rate
velocity to achieve the programmed relative endpoint position in the
programmed amount of time, following a trapezoidal velocity profile
(similar to REL_ AXMOVE).

SEE ALSO REL_ AXMOVE, REL_AXMOVE_S, AXMOVE, AXMOVE_S,

AXMOVE_T, STOP

EXAMPLE

DSPL Programmer’s Guide v5.0

The current position (commanded) of axis 4 is unknown. It is known,
however, that we want to move axis 4 10000 counts in the negative
direction (that is, -10000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200us)?
and be completed in 350msec (1750* 200p.seC).

REL_AXMOVE_T (0x8, 1.0, -10000, 1750)

8-173

DSPL Command Set

8-174

RESET

FUNCTION Reset Mx4
EXECUTION 200 microseconds
SYNTAX RESET (AAh, AAh)
USAGE DSPL (Mation), Host (command code: 72h)
ARGUMENTS
AAh reset signature byte

DESCRIPTION

This command brings the servo controller card back to power-up state.
Upon Mx4's reset completion, a host interrupt is generated via bit 4 of
DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh].

SEE ALSO none

APPLICATION
From time to time al systems may have to be software reset to alow
for an initialization.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE
Reset the Mx4 controller card.

RESET (OxAA, OxAA)

DSPL Command Set

RET

FUNCTION Return from Subroutine
EXECUTION 10 microseconds
SYNTAX RET ()

USAGE DSPL (Motion)
ARGUMENTS

none

DESCRIPTION

This instruction is used to return from a called subroutine to the
program which initiated the caLL. The program flow returns to the
calling DSPL program after the ReT instruction. The RET command is
the last instruction of a subroutine.

SEE ALSO CALL
APPLICATION
See Application Notes

EXAMPLE

Return from a subroutine.

RET ()

DSPL Programmer’s Guide v5.0 8-175

DSPL Command Set

8-176

RUN_M_PROGRAM

FUNCTION Initiate DSPL Program Execution
EXECUTION 10 microseconds
SYNTAX RUN_M PROGRAM (pr ogr am

or
RUN_M PROGRAM (progranil, prograng)

USAGE DSPL (PLC)
ARGUMENTS

program The program label of the Motion program to be run.

DESCRIPTION

Mx4 can run up to two Motion Programs on Mx4 and three on Mx4
Octavia simultaneously. If the user attempts to run more than two
motion programs or Mx4's program buffer is full, an interrupt is
generated to the host. Bit O of location OFh in the Dual Port RAM is
set to 1 and bit 5 of the interrupt register 2 is also set.

SEE ALSO STOP_ALL_M PROGRAM STOP_M PROGRAM

APPLICATION
See DSPL Application Notes

EXAMPLE
Begin execution of the DSPL programs "PROG_1" and "PROG_2".

RUN_M_PROGRAM (PROG 1)
RUN_M_PROGRAM (PROG 2)

DSPL Command Set

SIGN

FUNCTION Find the Sign of a Constant or a Variable Value.
EXECUTION 10 microseconds

SYNTAX SIGN(val u) or -SIG\(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant
ora

variable (vARL through vAR128)

DESCRIPTION

This function finds the sign of a constant or a variable value. The
valuereturned is set as follows:

St a\(valu) =-1 if vau<0
sia\(valu) =0 if valu=0
sl G\(valu) = +1 if valu> 0.

If a minus sign appears to the left of the SIGN function, the number
returned by si anismultiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VARS5 = S| GN(- 88. 43)

SEE ALSO ABS, FRAC, |NT, SQRT
EXAMPLE

The first example finds the sign of the value stored in vAR13 and stores
the result in VAR47:

VARAT = S| GN(VARL3)

The second example finds the sign of -71.482 and stores the result (-1)
iNn VAR31:

VAR31 = SI G\(-71.482)

DSPL Programmer’s Guide v5.0 8-177

DSPL Command Set

8-178

SIN

FUNCTION Calculate the Sine of a Constant or a Variable Value.
EXECUTION 75 microseconds

SYNTAX SIN(val u) or -SIN(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number
ora

variable (vVARL through vAR128)

DESCRIPTION

This mathematical function calculates the sine of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the siN function, the result of the sine
calculation ismultiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR34 = SIN(-1.72)

SEE ALSO ARCTAN, COS, TAN
EXAMPLE

The first example calculates the sine of the value stored in var17 and
stores the result in vVAR42:

VARA2 = SI N(VARL7)

The second example finds the sine of 2.45 radians and stores the result
(0.637764702) in VAR3T:

VAR37 = SI N(2.45)

DSPL Command Set

SINE_OFF

FUNCTION Turn Off Circular Interpolation Sine Table

EXECUTION 10 microseconds

SYNTAX SI NE_COFF (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which sine tables will be

disabled

DESCRIPTION

This instruction turns off (clears) the Mx4 position and velocity sine
tables involved in circular interpolation. This way, the machine
compensation table will be the only means of contouring.

SEE ALSO Cl RCLE, SINE_ON, TABLE OFF, TABLE ON
APPLICATION
See Application Notes

EXAMPLE

Turn the sine table off for axes three and four.

SI NE_OFF (0xC)

DSPL Programmer’s Guide v5.0 8-179

DSPL Command Set

8-180

SINE_ON

FUNCTION Turn On Circular Interpolation Sine Table
EXECUTION 10 microseconds

SYNTAX SINE_ON (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which sine table is enabled

DESCRIPTION

This instruction turns on (reactivates) the Mx4 position and velocity
sine tables involved in circular interpolation. This instruction is
executed after the execution of TURN OFF SINE TABLE.

SEE ALSO Cl RCLE, SINE_OFF, TABLE_OFF, TABLE_ON
APPLICATION
See Application Notes

EXAMPLE

Enable the sine table for axes one, two, and three.

SI NE_ON (0x7)

DSPL Command Set

SQRT

FUNCTION Calculate the Positive Square Root of a Constant or Variable
Value.

EXECUTION 75 microseconds

SYNTAX SQRT(val u) or -SQRT(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number >=0
ora

variable (vVARL through vAR128)

DESCRIPTION

This mathematical function calculates the square root of a constant or
a variable value. If valu is a constant, it must be a constant >= 0
otherwise an error will be returned. If valu is a variable, the function
will return the square root of the value stored in the variable if that
value >= 0. Otherwise a value of zero is returned. If valu is a
constant and a minus sign appears to the left of the sQrt function, the
result of the square root calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR2 = SQRT(32.97)

SEE ALSO ABS, FRAC, | NT, SIGN
EXAMPLE

The first example calculates the square root of the value stored in
VAR17 and stores the result in vAR42:

VARA2 = SQRT(VARLY?)

The second example finds the square root of 12.75 and stores the
negated result (-3.570714214) in VAR16:

VARL6 = - SQRT(12. 75)

DSPL Programmer’s Guide v5.0 8-181

DSPL Command Set

8-182

START

FUNCTION Start Contouring Motion
EXECUTION 10 microseconds
SYNTAX START (n)
USAGE DSPL (Mation), Host (command code: 6Dh)
ARGUMENTS
n bit coding of the specified axis(es)

DESCRIPTION

This command starts the motion (simultaneously) for the specified
axes included in 2nd order and cubic spline contouring. START applies
to contouring only.

(I;n] Note: START will beignored if contouring isin progress.

SEE ALSO STOP, VECCHG
APPLICATION

This command must be used in all 2nd order and ring buffer cubic
spline contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only

This command can be overwritten by vECcHG which redefines the axes
involved in the contouring process. For example, START starts the
contouring of axes 1, 3, and 4. If in the course of contouring, a VECCHG
is received (with argument) specifying axes 1, 2, and 3, the new
contouring points in the ring buffer will be used for the newly defined
axes. Please also see VECCHG.

DSPL Command Set

START cont.

Command Sequence Example
;load ring buffer with positions and velocities

MAXACC () ;make sure system can stop
CTRL () ;set the gains

KILIMT ()

BTRATE () ;set the block transfer rate

EN_BUFBRK () ;set the breakpoint in the ring buffer

START () ;start contouring

EXAMPLE

Start contouring motion in axes 2, 3, and 4.

START (OXE)

DSPL Programmer’s Guide v5.0 8-183

DSPL Command Set

8-184

STEPPER_ON Stp4 option command

FUNCTION Select Servo/Stepper Axes
EXECUTION 200 microseconds

SYNTAX STEPPER_ON (n)
USAGE DSPL (Mation), Host (command code: 8Dh)
ARGUMENTS
n bit coding the axes selected as stepper axes (the

remaining axes are Servo axes)

DESCRIPTION

This command requires the Stp4 add-on card. STEPPER ON allows the
user to select the axes which are stepper control axes. The axes not
selected by the n argument remain servo control axes.

EXAMPLE

Select axes 1 and 2 as stepper control axes.

STEPPER_ON (0x3)

DSPL Command Set

STOP

FUNCTION Stop Motion
EXECUTION 75 microseconds
SYNTAX STOP (n)
USAGE DSPL (Mation), Host (command code: 6Eh)
ARGUMENTS
n bit coding of the specified axis(es)

DESCRIPTION

This command stops the motion of all specified axes simultaneously.
To stop motion, the servo control card uses the programmed values for
maximum acceleration / deceleration. Upon receipt of stop, the servo
controller aborts the current command. The host is responsible for
clearing the ring buffer of any remaining commands if the axis(es)
stopped was involved in contouring motion.

hardware stop. Thisis an open collector input signal which is

|||t Notel: An emergency stop signal, Estop_aAcc, will perform a
active low and is shared between all of the controller cards.

deceleration is equal to zero (e.g., MAXACC ot issued).

|||t Note2: stop will be ignored if the maximum acceleration /

If an axis is halting to a stop from a previously executed STOP RTC Or
active ESTOP_ACC input, Mx4 will ignore any motion commands
(AXMOVE, REL_AXMOVE, START or VELMODE) and will report an "RTC
Command Ignored” interrupt to the host. The above motion commands
should not be sent to Mx4 for a halting axis until the axis motion has
cometo a stop.

SEE ALSO MAXACC, START

DSPL Programmer’s Guide v5.0 8-185

DSPL Command Set

STOP cont.

APPLICATION

For all applications involving bringing speed to zero in the quickest
possible manner.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains

KILIMT ()

BTRATE () ;set the block transfer rate

EN_BUFBRK () ;setthe breakpoint in the ring buffer

STOP () ;stop the motion
;upon completion of stop (command) trajectory
;Mx4 generates motion complete interrupt

EXAMPLE

Bring the motion of axes 1 and 4 to a halt.

STOP (0x9)

8-186

DSPL Command Set

STOP_ALL_M_PROGRAM

FUNCTION Terminate Execution of All DSPL Motion Programs
EXECUTION 200 microseconds

SYNTAX STOP_ALL_M PROGRAM ()

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

This instruction terminates the execution of all running DSPL Motion
programs. DSPL Motion programs may be re-initiated via additional
RUN_M_PROGRAM commands in the PLC program.

The sToP_ALL_M PROGRAM command will also stop the motion (if any)
of all axes with the programmed maxacc accel eration.

SEE ALSO MAXACC, RUN_M PROGRAM STOP_M PROGRAM
APPLICATION
See Application Notes

EXAMPLE

Stop the execution of all running Motion programs.

STOP_ALL_M PROGRAM ()

DSPL Programmer’s Guide v5.0 8-187

DSPL Command Set

8-188

STOP_M_PROGRAM

FUNCTION Terminate Execution of DSPL Motion Program(s)
EXECUTION 50 microseconds
SYNTAX STOP_M PROGRAM (pr ogr am

or
STOP_M PROGRAM (programl, progran?)

USAGE DSPL (PLC, Motion)
ARGUMENTS
program The program label of the Motion program to be stopped

DESCRIPTION

The stoP_M PROGRAM command is used to stop the execution of
selected DSPL Motion programs. DSPL Motion programs may be re-
initiated via additional RUN_M PROGRAM commands in the PLC
program.

SEE ALSO RUN_M PROGRAM STOP_ALL_M PROGRAM

APPLICATION
See Application Notes

EXAMPLE
Stop the execution of DSPL programs TEST1 and TEST2.

STOP_M PROGRAM (TEST1, TEST2)

DSPL Command Set

SYNC

FUNCTION Master / Slave Select
EXECUTION 10 microseconds

SYNTAX SYNC (m)
USAGE DSPL (motion), Host (command code: 87h)
ARGUMENTS

m selects the Master / Slave status of the Mx4 card

m =0 : Mx4isconfigured as a Master
m<>0 : Mx4isconfigured asa Slave

DESCRIPTION

If more than one Mx4 card is to be used in a system and card-to-card
synchronization is required, the syNc command should be used. sYNC
allows multiple Mx4 cards to operate in synchronization within a
system by specifying a single Master and the remaining card(s) as
Slaves. If only one Mx4 is used in a host computer system, that Mx4
must be configured as a Master.

(I;n] Note: Mx4 powers-up and resets to a default Master status.

In addition to configuring the Mx4 cards with sync (for multiple card
systems), a cable jumper must be included on the J5 connector of each
of the boards. The cable must be wired such that the MASTER signa
from the Master Mx4 connects to the SLAVE signal of each of the
Slave Mx4(s) (see Mx4 User’s Guide, Installing Your Mx4).

SEE ALSO none

DSPL Programmer’s Guide v5.0 8-189

DSPL Command Set

SYNC cont.

APPLICATION

This command is used in applications where tight coordination of
more than four axes (when using Mx4s) or eight axes (when using
Mx4 Octavias) is required. This command essentially slaves several
Mx4 cards to a single Master Mx4. Applications involving many axes
contouring may benefit from this command.

Command Sequence Example
This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e, the card is
initialized as a Master).

EXAMPLE

Configure the Mx4 controller as aslave in amulti-Mx4
synchronized system.

SYNC (0x1)

8-190

DSPL Command Set

TABLE_OFF

FUNCTION Disable Position and Veocity Circular Interpolation
Compensation Tables

EXECUTION 10 microseconds

SYNTAX TABLE_OFF (n)
USAGE DSPL (PLC, Motion)
ARGUMENTS
n bit coding of the axes for which the position and velocity

compensation tables are disabled

DESCRIPTION

The TABLE_OFF command turns 'off' or disables the position and
velocity compensation tables for the specified axes. After a TABLE_OFF
command for an axis, any circular interpolation involving that axis
will use the sine tables only for the circular interpolation.

Note: Before executing a TABLE_OFF command, it is important that
the sine table for the axis is enabled.

SEE ALSO Cl RCLE, SINE_ON, SINE_OFF, TABLE_ON
APPLICATION
See Application Notes

EXAMPLE

Disable the compensation tables for axes two, three, and four:

TABLE_OFF (OXE)

DSPL Programmer’s Guide v5.0 8-191

DSPL Command Set

8-192

TABLE_ON

FUNCTION

EXECUTION
SYNTAX
USAGE
ARGUMENTS

n

DESCRIPTION

Enable Position and Velocity Circular Interpolation
Compensation Tables

10 microseconds
TABLE_ON (n)
DSPL (PLC, Motion)

bit coding of the axes for which the position and velocity
compensation tables are enabled

This instruction will compensate for velocity and position inaccuracies

or nonli

nearities of the system's mechanical parts involved in circular

interpolation. The compensation tables must be downloaded to Mx4
before execution of the TABLE_oN command.

Note:

d

SEE ALSO
APPLICATION

Position and velocity compensation tables are 1024 locations
long. There is a corresponding position and velocity
compensation table for each axis. For both position and
velocity tables, each point is a 15-bit two's complement value,
hence it represents an absolute 14-bit value. Mx4 initializes
the tables' values to zeros. If the table is loaded with m
points, where m is less than 1024, the remaining points will
be zero. If the table is loaded with more than 1024 values, the
additional pointswill be ignored.

Cl RCLE, SINE_ON, SINE_CFF, TABLE OFF

See Application Notes

EXAMPLE

Enable the compensation tables for axes two and four:

TABLE_ON (O0xA)

DSPL Command Set

TABLE_P, TABLE V IDENTIFIER

IDENTIFIER DSPL Table

SYNTAX TABLE_P(i ndex) = val ul
TABLE V(i ndex) = val u2
var = TABLE_P(i ndex)
var = TABLE_ V(i ndex)

USAGE DSPL (PLC, Motion)
ARGUMENTS

index 0 < constant integer value < 4095
or
aDSPL variable value (vARL through vAR128)

valul -2147483648 £ valul £ 2147483647
or
aDSPL variable value (var1 through vAR128)

valu2 0 £ valu2 £ 255.99998
or
aDSPL variable value (vARL through vAR128)

var DSPL variable value (vARL through vAR128)

DESCRIPTION

The DSPL tables TABLE P and TABLE_v can be used to store integer
and fractional values in a DSPL program. Values in TABLE_P are
stored in the position format (32-bit two’s complement integer values),
while values in TABLE_V are stored in the velocity format (25-bit two’s
complement values sign extended to 32-bits with the least significant
16 bits representing the fractional value.)

Note The DSPL tables, cam, internal cubic spline, and
position/velocity compensation tables share overlapping data
spacein Mx4.

DSPL Programmer’s Guide v5.0 8-193

DSPL Command Set

8-194

TABLE_P, TABLE_V cont. IDENTIFIER

be truncated. Values stored in TABLE_V can have a maximum

@ Note The fractiona portion of any values stored in TABLE_P will
absolute value of 256.

EXAMPLES

The first example stores the value 12 (truncated from 12.3) into the
table at index 13:

TABLE_P(13) = 12.3

The second example stores the value in vARL2 in the table at the
location indexed by the value in vARL:

TABLE_V(VARL) = VARL2

The third example retrieves the value in the table at the location
indexed by the value in var17 and stores the value in vAR28:

VAR28 = TABLE_V(VARL?)

DSPL Command Set

TABLE_SEL

FUNCTION Select Compensation Table

EXECUTION 50 microseconds

SYNTAX TABLE_SEL (n, thy, ... , thg)

USAGE DSPL (Mation), Host (command code: A2h)
ARGUMENTS

n bit coding the axes involved
thy specifies the compensation table to be used for axis x
1£th£8

DESCRIPTION

The TABLE_SEL command alows the user to arbitrarily select the
compensation table for the axis(es) in question. More than one axis
may use a compensation table.

SEE ALSO Cl RCLE, TABLE OFF, TABLE _ON
EXAMPLE

Axes 1 and 2 are to use compensation table 2, while axes 3 and 4 use
compensation table 1.

TABLE_SEL (OxF,2,2,1,1)

DSPL Programmer’s Guide v5.0 8-195

DSPL Command Set

8-196

TAN

FUNCTION Calculate the Tangent of a Constant or a Variable Value.
EXECUTION 100 microseconds
SYNTAX TAN(val u)
USAGE DSPL (PLC, Motion)
ARGUMENTS
valu A constant real number or a variable (vArRL through
VAR128)
DESCRIPTION

This mathematical function calculates the tangent of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the TAN function, the result of the tangent
calculation ismultiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VARL1 = TAN(1.163)

SEE ALSO ARCTAN, COS, SIN
EXAMPLE

The first example calculates the tangent of the value stored in vARS1
and stores the result in VARL4:

VARL4 = TAN(VAR51)

The second example finds the tangent of -2.009 radians and stores the
result (2.134071211) in VAR24:

VAR24 = TAN(- 2. 009)

DSPL Command Set

TIMER, TIMER1, ..., TIMER4 IDENTIFIER

FUNCTION General Purpose DSPL Timer State Variable

SYNTAX [Mx4 / Mx42]

TI MER

[Mx4 Octavia]

TI MERL1, TIMER2, TIMER3, TIMER4
USAGE DSPL (PLC, Motion)
DESCRIPTION

TI MER isaDSPL identifier, which in conjunction with TI MER_RESET
provides a general purpose DSPL timer with time increments of 200
psec. TI MER may bereset to O viathe TI MER_RESET command.

SEE ALSO TIMER_RESET
EXAMPLE

Implement a one second delay with TI MER on an MxA4.

TI MER_RESET (
WAI T_UNTI L (TI MER >= 5000)

DSPL Programmer’s Guide v5.0 8-197

DSPL Command Set

8-198

TIMER_RESET

FUNCTION Reset General Purpose DSPL Timer
EXECUTION 10 microseconds

SYNTAX [Mx4] Mx42]

TI MER_RESET ()

[Mx4 Octavia

TI MER_RESET (n)
USAGE DSPL (PLC, Mation)
ARGUMENTS

n bit coding of specified timer(s) (only applies to Octavia)

DESCRIPTION

This command resets the single DSPL timer on an Mx4, or any of the
four timers on an Mx4 Octavia

SEE ALSO TIMER, TIMER], ..., TIMER4
EXAMPLE

Implement a one second delay with TI MER on an Mx4.

TI MER_RESET (
WAI T_UNTI L (TI MER >= 5000)

DSPL Command Set

TRQ_LIMIT

FUNCTION DAC Output Voltage Limit
EXECUTION 200 microseconds

SYNTAX TRQLIMT (n, valg, ... , valg)
/USAGE DSPL (Mation), Host (command code: 5Bh)
ARGUMENTS

n bit coding of the specified axis(es)

valy DAC output voltage (abs) limit for axis x

-10.0 <= val, <= 9.9997 volts

When used in DSPL, the argument val, may be selected as a variable.

DESCRIPTION

The TRQ LI M T command specifies a torque limit (by means of output
voltage limiting) value ranging from 0O volts (nho output) to +/-10 volts
(full swing) with aresolution of approximately 0.3 millivolts.

The Mx4 controller powers-up and resets to a default torque limit
value allowing full output voltage swing.

SEE ALSO none
APPLICATION

This command can be used in applications where an axis torque needs
to be limited, such as packaging or material handling.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE
Limit the output voltage swing for axis 2 to +/- 7.5 volts.

TRQLIMT (0x2, 7.5)

DSPL Programmer’s Guide v5.0 8-199

DSPL Command Set

VAR1], ..., VAR128 IDENTIFIER

IDENTIFIER DSPL Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

The 128 DSPL variables hold floating point real numbers that can be
stored, retrieved, and manipulated by the DSPL programmer.

EXAMPLES
The DSPL variables can be used to do the following:
specify the value of an argument in a DSPL command or
function:

AXMOVE(Ox1, VARL, VAR23, VARL4)
VARL = SQRT(VAR32)

store constant numbers:
VAR3 = -9385. 38
VARS = 0x34

assign the value of one variable to another:
VARL3= VAR29

perform intermediate computations:

VAR23 = VAR2 | 23.78

VAR5l = VAR32 * VARL2
retrieve/store a value from/to a DSPL tables (TaBLE_P and
TABLE_V):

VAR23 = TABLE V(332)

TABLE_P(123) = VAR2

provide an index into one of the DSPL tables:
TABLE_V(VAR?7) = 3.75

provide bit register functionality
VAR4 = VARS5 & 0x1133

specify one or both of the values in a conditional expression:
WAI T_UNTI L(VARL2 > VAR50)

8-200

DSPL Command Set

VECCHG

FUNCTION 2nd Order Contouring Vector Change
EXECUTION 10 microseconds

SYNTAX VECCHG (n, m)
USAGE DSPL (Mation), Host (command code: 6Fh)
ARGUMENTS
n bit coding of the specified axis(es) involved
m value which represents the buffer position (in 8 byte

offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include
only those axes coded by n

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

(I;n] Note: Three buffer levels are used to implement this instruction.

SEE ALSO START
APPLICATION

See START.

DSPL Programmer’s Guide v5.0 8-201

DSPL Command Set

VECCHG cont.

Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains

KILIMT ()

BTRATE () ;set the block transfer rate

EN_BUFBRK () ;set the buffer breakpoint interrupt

START () ;start contouring for a selected number of axes

;based on buffer breakpoint interrupt transfer more
. ;points
VECCHG () ;use points in ring buffer for anew set of axes
EXAMPLE

Begin 2nd order contouring in axes 1, 2, and 3 after the 23rd segment
move command of the ring buffer.

VECCHG (0x7, 23)

8-202

VECT4_PAR1, ..., VECT4_PARS

DSPL Command Set

IDENTIFIER

IDENTIFIER VX4++ Parameter
USAGE DSPL (PLC, Motion)

DESCRIPTION

With the Vx4++ option, Vx4++ state variables are available in Mx4s
DSPL programming language. The source of the state variable is
selected with the VIEWVEC command.

Name

VECT4_PARL
VECT4_PAR2
VECT4_PAR3

VECT4_PARS

SEE ALSO VI EWEC

EXAMPLE

The Vx4++ parameters can be used as follows:

Description

Vx4++ parameter 1
Vx4++ parameter 2
Vx4++ parameter 3

Vx4++ parameter 8

as one of the values used in conjunction with a DSPL arithmetic

operation:

VAR12 = VECT4_PAR3 + 3000

as one of the argumentsin a DSPL conditional expression:

WHI LE(VECT4_PARL > 100000)

DSPL Programmer’s Guide v5.0

8-203

DSPL Command Set

8-204

VX4_B LOCK VX4++ option command

FUNCTION Blocks Vx4++ commands
EXECUTION 200 microseconds

SYNTAX VX4_BLOCK (m bl kq, blko)
USAGE DSPL (Mation), Host (command code: 84h)
ARGUMENTS

m bit coding of the specified axis groups

m = 0x3 axes one, two
m = 0xC axes three, four
m = OxF axes one, two, three, four

blkq block code for axes one, two
blko block code for axes three, four

blk, =0 Vx4++ block disabled
blk, =1 Vx4++ block enabled
DESCRIPTION

This command is used to block some of the vx4++ commands so that
those commands may not be accidentally executed. The user is
responsible for disabling the block command in order to execute one of
the commands listed below (SEE ALSO).

SEE ALSO CURR LIM T, CURR _OFFSET, ENCOD_MAG,
MOTOR_TECH, PWM FREQ

APPLICATION
See Vx4++ User's Guide

EXAMPLE

Enable the vx4++ command blocking for al four axes.

VX4_BLOCK (OxF, 1, 1)

DSPL Command Set

VEL1, ..., VELS8 IDENTIFIER

IDENTIFIER Actual Velocity State Variable
USAGE DSPL (PLC, Motion)
DESCRIPTION

A actual velocity state variable holds a value that represents the
current velocity (in encoder edge counts/200rs) of the specified axis:

Name Description

VEL1 axis 1 actual velocity
VEL2 axis 2 actual velocity
VELx axis x actual velocity
VELS axis 8 actual velocity

SEE ALSO CVEL1
EXAMPLE
The actual velocity state variables can be used as follows:
as one of the values used in conjunction with a DSPL arithmetic
operation:

VAR12 = VEL2 - 1.5

as one of the argumentsin a DSPL conditional expression:
WH LE(VEL4 > 1.5)

DSPL Programmer’s Guide v5.0 8-205

DSPL Command Set

VELMODE

FUNCTION Velocity Mode
EXECUTION 100 microseconds

SYNTAX VELMODE (n, velq1, ... , velg)
USAGE DSPL (Mation), Host (command code: 70h)
ARGUMENTS

n bit coding of the specified axis(es)

vely target velocity for axis x

-256 £ vel, £ 255.99998 counts/200ms

When used in DSPL, argument vel, may be selected as a variable.
DESCRIPTION

Upon the execution of this command, a velocity loop for the specified

axes will be closed. The velocity loop uses the same gains as those

specified using the control law command. VELMODE uses the MAXACC

maximum acceleration / deceleration value to accelerate or decelerate

to the desired velocity.

Note: VvELMODE will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

SEE ALSO MAXACC
APPLICATION

This instruction is useful in all general purpose velocity control
applications. Please remember that although VvELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, Mx4 continually tries to zero the position error.
Command Sequence Example

MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMT ()
VELMODE ()
EXAMPLE

Engage axis 2 in velocity mode with a velocity of 3.71 counts/200 s
VELMODE (0x2, 3. 71)

8-206

DSPL Command Set

VlEWVEC Vx4++ option command

FUNCTION Specify Vx4++ State Variablesto View
EXECUTION 200 microseconds

SYNTAX VI EWEC (n, m
USAGE DSPL (Mation), Host (command code: 83h)
ARGUMENTS
n bit coding of the specified axis(es)
m value specifying state variable
m=0 Igs error
m=1 Ids error
m=2 Igs feedback
m=3 |ds feedback
m=4 Igs command
m=5 Ir feedback
m=6 Is feedback
m=7 It feedback
DESCRIPTION

This command selects the Vx4++ state variable which is available in
the Mx4 Dual Port RAM and also with the VECT4_PARx DSPL
identifiers.

As is evident above, only 1 variable may be “viewed” per axis at any
giventime.

SEE ALSO none

APPLICATION
See Vx4++ User's Guide

EXAMPLE

Change the Vx4++ state variable selection to Ids feedback for axis 1.
Any subsequent VECT4 PAR1 accesses will yield the axis 1 Ids
feedback vaue.

DSPL Programmer’s Guide v5.0 8-207

DSPL Command Set

VI EWEC (0x1, 3)

8-208

DSPL Command Set

WAIT_UNTIL

FUNCTION Halt Program Execution Until Condition is True.
EXECUTION Depends on user arguments

SYNTAX WAI T_UNTIL (conditional expression)
USAGE DSPL (PLC, Motion)
ARGUMENTS

conditional expression

The conditional expression must be boolean, equating to True or False.
The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

> greater than

< less than

>= greater than or equal
<= less than or equal
== equal

I= not equal

AND logical AND

OR logical OR

& bit-wise AND

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

precedence in a conditional expression, the expression will be

(I;n] Note: If nested parentheses are not used to indicate evaluation
evaluated from left-to-right.

DSPL Programmer’s Guide v5.0 8-209

DSPL Command Set

8-210

WAIT_UNTIL cont.

DESCRIPTION

This instruction controls the flow of the program. If wai T_UNTIL
statements are used, Mx4 will wait until the boolean condition is True,
then it executes the instructions after the wal T_UNTI L statement.

SEE ALSO none
APPLICATION

All general motion application programs.

EXAMPLE

Halt program execution or ‘wait' for the axis four command velacity to
be greater than -4.55 and an active INO (1) input before continuing.

WAI T_UNTI L ((CVEL4 > -4.55) AND (I NPL_REG & 0x0001))

DSPL Command Set

WAIT_UNTIL_RTC

FUNCTION Halt Program Execution Until RTC Signal Is Received
EXECUTION Runsuntil an RTC is detected

SYNTAX WAI T_UNTIL_RTC ()

USAGE DSPL (Motion)

ARGUMENTS

none

DESCRIPTION

After execution of the wal T_UNTI L_RTC command, the DSPL Motion
program waits until Mx4 receives (from the host) the RTC command
SIGNAL_DSPL.

SEE ALSO none
APPLICATION

All generic motion application programs.

EXAMPLE

Halt program execution until the SIGNAL_DSPL RTC is received
from the host.

WAI T_UNTI L_RTC ()

DSPL Programmer’s Guide v5.0 8-211

DSPL Command Set

8-212

WEND

FUNCTION Designates End of WHILE-WEND Structure
EXECUTION 10 microseconds

SYNTAX VWH LE (conditional expression)
program code to execute while WH LE condition is True
VEEND

USAGE DSPL (PLC, Motion)
ARGUMENTS

none

DESCRIPTION

The wHI LE- VeND structure is used for conditional repeat loop program
execution. VEND designates the last line of the wHI LE- VEND structure. A
VEND statement must be included with every wHi LE statement.

SEE ALSO VWHI LE

APPLICATION
See Application Notes

EXAMPLE

While the following error of axis two is less than 50 counts, monitor
the velocity of axis one. If the command velocity of axis one is greater
than 2.0, bring axis one to a halt.

WHI LE (ERR2 < 50)
IF (CVELL > 2.0)
STOP (0x1)
ENDI F
VEND

DSPL Command Set

WHILE

FUNCTION Designates Beginning of WHILE - WEND Structure
EXECUTION 200 microseconds

SYNTAX VWH LE (conditional expression)
program code to execute while condition is True
VEEND
USAGE DSPL (PLC, Motion)
ARGUMENTS

conditional expression

The conditional expression must be boolean, equating to True or False.
The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

> greater than

< less than

>= greater than or equal
<= less than or equal
== equal

I= not equal

AND logical AND

OR logical OR

& bit-wise AND

See 'DSPL Variables for the complete list of variables which may be
used in conditional expressions.

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

precedence in a conditional expression, the expression will be

(I;n] Note: If nested parentheses are not used to indicate evaluation
evaluated from left-to-right.

DSPL Programmer’s Guide v5.0 8-213

DSPL Command Set

8-214

WHILE cont.

For example,

WHI LE ((VARL > 100) AND (PCS2 > 100) AND
(ERRL == 200) OR (I N_REGL & 0x3) AND
(CVELL > 10))

Thislineisinterpreted in DSPL as:
WHILE ({ { { [(VARL > 100) AND (POS2 > 100)]

AND (ERRL == 200) } OR
(IN_REGL & 0x3) }AND ((CVEL1 > 10) })

DESCRIPTION

The w4l LE- VEND structure allows for a repeating program loop based
on a conditional expression. The program commands between the
WHI LE and WeND lines are executed while the conditional expression is
TRUE. If the conditional expression evaluates FALSE, program
execution jumps to the first command following the WeND command.

WHI LE- VEND structures may be nested.

SEE ALSO V\END
APPLICATION

See Application Notes

EXAMPLE

While the following error of axis two is less than 50 counts, monitor
the velocity of axis one. If the command velocity of axis one is greater
than 2.0, bring axis one to a halt.

WHI LE (ERR2 < 50)
IF (CVELL > 2.0)
STOP (0x1)
ENDI F
VEND

DSPL Command Set

8-212

OPERATOR

OPERATOR
SYNTAX

USAGE
ARGUMENTS

var

vaul

= (Assignment)
var = valul

or

t abl ename = val u2

DSPL (PLC, Motion)

DSPL variable (vARL through vAR128)

A constant real number,

variable (VARL through vAR64), state variable,

ADC value, table value, function’s return value, or the
result of an operation

tablename TABLE P or TABLE_V (including index)

vau2

DESCRIPTION
This op

A constant real number or
variable (vVARL through vARG4)

erator (=) is used to set the value of a DSPL variable. The

assignment operator can also be used to assign either a constant or
variable value to alocation in TABLE_P Or TABLE_V.

(I;n] Note:

SEE ALSO

This operation must be used when invoking any of DSPL’s
basic arithmetic operators, elementary math functions, or
trigonometric functions.

+ -, *, |, ABS, ARCTAN, COS, FRAC, INT, SIGN, SIN,
SQRT, TAN

DSPL Command Set

= cont. OPERATOR
|

EXAMPLE

The first example stores a constant in VAR32:

VAR32 = -9001. 42

The second exampl e stores the value of the command velocity of axis4
into VAR9:

VAR9 = CVEL1

The third example stores the result of the given addition in var11:

VAR11 = VAR21 + 22.3

The fourth example assigns the value stored at index 2019 of TABLE_V
to VAR25:

VAR25 = TABLE_V(2019)

The fifth example stores a constant in TABLE_P at the index value
specified by the value stored in vAR4:

TABLE_P(VAR4) = 7743

DSPL Programmer’s Guide v5.0 8-213

DSPL Command Set

8-214

+ OPERATOR
|

OPERATOR + (Addition)
EXECUTION 100 microseconds

SYNTAX val ul + val u2
USAGE DSPL (PLC, Motion)
ARGUMENTS

valul A constant real number,

variable (var1 through var128),
state variable, or ADC value

vau2 A constant real number,
variable (vARL through vAR128),
state variable, or ADC value

DESCRIPTION
The addition operator (+) is used to add two values. If avaue is a
variable, the value stored in the variable can be negated before
performing the addition by inserting a minus sign (-) immediately
before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR15 = VAR2 + 12.5

can appear on asingle line of DSPL code: The following are

(I;n] Note: No more than one of the basic arithmetic operators (+, -, *, /)
therefore NOT valid lines of DSPL code:

VARL
VAR2

VAR9 + VAR53 + 2.54
VAR9 + VAR3 * VAR4

DSPL Command Set

+ cont. OPERATOR

state variable or ADC value. The following is therefore

@ Note: No more than one of the values to be added can be a DSPL
NOT avadlid line of DSPL code:

VAR15 = ERR3 + POS1

SEE ALSO -
EXAMPLE

The first example adds two numbers, -9001.42 and 633.7 and stores
the result in VAR31:

VAR31 = -9001.42 + 633.7

The second example adds 57 to the value stored in var22. The result
is stored in VAR51:

VAR51 = 57 + VAR22

The third example negates the value stored in vAR13, negates the value
in vAR29, and adds the two values. Theresult is stored in vAR29:

VAR29 = -VARL3 + -VAR29

The fourth example adds the command position of axis 3 to the value
stored in vAR41. Theresult isstored in VARL4:

VAR14 = CPCS3 + VAR41L

DSPL Programmer’s Guide v5.0 8-215

DSPL Command Set

8-216

= OPERATOR
L |

OPERATOR - (Subtraction)
EXECUTION 100 microseconds

SYNTAX val ul - val u2
USAGE DSPL (PLC, Motion)
ARGUMENTS

valul A constant real number,

variable (vARL through vAR128),
state variable, or ADC value

vau2 A constant real number,
variable (vARL through vAR128),
state variable, or ADC value

DESCRIPTION
The subtraction operator (-) is used to subtract one value from another.
If avalueis avariable, the value stored in the variable can be negated
before performing the subtraction by inserting a minus sign (-)
immediately before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR25 = VAR52 - 99.2

can appear on asingle line of DSPL code: The following are

(I;n] Note: No more than one of the basic arithmetic operators (+, -, *, /)
therefore NOT valid lines of DSPL code:

VAR31
VAR27

VAR9 - VAR3 - 2.54
VAR9 + 132.3 - VAR4

DSPL Command Set

- cont. OPERATOR

DSPL state variable or ADC value. The following is

@ Note: No more than one of the values to be operated on can be a
therefore NOT avalid line of DSPL code:

VAR4 = ERR2 - CVEL4

SEE ALSO +, %,/
EXAMPLE

The first example subtracts 1 from 0.041 and stores the result in vAR60

VARGO = 0.041 - 1

The second example subtracts the value stored in var2 from 44.4. The
result is stored in VAR2:

VAR2 = 44.4 - VAR2

The third example negates the value stored in vAR3, then subtracts the
valuein vARL2. Theresult is stored in VAR9:

VAR9 = -VAR3 - VAR12

The fourth exampl e subtracts the command velocity of axis 1 from the
value stored in vAR4. The result is stored in VAR49:

VAR49 = VAR4 - CVEL1

DSPL Programmer’s Guide v5.0 8-217

DSPL Command Set

8-218

*

OPERATOR

OPERATOR * (Multiplication)
EXECUTION 100 microseconds
SYNTAX val ul * val u2
USAGE DSPL (PLC, Motion)
ARGUMENTS
vaul A constant real number,
variable (vARL through vAR128),
state variable, or ADC value
vau2 A constant real number,
variable (vARL through vAR128),
state variable, or ADC value
DESCRIPTION

The multiplication operator (*) is used to multiply one value by
another. If avalueisavariable, the value stored in the variable can be
negated before performing the multiplication by inserting a minus sign
(-) immediately before the variable name.

(I;n] Note:
(I;n] Note:

This operator can only be used with a variable assignment
statement. For example:

VAR4 = VAR25 * -8902

No more than one of the basic arithmetic operators (+, -, *, /)
can appear on asingle line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR12
VARL7

VAR59 * 22.86 * VAR5
9 - VAR3 * VAR24

DSPL Command Set

* cont. OPERATOR

DSPL state variable or ADC value. The following is

@ Note: No more than one of the values to be operated on can be a
therefore NOT avalid line of DSPL code:

VAR11 = CPCS1 - ERR4

SEE ALSO + -,
EXAMPLE

The first example multiplies two humbers 0.1751 and 0.441and stores
the result in vARG4

VARG64 = 0.1751 * 0.441

The second example multiplies the value stored in var22 by -100. The
result is stored in VAR2:

VAR2 = -100 * VAR22

The third example negates the value stored in VAR5, negates the value
in VAR4s, then multiplies the two resulting values. The result is stored
in VAR39:

VAR39 = -VAR5 * -VAR48

The fourth example multiplies the actual velocity of axis 4 by the value
stored in VAR?7. Theresult is stored in VAR49:

VAR49 = VEL4 * VARY

DSPL Programmer’s Guide v5.0 8-219

DSPL Command Set

8-220

/ OPERATOR

OPERATOR /(Division)
EXECUTION 100 microseconds

SYNTAX valul / val u2
USAGE DSPL (PLC, Motion)
ARGUMENTS

valul A constant real number,

variable (vARL through vAR128),
state variable, or ADC value

valu2 A constant real number or
variable (vVARL through vAR128)

DESCRIPTION
The division operator (/) is used to divide one value by another. If a
value is a variable, the value stored in the variable can be negated
before performing the division by inserting a minus sign (-)
immediately before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR4 = VAR25 / -8902

Note: No more than one of the basic arithmetic operators (+, -, *, /)
can appear on asingle line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR62 = VAR20 / 29 / 14.1
VARL = 9 + VARLIO / VAR2

DSPL Command Set

/ cont. OPERATOR

variable or ADC value. The following is therefore NOT a

@ Note: Only the numerator value (valul) can be a DSPL state
valid line of DSPL code:

VAR19 = VAR31 / CVEL4

SEE ALSO +, - F
EXAMPLE

The first example divides-1.51 by 1111 and stores the result in VAR60

VAR6O = -1.51 / 1111

The second example divides the value stored in Abc3 by 22.91. The
result is stored in VAR62:

VAR62 = ADC3 / 22.91

The third example negates the value stored in vARsS, then divides the
resulting value by the value stored in vAR12. Theresult isstored in
VARS:

VAR3 = -VAR55 / VAR12

The fourth example divides the actual position of axis 2 by the value
stored in vAaRL. The result is stored in VAR9:

VAR9 = POS2 / VARL

DSPL Programmer’s Guide v5.0 8-221

DSPL Command Set

8-222

~

OPERATOR

OPERATOR ~ (Bitwise Complement)

EXECUTION 60 microseconds

SYNTAX ~i _reg

USAGE DSPL (PLC, Motion)

ARGUMENTS

i_reg One of the DSPL interrupt registers

(i.e. ESTOP_REG, FERR REG, FERRH REG,
| NDEX_REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, or PROBE_REG)
or
One of the DSPL input registers
(i.e. INP1_REG or | NP2_REG)

DESCRIPTION

The bitwise complement operator (~) is used to find the complement of
the contents of one of the DSPL interrupt or input registers before it is

used in

@ Note:
@ Note:

SEE ALSO

aDSPL conditional expression.

This operator can only be used in a DSPL conditiona
expression inside of a DSPL conditional structure (i.e. | F,
WHI LE, or WAIT_UNTIL). For example:

WAI T_UNTI L(~FERR_REG & 0x02)

The bitwise complement operator can only be used with the
DSPL registers, and will NOT work with DSPL variables,
state variables, or table values.

& AND, OR |F, WAIT_UNTIL, WH LE

DSPL Command Set

~ cont. OPERATOR

EXAMPLE

The conditional expression used in the wal T_UNTI L statement below
masks out all bits except bits 0 and 3 of the complemented index pulse
interrupt register:

WAI T_UNTI L(~I NDEX_REG & 0x09)

DSPL Programmer’s Guide v5.0 8-223

DSPL Command Set

8-224

& OPERATOR
|

OPERATOR &(Bitwise AND)
EXECUTION 75 microseconds

SYNTAX i _reg & mask_val
USAGE DSPL (PLC, Motion)
ARGUMENTS
i_reg One of the DSPL interrupt registers

(i.e. ESTOP_REG, FERR REG, FERRH REG,
I NDEX_REG, MOTCP_REG, OFFSET_REG,

PCSBRK_REG, or PROBE_REG)

or

One of the DSPL input registers
(i.e. I NP1_REG or | NP2_REG)

mask_val A user defined bit mask that must be used in conjunction
with the bitwise operator &. The mask follows the
format 0x?7???, where ???2? is a 16-bit hexadecimal value.
For example, a mask value of 0x0204 will mask out all
bits except bits 2 and 9.

DESCRIPTION

The bitwise AND operator (&) is used to mask selected bitsin a DSPL
interrupt or input register before it is used in a DSPL conditional
expression.

inside of a DSPL conditional structure (i.e. I F, W LE, or

@ Note: This operator is only used in a DSPL conditional expression
WAI T_UNTI L). For example:

WAI T_UNTI L(PROBE_REG & 0x09)

registers, and will NOT work with DSPL variables, state

@ Note: The bitwise AND operator can only be used with the DSPL
variables, or table values.

DSPL Command Set

& cont. OPERATOR

SEE ALSO ~, AND, OR, |F, WAIT_UNTIL, WH LE
EXAMPLE

The conditional expression used in the IF statement below masks out
all bits except bits 1 and 3 of input register 2:

| F(I NP2_REG & O0xO0A)

DSPL Programmer’s Guide v5.0 8-225

DSPL Command Set

8-226

<, > <= >= == I= OPERATOR
__|

OPERATORS < (Lessthan), > (Greater than), <= (Less than or equal to)
>= (Greater than or equal to), = (Equal to), '= (Not equal to)

SYNTAX val ul OP val u2
USAGE DSPL (PLC, Motion)
ARGUMENTS

vaul A DSPL variable or state variable

OoP One of the following relational operators:

<, >, <=, >= ==, I=
vau2 A DSPL variable, state variable or a constant rea
number.

DESCRIPTION

The relational operators are used to compare two values. A result of 1
is returned only if the specified relationship between the two values is
true. otherwise aresult of O is returned.

statements inside of a DSPL conditional structure

(I;n] Note: These operators are only used in DSPL conditional
(i.e. |F, WHILE, or WAIT_UNTIL). For example:

WAI T_UNTI L(VARL >= 1000)

state variable. The following istherefore NOT avalid line of

(I;n] Note: No more than one of the two values to be compared can be a
DSPL code

IF (POSL <= POS4)

SEE ALSO ~ & AND, OR |F, WAIT_UNTIL, WH LE

DSPL Command Set

<1 >l <:1 >:l -, |: Cont OPERATOR

EXAMPLE

DSPL Programmer’s Guide v5.0

In the first example, the wai T_unTI L statement below will stop the
execution of the DSPL code as long as the actual position of axis 1 is
equal to 1000:

WAI T_UNTI L(POS1 == 1000)

In the second example, the wai T_UNTI L statement below will stop the
execution of the DSPL code as long as the actual velocity of axis 3 is
less than the value stored in VAR25:

WAI T_UNTI L(VEL3 < VAR25)

In the third example, the wal T_UNTI L statement below will stop the
execution of the DSPL code as long as the value in VARL9 is greater
than or equal to 225.7:

WAI T_UNTI L(VARLY >= 225.7)

In the fourth example, the wal T_uNTI L statement below will stop the
execution of the DSPL code as long as the value stored in VAR6O is less
than or equal to the value stored in vARL:

WAI T_UNTI L(VAR60 <= VARL)

8-227

