DSProfinet User's Guide

DSProfinet — an IRT Profinet Controller DSP Control Group, Inc.

DSPROFINET
User's Guide
v1l.1l

This documentation may not be copied, photocopied, reproduced, translated,
modified or reduced to any electronic medium or machine-readable form, in whole
or in part, without the prior written consent of DSP Control Group, Inc.
© Copyright 2009-2010 DSP Control Group, Inc.

4445 West 77th Street
Minneapolis, MN 55435
Phone: (952) 831-9556

FAX: (952) 831-4697

All rights reserved. Printed in the United States.
The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for any
accident resulting from misuse of its products.

DSPL, Mx4 cnC++ and DSProfinet are trademarks of DSP Control Group, Inc.
Other brand names and product names are trademarks of their respective holders

DSProfinet Manual DSP Control Group, Inc.

Contents

Read This First
A QUICK MaNUal OVEIVIEW.......ccuveeieecieetee ettt sae e sbe e s reesre e saeesareenneeenns iv
The DSProfinet ConfigUIaLioNcooeeiiriieiiesesie et v

1

Introduction to DSProfinet IRT Controller.........ccoooveevieccrieccee, 1
PrOTUCE OVEIVIBI ...ttt be e nnee s 1
Determinism of the IRT Profin€l..........cccooveieiieiecce e 2
Uniqueness of IRT Profinet Controller ..o 2
The Operational Principle behind IRT Controller............ccoooveiiiiiiiiiiini e 3
DSProfinet IRT Controller & SINAMICS ..., 5
Data Exchange in Between DSPROFINET and SINAMICS............ccoeeiienis 5
Telegrams5 & 6 (DSC MOtion Parameters)..........veveeeeevueeriiieieneeieeeneeenen 5
Telegram 390 (1/O PAramELErS)vue ettt e e et e e e e e e e 5
DSProfinet Hardware Platforms................cocoo oo 7
Stand-aloNe DSPROFINET ... e 7
PCl based DSPROFINETttt et et et e e eeenas 8
DSProfinet Memory Organization..............cc.coveeeeiieeeiineeeiiniineee, 9
DSProfinet Dual Port Ram Memory Organizationccvevieiiiiinieenenns. 9
Left RiING BUIT@r ... e e e 10
RIght RING BUFFEr e 11
ProfiDrive data EXChange.............ccocoooiiiiiiiiii s 12
Data Exchange between DSPROFINET and SINAMICS............coovvieeinnnes 12

DSProfinet Manual DSP Control Group, Inc. i

6 Data Transfer Toand From SINAMICS ... 14

Memory AccessInDual POrt RAM ... e, 14
Data transfer from PC to DSPROFINET (and subsequently to SINAMICYS).....14
Datafrom SINAMICS to DSPROFINET (and subsequently to PC)..............14

7 ProfiDrive Instructions

.. 16
ProfiDrive Instructions Used In Program Examples...........ccccccevveevevnnn. 16

Position control based on the velocity set-point interface with DSC.............. 16
Telegram 5 - datagoingto the SINAMICS..........ocoiiiiiiiii e 16
Telegram 5 - data coming from the SINAMICSdrive...........cooooveiiiennnn. 18
Telegram 390 - data going to the SINAMICS drive........c.ccoeeiviiiiiie e, 19
Telegram 390 - data coming from the SINAMICS..............coiiiii e, 20

8 Application Programmingcoooviiiiiiii e e, 21
Datafor the SINAMICS ... e 21

Datafor the MOLOIS it e e e e 21
Communicating with the DSPROFINET IRT Controller............coooeeveennnn. 21
Dual-Port Ram OrganiZationveuveiieie e e s cenee e eeaeeneeneeen 22

Sample Application Program L ..o e e 22

Sample Application Program 2oevieiie e eeea 23

9 CProgram EXample...........cocoooiiiiii e, 24

pci_low.c PCl accessto DSPROFINET IRT controller’sdual port..........24
pCi_usr.c Controlling multiple motors via PCl based DSProfinet

IRT controllerccoovnii 2D
PCI_LOW.C Program LiStingcuvvuiieiieie e e v 28
PCl_USR.C Program LiStingccoeviiiiiiiiieie i e ie e e e e ieeene000n 3D

DSProfinet Manual DSP Control Group, Inc. i

Read this first

A Quick Manual Overview
The DSProfinet is a powerful IRT Controller that transmits and receives the required realtime
functions in a coordinated motion control application - isochronously.

In its PCI form, this product is installed inside a PC that runs on a realtime operating system. This
is because this product’s dual port RAM should be fed with drive commands that are transmitted
to the SINAMICS on a periodic basis.

The user of DSProfinet is assumed to have a prior knowledge of Siemens SINAMICS. The
DSProfinet must be used only after he/she has configured the SINAMICS with STARTER Project.
When you configure the cu320 with STARTER, part of what you will set is how many motors the
control unit will be responsible for and which telegrams will be used for communicating with the
cu320 and these motors. The DSProfinet IRT controller supports telegram 5 with SERVOs and,
communicates with the cu320 using telegram 390 (below, the STARTER configuration window
for four motors).

i PROFIBUS message frame I YWersion overviewl

The drive objects are supplied with data in the following zequence fram the PROFIMET message frame:
The input data comresponds to the send and the output data of the receive direction of the drive object .

Master view:
Object | Drive object | No. Message frame type s SN
Length Length H

1|CU_S_004 1 SIEEMENS telegram 350, PZD-2/2 2 2
2 |SERVO_02 2 Standard telegram &, PZD-8/9 5 g ll
3 [SERVO_03 3 Standard telegram 5, PZD-8/9 | g
4 [SERVO_1 4 Standard telegram &, PZD-8/9 <)
S|SERVO_2 Standard telegram 5, PZD-8/S 5 5

Without PZDs (no cyclic data exchange)

[elzte line

Inzert ine -

LConfigure meszage frame

We have made every effort to make the use of this manual easy but in every step, we have
assumed that the user has a full knowledge of drives and their respective controls.

Essentially, you must perceive the DSProfinet as a realtime conduit between your PC and the IRT
network — a network comprising several drives to be controlled in an isochronous fashion.

The DSProfinet is accompanied by a CD that includes:

1) Three Starter project examples that we used to configure the cu320 unit for 2, 3
and 4 servo motors;

DSProfinet Manual DSP Control Group, Inc. iv

2) The C source codes — as an application example in DOS;

3) The files to be copied to SINAMICS flash. These files are the Profinet v2.1
firmware, along with a configuration for 2 motors.

The DSProfinet Configuration

DSProfinet IRT controller is configured in “C Program Example” listed in Section 9 of this manual.
You must amend the configuration section of this code to the beginning of your application
program. As you will see in this C program, the configuration information in dual-port RAM is
comprised of the following:

Control Unit Selection

0x200 0x01 if only one cu310 online, 0x00 otherwise

0x201 0x00

0x202 0x01 if first of two cu310s is online, 0x00 otherwise
0x203 0x00

0x204 0x01 if second of two cu310s is online, 0x00 otherwise
0x205 0x00

0x206 0x01 if cu320 is online, 0x00 otherwise

0x207 0x00

Control Unit’s IP address

0x208 0xc0 (192 for example)
0x209 0xa8 (168 for example)
0x20a 0x01 (1 for example)
0x20b Oxch (203 for example)
Control Unit's MAC address
0x210 0x08 (for example)
0x211 0x00 (for example)
0x212 0x06 (for example)
0x213 0x93 (for example)
0x214 Oxac (for example)
0x215 Oxec (for example)

How many motors the control unit will be responsible for
| 0x21c | 0x02 (for example) |

After providing this information in dual-port RAM, the PC program needs to let the
DSProfinet IRT controller know that it is present. First, clear the flag at 0x110 in dual-port

RAM:
0x110 0x00
Ox111 0x00

Now write the characters “config” to dual-port RAM, starting at 0x112:

0x112 0x63
0x113 0x6f
0x114 Ox6e
0x115 0x66
0x116 0x69
0x117 0x67

DSProfinet Manual DSP Control Group, Inc. \"

1 I|ntroduction to DSProfinet IRT
Controller

Product Overview

DSPROFINET is a Profinet IRT Controller that functions over the time-tested Ethernet interface. By
combining the power of Ethernet with Profinet IRT protocol that is both simple and reliable, a
complete digital solution has been created for networking between motion control elements.
The robustness of Ethernet's design is attested to by the fact that it continues to be adapted to
new applications, and is constantly being upgraded to provide new capabilities.

RT

Figure 1: DSPROFINET IRT Controller with Daisy-chained SINAMICS

When programming with DSPROFINET IRT Controller, a single Ethernet cable is sufficient to
configure and program all devices (such as SINAMICS S120) on the Profinet IRT network.

DSProfinet Manual DSP Control Group, Inc.

Whether the Profinet network is inclusive of a single or multiple devices, DSPROFINET as the IRT
Controller is capable of transmitting the isochronous realtime information through an Ethernet
cable in a straight or daisy chained fashion. For example, the PROFIdrive commands on
DSPROFINET links your PC program to multiple SINAMICS CU310s or a single CU320 unit in
a coordinated system.

Determinism of the IRT Profinet

For high performance motion control applications, such as precise coordination of many motors
with less than a microsecond delay between their coordinated commands, Profinet Controller is
suited because it comes with an Isochronous Real-Time (IRT) channel. As indicated by the word
“isochronous" in its acronym, Profinet IRT is used for closed-loop control of a servo system, where
the control (both the set-point and feedback) for multiple devices occurs during the same sample
period. This sample period can be as strict as 250 microseconds, meaning that the Controller in
a Profinet IRT network issues its command to all devices every 250 microseconds. Similarly,
each device in the Profinet IRT will respond with its data (for example, the actual position and/or
speed in a motion system) during the same period.

IRT Channel Standard Channel IRT Channel Standard Channel IRT Channel Standard Channel

h

Cycle 1 Cycle 3
|

Synchronization, e.g. 1 me position control cycle

IRT Data Open Communication TCPIP Data

Figure 2: The IRT Channel in Network Cycle

Uniqueness of IRT Profinet Controller

Certainly other Ethernet protocols in motion control today operate on a regularly occurring
interval basis. A relevant question may be: what is special about Profinet IRT Controller? The
guiding factor that sets Profinet IRT apart from other realtime cyclic protocols is the concept of
“jitter". The jitter is defined as a time fluctuation in the start of the interval. For example, in a one-
millisecond sample period, if the controller started the next interval 100 nanoseconds after the
termination of the previous one, the system could be described as having a jitter of 100
nanoseconds at this point in time.

DSProfinet Manual DSP Control Group, Inc. 2

Figure 3: DSPROFINET litter in Microseconds vs. Sample Time

Other cyclic protocols may (EtherCat) or may not (Profinet RT, Ethernet PowerLink) be
concerned with whether there is jitter at the start of each interval.

In the case of Profinet IRT, both devices and Controller are very concerned with jitter. The
threshold for jitter allowed by the Profinet IRT protocol is defined to be one microsecond. Hence,
an entity that wishes to serve as a controller in a Profinet IRT network must be able to start each
cycle very precisely on the aforementioned millisecond boundary. The devices in a Profinet IRT
network are designed to be made aware of when a controller is not adhering to the jitter
requirement. Upon recognition of this situation, the devices will stop operating with the controller.
It would then be up to the controller to essentially "start over" and show the devices that it is
capable of operating within the jitter specification. (For example, maybe the controller wasn't
able to start a series of cycles due to a bad cable. Once the cable is replaced, the controller
will be able to attempt Profinet IRT with the devices from the beginning.)

The operation of cyclic control at these extremely precise intervals (such as one or two-
millisecond interval times occurring within one microsecond of jitter) is what allows for extremely
precise coordinated motion control applications to occur across multiple axes.

The Operational Principle behind IRT Controller

After an initial communication period between the controller and the device(s), Profinet IRT
begins to start taking place. (Note that this initial communication period is just used to establish
the parameters of the ensuing Profinet IRT communication, such as how much and what type of
data will be exchanged during each interval, etc. It only needs to take place once and will last
less than 30 seconds.)

There are two important classes of messages that get exchanged during each interval.
(Occasionally there will be additional network managementtype messages appearing in the
network, but these are not related to control nor are they periodic. Also, they would certainly
occur after the IRT messages for the current interval have been sent and received.) One of these
classes of messages is synchronization messages, commonly referred to as "Sync" messages.
These messages can be thought of as the "keep-alive™ type of message. They are sent
exclusively from the controller to the devices in the network and no response from the devices is
necessary. Also, they do not contain any control data, but instead serve to ensure that the

DSProfinet Manual DSP Control Group, Inc. 3

controller is keeping up with the strict timing constraints of Profinet IRT. Namely, that it is starting
the interval precisely one millisecond (or two milliseconds, as the case may be) from the last
interval. This is the message that the devices will use to base the jitter calculations on. In other
words, the Sync message is the message that must arrive within one microsecond of when it is
supposed to, for every interval.

Also during the interval, messages carrying data from the device to the controller and the
controller to the device will be exchanged. These messages are named Real-Time Class (RTC)
messages.

For each interval, the controller will send out one RTC message for each device that it is
controlling. This RTC message will contain the data, such as speed set points or position
information that the device needs to have. In return, at the same time each device in the network
is sending an RTC message to the controller. This RTC message will correspond with the RTC
message it received. For example, if speed control is being performed, the controller's RTC to
the device will have a desired speed (speed set point) and the device's RTC to the controller
will have the actual speed.

DSProfinet Manual DSP Control Group, Inc. 4

2 DSProfinet IRT Controller &
SINAMICS

Data Exchange in Between DSPROFINET and SINAMICS

When used with SINAMICS S120, DSPROFINET uses the PROFIdrive profile that contains
"Dynamics Servo Control" (DSC) concept. This can be used to significantly increase the
dynamic stability of the position control loop in what Siemens refers to as application class 4
with simple means. The telegrams used by DSPROFINET are 5 & 6 (for DSC 1 position
encoder and DSC 2 position encoder respectively), 390, 391 and 392 (telegrams for control
unit Drive Object 1, DO1, digital inputs/outputs). Cyclic communication is used to exchange
time-critical process data.

Telegrams 5 & 6 (DSC motion parameters)

From the DSPROFINET IRT Controller to the SINAMICS S120 Telegram 5 (application class 4
DSC) delivers:

CTW. control word 1
NSCLL_B....... 32-bit speed set point
CTw control word 2

GL CTW....... encoder 1 control word
XERR position deviation

returns the following data:

STWL. control word 1

NIST B 32 bit actual speed

STWR status word 2

GL_STW......... encoder 1 status word
GL_XIST1......... encoder 1 actual position value 1
GL_XI ST2....... encoder 1 actual position value 2

Telegram 390 (1/O parameters)

From the DSPROFINET IRT Profinet Controller to the SINAMICS S120 Telegram 390 delivers:

CUCTW.......... control unit control word
ODGTAL 16 bit digital output control word

Using the same telegrams S120 returns the following data to the DSPROFINET:

DSProfinet Manual DSP Control Group, Inc.

CUSTW.......... control unit status word
I DDATAL 16 bit digital input control word

In addition, telegrams 391 and 392 also send and return (to DSPROFINET) probe status:

PRCTW.......... from DSPROFI NET to SI NAM CS and
PR STW.......... from SI NAM CS t o DSPROFI NET

IRT on SLOT1. CBE20

Figure 4: IRT cable connected to CU320

DSProfinet Manual DSP Control Group, Inc.

3 DSProfinet Hardware Platforms

DSPROFINET is offered in two platforms of stand-alone and PCI.

Stand-alone DSPROFINET

In a stand-alone form, DSPROFINET is powered by a single 5-volt power supply and it
communicates with other subsystems via two RJ45 connectors J1 and J2.

J1 is linked to a standard Ethernet line on a laptop or other forms of PC, whereas J2 as
the control link connects to other devices in an IRT Profinet system.

'
bl

=
hg,

RT

TCP/IP

Figure 5: System Diagram For Stand-Alone DSPROFINET

DSProfinet Manual DSP Control Group, Inc.

PCI based DSPROFINET

A PCI based DSPROFINET resides in a PCI card slot of a PC.

The main difference between this one and the stand-alone unit is that in this unit PC
information is transmitted to the DSPROFINET through the PCI bus.

Figure 6: System Diagram For PC (PCI) Based DSPROFINET
The PCI based DSPROFINET is also unique in that its memory organization allows for

buffering a group of commands and relieving the PC of attending to the drive every
millisecond.

DSProfinet Manual DSP Control Group, Inc.

4 DSProfinet Memory Organization

DSProfinet Dual Port Ram Memory Organization

15 0x1F00-OX1FFF
<::l SINAMICS feedback buf
2 0x1200-Ox12FF
1 0x1100-0x11FF
PC 8] 0x1000-0x10FF DSPROFINET
0XF80-0XFFF 15
0XFOO-OXF7F 14
COMMAND_buf |::>
0x980-0x9FF 3
0x900-0x97F 2
0x880-0x8FF 1
0x800-0x87F 0
| | | oxt04
0x102 |[|]
0x100

Dual Port RAM

Figure 7. Command and SINAMICS Feedback Ring Buffers in Dual Port RAM

DSProfinet Manual DSP Control Group, Inc.

Note! The system of ring buffers with 16 cycle data blocks is necessary
for CNC applications where advanced contouring is required.
With a realtime OS however, most applications will not need
more than one data point in each buffer. This one point consists of
the data going to and coming back from the amplifiers in a single cycle.

Figure 7 illustrates the DSPROFINET’s two ring buffers - each holding 16 Cycle Data Blocks or
CDB points. The Command ring buffer holds the points to be transmitted to the SINAMICS and
the SINAMICS buffer contains the feedback points that come back from the SINAMICS.

Command Buffer

Each Cycle Data Block (CDB) in the Command ring buffer is 128 bytes large and is placed in
the following locations of the dual port ram:

CDB Point (Index) Memory Location

15 0xF80 — OxFFF

14 0xFO0 — OxF7F

13 0xE80 — OXEFF

12 0xEQ0 — OXE7F

11 0xD80 — OxDFF

10 0xD00 — OxD7F

9 0xC80 — OxCFF

8 0xC00 — OxC7F

7 0xB80 — OxBFF

6 0xB0O — OxB7F

5 0xA80 — OXAFF

4 0xAQ0- OxAT7F

3 0x980 — Ox9FF

2 0x900 — 0x97F

1 0x880 — Ox8FF

0 0x800 — 0x87F
Command Buffer Index Location: 0x100 --- this location is set by DSPROFINET
Command Buffer Index Location: 0x102 --- optional location used by PC program

Table 1: memory organization for the command ring buffers

Location 0x100 in dual-port ram is read only and it holds the index to the Command buffer point
that is available to DSPROFINET/SINAMICS for use in the most immediate cycle.

Location 0x102 in dual port ram is read/write and is modifiable by PC program only. The PC
program can write to this location the Index that it will write to next. Writing to this location is
optional — its only purpose is to prevent the use of data from 16 cycles ago (in case PC
program can not stay ahead of the DSPROFINET and therefore the ring buffer rolls over to a
point that is 16 cycles old). If the PC program can stay ahead of the DSPROFINET, this location
doesn’t need to be updated.

DSProfinet Manual DSP Control Group, Inc. 10

SINAMICS Feedback Buffer

Each CDB point in the SINAMICS feedback ring buffer is 256 bytes large and it holds the

information that comes back from the SINAMICS.

CDB Point (Index)

Memory Location

15

0x1F00 — OX1FFF

14

0x1EQ00 — Ox1EFF

13

0x1D00 — Ox1DFF

12

0x1C00 — Ox1CFF

11

0x1B00 — Ox1BFF

10

0x1A00 — OX1AFF

9

0x1900 — Ox19FF

0x1800 — Ox18FF

0x1700 — Ox17FF

0x1600 — Ox16FF

0x1500 — Ox15FF

0x1400- Ox14FF

0x1300 — 0x13FF

0x1200 - Ox12FF

oL, |INMw| |||

0x1100 — Ox11FF

0x1000 — Ox10FF

SINAMICS Feedback Buffer Index Location: 0x104

Table 2: memory organization for the SINAMICS feedback ring buffer

Location 0x104 is read only and it holds the index to the SINAMICS feedback buffer point that

is going to be written to (by the DSPROFINET/SINAMICS) next. Therefore, if the value in
0x104 is 3, the PC program should read index location 2 to get the SINAMICS information.

DSProfinet Manual

DSP Control Group, Inc.

11

5 ProfiDrive data Exchange

Data Exchange between DSPROFINET and SINAMICS

Control Words

Speed Set Point
Position Deviation
Control Gain Factor
Digital Outputs

* Ok % ok ok

ProfiNET IRT SINAMICS
DSPROFINET

Status Words
Actual Velocity
Actual Position
Digital Inputs

EE

Figure 8: Data exchange between PC and SINAMICS

The data in the Command buffer consists of command codes and their respective arguments as
tabulated below. Table 3 illustrates the contents of the Command buffer for four motors - using

Telegrams 390 and 5.

BYTES DESCRIPTION

0-1 CU_CTW (control unit control word)

2-3 0_DIGITAL (dig. output control word)

4-5 CTW1 (control word 1) MOTOR 1
6-9 NSOLL_B (32-hit speed set-point) MOTOR 1
10-11 CTW?2 (control word 2) MOTOR 1
12-13 G1_CTW (encoder 1 control word) MOTOR 1
14-17 XERR (position deviation) MOTOR 1
18-21 KPC (position control gain factor) MOTOR 1
22-23 CTW1 (control word 1) MOTOR 2
24-217 NSOLL_B (32-hit speed set-point) MOTOR 2
28 -29 CTW?2 (control word 2) MOTOR 2
30-31 G1_CTW (encoder 1 control word) MOTOR 2
32-35 XERR (position deviation) MOTOR 2
36-39 KPC (position control gain factor) MOTOR 2
40-41 CTW1 (control word 1) MOTOR 3
42-45 NSOLL_B (32-hit speed set-point) MOTOR 3
46 -47 CTW?2 (control word 2) MOTOR 3
48 -49 G1_CTW (encoder 1 control word) MOTOR 3
50-53 XERR (position deviation) MOTOR 3
54 - 57 KPC (position control gain factor) MOTOR 3

DSProfinet Manual DSP Control Group, Inc.

12

58 -59 CTW1 (control word 1) MOTOR 4
60-63 NSOLL_B (32-hit speed set-point) MOTOR 4
64 — 65 CTW?2 (control word 2) MOTOR 4
66 — 67 G1_CTW (encoder 1 control word) MOTOR 4
68-71 XERR (position deviation) MOTOR 4
72-175 KPC (position control gain factor) MOTOR 4

Table 3: The contents of one data point in the Command buffer

The first 4 bytes of 128 (0-3) are for the control unit (CU310 or CU320/CBE20). The next 18
bytes (4-21) are for one motor and would be repeated once for each additional motor (up to

4),

Table 4 illustrates the contents of one CDB point in the SINAMICS feedback buffer.

BYTES DESCRIPTION

0-1 CU_STW (control unit status word)

2-3 |_DIGITAL (dig. input control word)

4-5 STW1 (status word 1) MOTOR 1
6-9 NIST_B (32 bit actual speed) MOTOR 1
10-11 STW2 (status word 2) MOTOR 1
12-13 G1_STW (encoder 1 status word) MOTOR 1
14-17 G1_XIST1 (encoder 1 act. Position val. 1) MOTOR 1
18-21 G1_XIST2 (encoder 1 act. Position val. 2) MOTOR 1
22-23 STW1 (status word 1) MOTOR 2
24-27 NIST_B (32 bit actual speed) MOTOR 2
28-29 STW2 (status word 2) MOTOR 2
30-31 G1_STW (encoder 1 status word) MOTOR 2
32-35 G1_XIST1 (encoder 1 act. Position val. 1) MOTOR 2
36-39 G1_XIST2 (encoder 1 act. Position val. 2) MOTOR 2
40-41 STW1 (status word 1) MOTOR 3
42 - 45 NIST_B (32 bit actual speed) MOTOR 3
46 - 47 STW2 (status word 2) MOTOR 3
48 -49 G1_STW (encoder 1 status word) MOTOR 3
50-53 G1_XIST1 (encoder 1 act. Position val. 1) MOTOR 3
54 - 57 G1_XIST2 (encoder 1 act. Position val. 2) MOTOR 3
58 - 59 STW1 (status word 1) MOTOR 4
60-63 NIST_B (32 bit actual speed) MOTOR 4
64 — 65 STW?2 (status word 2) MOTOR 4
66 —67 G1_STW (encoder 1 status word) MOTOR 4
68-71 G1_XIST1 (encoder 1 act. Position val. 1) MOTOR 4
72-175 G1_XIST2 (encoder 1 act. Position val. 2) MOTOR 4

Table 4: The contents of one data point in the SINAMICS feedback buffer

The first 4 bytes of 256 (0-3) are for the control unit (CU310 or CU320/CBE20). The next 18

bytes (4-21) are for one motor and would be repeated once for each additional motor (up to

4).

DSProfinet Manual

DSP Control Group, In

C.

13

6 Data Transfer To and From SINAMICS

Memory Access In Dua Port RAM

Datatransfer from PC to DSPROFINET (and subsequently to SINAMICS)
DSPROFINET has a 16-bit word in its dual port RAM (memory location 0x100) that
indicates which CDB (0-15) it will read next. The PC program can continue reading
from this location to monitor which CDB index DSPROFINET is currently processing.

Once per cycle, DSPROFINET Performs the following functions:

1) Checks to see that the CDB index it wants to read is not the same one that the
PC program wants to write to. The PC program can update dual-port RAM
memory at memory location 0x102 with the index of the CDB it will write to
next. If these indices are the same, DSPROFINET will use the same data that it
used during the previous cycle. (For the case where there is no previous data,
DSPROFINET will send a start instruction for control word 1, as well as 0x00 for
the speed set-point, control word 2, encoder 1 control word, xerr, and kpc
position control gain factor for each motor, as well as 0x0059al1b2 for the
control unit’s data.) It should be noted that the PC program should try and stay
at least one point ahead of DSPROFINET, so for example when DSPROFINET
wants to read CDB 0, the PC program will be ready to write to CDB 1.

2) Takes the data from the CDB and prepare to send it to the drive.

3) Updates the value in offset memory word 0x100 to reflect the next CDB index it
will read from.

The PC program will fill in as many CDBs (indices 0-15) as it deems necessary, and then it will
wait until it detects that an IRT connection has been made. It does this by reading 0x110 in
dual-port RAM. DSPROFINET will write a 1 to 0x110 once IRT is established. Then the PC
program can continue filling CDBs as DSPROFINET reads them, making sure not to “starve”
DSPROFINET. It can do this by comparing where it is at to what is in memory offset 0x100,
which is the CDB that DSPROFINET will be reading from next.

Datafrom SINAMICS to DSPROFINET (and subsequently to PC)

Each cycle will provide data for DSPROFINET to write to dual-port RAM. DSPROFINET
will maintain a counter of which CDB in this buffer it intends to write to next. This will be
at memory offset 0x104 in dual-port RAM. Upon receiving that data from the drive,
DSPROFINET will write it to the appropriate slot and then update its counter at offset
0x104.

The PC program can read location 0x104 to see which CDB will be written to next by
DSPROFINET. Based on this, it can read the previous CDB to get the most recent data.

DSProfinet Manual DSP Control Group, Inc. 14

DSProfinet Manual

DSP Control Group, Inc.

15

7 ProfiDrive Instructions

ProfiDrive Instructions Used In Program Examples

The instruction set described below are those needed for Dynamic Servo Control (DSC) and

I/O Operations, Telegrams 5 and 390 respectively. We will show a short description of each

instruction and their respective telegrams. For more information, you may refer to the
SINAMICS PROFIdrive manual.

Position control based on the velocity set-point interface with
DSC.

ath = | '“4
i Memg
Interpolation Trapsmisgion Interpolation Position s d filt S d trol
delay (Trc) control peed filter peed contro
XC“G :
A~ ?
XactN \ 1
| 1
1
: N —| calculation
I [
1
I
1 ! i 4
. I
N L
I
I
]
L
Xact, Drive
T Xee T.c
Xact
Zero Offset and
Master Controller (NC) Compensation Drive Controller
Symbols: Neme: : Speed command Tsc: speed controller sampling time
Xemd : pOSition command Tec: position controller sampling time
(= Tmarc)
Xerr * NOSItioN error command kne * nosition controller aain

Figure 9: PC Controller communicating with SINAMICS via DSPROFINET IRT Controller
Telegram 5 - data going to the SINAMICS

CTWL control word 1

DSProfinet Manual DSP Control Group, Inc.

16

This field is 2 bytes in size.

The value that is used can be either 0x047e (stop command) or 0x047f (start
command).

For further information, please see the Siemens manual accompanying your drive.

NSOLL_B 32-bit speed set-point

This field is 4 bytes in size.

For further information, please see the Siemens manual accompanying your drive.
CTw control word 2

This field is 2 bytes in size.

For the first byte, we encode the PROFIdrive sign-of-ife value. The PROFIdrive

sign-of-life value is only 4 bits in size and must be the high nibble of the byte.

The range of values for sign-of-ife is Ox1 to Oxf. (For instance, we used the

entire byte and sent 0x10, 0x20.... 0xf0, 0x10....)

The first byte is encoded as the PROFIdrive sign-of-life value and is therefore not
modifiable.

For further information, please see the Siemens manual accompanying your drive.

GL_CTwW encoder 1 control word
This field is 2 bytes in size.

We left this field as O the entire time.

For further information, please see the Siemens manual accompanying your drive.
XERR position deviation
This field is 4 bytes in size.

The value of this field should be updated each cycle. For our examples, we
would perform a computation to determine what our ideal position was.

For further information, please see the Siemens manual accompanying your drive.

DSProfinet Manual DSP Control Group, Inc. 17

KPC position control gain factor
This field is 2 bytes in size.
For further information, please see the Siemens manual accompanying your drive.

Telegram 5 - data coming from the SINAMICS drive

STwW status word 1
This field is 2 bytes in size.

For further information, please see the Siemens manual accompanying your drive.

NI ST_B 32-bit actual speed
This field is 4 bytes in size.

For further information, please see the Siemens manual accompanying your drive.

STW status word 2
This field is 2 bytes in size.

The drive uses the high nibble of the first byte to encode its own sign-of-life
value. The values for the high nibble range from 0x1 to Oxf.

For further information, please see the Siemens manual accompanying your drive.

GlL_STW encoder 1 status word
This field is 2 bytes in size.

For further information, please see the Siemens manual accompanying your drive.

GL_XIST1 encoder 1 actual position value 1
This field is 4 bytes in size.

For further information, please see the Siemens manual accompanying your drive.

GlL_XIST2 encoder 1 actual position value 2

This field is 4 bytes in size.

DSProfinet Manual DSP Control Group, Inc. 18

For further information, please see the Siemens manual accompanying your drive.

Telegram 390 - data going to the SINAMICS drive

CU CTw control unit control word
This field is 2 bytes in size.
The high nibble of the first byte is used for the PROFIdrive sign-of-ife. In our

application we use the entire first byte for it. We also set the Synchronization bit
(bit0) to 1.

For further information, please see the Siemens manual accompanying your drive.

O DIG@TAL 16-bit digital output control word
This field is 2 bytes in size.

The first byte is “Reserved.” The second (low) byte is for digital outputs 8-15. As
an example, if you had an LED connected to digital output 8 then setting the bit
for digital output 8 to 1 would turn on the LED.

The example below is a screenshot from STARTER, the Siemens configuration
tool. It shows digital output 8 (DO 8) as being configured as an output. Digital
output 8 corresponds to the seventh “spot” in the X121 interface on the front of
the drive.

DSProfinet Manual DSP Control Group, Inc. 19

Isolated digital inputs Bidirectional digital inputs/outputs | Measuring sockets

-

X121 Insert output Optimize view / simulation mode

Output ™
-’E Do 8 I utpu j o+—4*—© | p2082[0], Binector-connectar e DI)
i \”’_ (C [12091 B B0 7T PROFIdive (| [OF

Ilnput j -
Dlg ao*rg?—@ ||32DS2['I 1. Binectar-connector oo DI
@ o 1 I;-O [~

2
I

o : *—E'FO fr2081: Eir 1. B: FT PROFdive [(|
AL M
!Inpm :‘v [p2082(2], Bi =
Dl 10 4Q—® P , Binector-connector oc
10+ @ L e s EHselE
= E|| () [r2091 B Z B0 TET PROFIdrive [L |
Ilnput j s
11 _@ DIl = ‘_.;O'D—4’—® | p2082{3], Binector-connectar cc DI E—O B
% o S El“—@ [12091 B 3 BO:TFT PROFdive [¢ -
: r—
0:1 ﬂ Cloze i Help |
M, cu_s 004 |

Figure 9: The STARTER picture of digital /O on SINAMICS
For further information, please see the Siemens manual accompanying your drive.
Telegram 390 - data coming from the SINAMICS
CU_STW control unit status word

This field is 2 bytes in size.

The high nibble of the first byte is used for the PROFIdrive sign-of-life.

For further information, please see the Siemens manual accompanying your drive.
I DDA TAL 16-bit digital input control word

This field is 2 bytes in size.

The high byte is for digital inputs 0-7, and the low byte is for digital inputs

8-15. For further information, please see the Siemens manual accompanying
your drive.

DSProfinet Manual DSP Control Group, Inc. 20

8 Application Programming

In this section we describe how your application program can interface with the DSPROFINET
IRT Controller. The important concept to note is that your application will interact with the
DSPROFINET IRT Controller via dual-port ram. This interaction will occur in a
producer/consumer fashion. There are two ring buffers. For one ring buffer, your application
produces data for controlling the motor(s) and the DSPROFINET IRT Controller consumes the
data by sending it to the motor(s). The roles are reversed for the other ring buffer. The
DSPROFINET IRT Controller will produce (or more accurately, take data produced by the
motor(s)) and your application will consume the data.

First, let’s discuss what data your application needs to produce. There are two distinct
categories of data: data for the amplifier itself and data for the motor. Each will be described
below.

Datafor the SINAMICS drive

Each SINAMICS drive is to be given 4 bytes of data per cycle. For example, if the
DSPROFINET IRT Controller is responsible for two cu310 amplifiers then your application will
need to provide 8 bytes of SINAMICS data per cycle. If the DSPROFINET IRT Controller is
responsible for one cu320 then your application will provide 4 bytes of SINAMICS data per
cycle.

Datafor the motors
Each motor is to be given 18 bytes of data per cycle.

Communicating with the DSPROFINET IRT Controller

As mentioned previously, communication is done via dual-port RAM (DPR). Writing to and
reading from DPR can be achieved by using low level PCI functions found in the sample C
programs provided.

The code examples included with this manual are written in C for the DOS operating system.
Accesses to the PCI bus are made via DOS interrupt calls. DOS was chosen on purpose as the
simplest realtime operating system available. Other platforms such as Windows CE and Linux
would only obscure the principles we wish to convey.

The system calls required to establish communication with the DSPROFINET IRT Controller will
vary depending on your operating system. Regardless of the operating system, however, you
will begin by seeking the DSPROFINET IRT Controller's PCI unit number, based on its
Manufacturer ID (10B5h) and its Function ID (5201h). Function seek_devi ce(), included in
file PCI _LOW Cin next section, shows how this is done in DOS, using the provided function
read_config().

DSProfinet Manual DSP Control Group, Inc. 21

Essentially, seek_devi ce() checks the Manufacturer ID and Function ID for each PCI unit
until it has either found the correct ID's or run out of units to check. Read_confi g() uses a
DOS interrupt to access PCI configuration space. Again, in your application, you will use
whatever means your operating system provides to seek PCI devices.

Once the DSPROFINET IRT Controller's PCI unit number has been located, r ead_confi g()
is used again to find the address space at which the DSPROFINET IRT Controller's DPR is
mapped on your PC. In PCl _USR. C, also in the appendix, in mai n() , variable dpr_off is
assigned the 32-bit address at which DPR begins. The address is in the PCI unit's configuration
space starting at offset 18h.

Once you have located the DSPROFINET IRT Controller's PCI unit number, and extracted the
DPR starting address, you are ready to begin programming it.

When accessing the DSPROFINET IRT Controller's DPR via the PCI bus, it is important to keep in
mind that DPR is 16 bits wide, whereas the PCI bus is 32 bits wide. The following illustration
shows how DPR is mapped onto the PCI bus. In summary, the user will read or write 32 bits
from or to the PCI bus. When reading, the high 16 bits need to be discarded by the user's PC
application, and when writing the high 16 bits will be discarded by the DSPROFINET IRT
Controller.

Keep in mind, too, that because of this, any access to 16 bits at DPR offset x will be made to 16
bits at PCI offset x = 2.

Reading data from dual port RAM viathe PCI bus

Your PC application program needs to read data from the dual port RAM (an example of how it
is done in DOS can be seen with epeek() , epeek_wr apper () and byt e_peek() inthe
provided source code pci _| ow. ¢). Since the PCI bus is 32 bits wide and dual port ram is 16
bits wide, some mapping will have to occur, as seen in the following illustration.

BytesinDPR [0 |1 |2 |3 |4 [5 |6 |7 |

RN

Bytes on PCI
bus

Bytesinyour |0 [1 |2 [3 |4 |5 [6 |7 |
buffer

Figure 10: In order to get 8 bytes of meaningful data, the PCI bus will have to
return 16 bytes total

DSProfinet Manual DSP Control Group, Inc. 22

The final mapping, from PCI bus to your buffer, is what is performed by epeek_wr apper () in
our C code example.

Writing data to dual port RAM viathe PCI bus

Your PC application program also will need to write data to dual port RAM (an example of how it
is done in DOS can be seen with epoke() in the provided source code pci _| ow. c.) Since
the PCI bus is 32 bits wide and dual port RAM is 16 bits wide, some mapping will have to occur
as seen in the following illustration.

Bytes in your O |1 9 [10]11]12]13]14]15]

jm [T

Bytes on PCI \o\1|2| (7 |8 [9 [10]11[12]13[14[15]

bus
Bytes in DPR 3|4|5‘6|7\

buffer

Figure 11: When writing to dual port RAM via PCI bus, half of the data
you send will be discarded

Examples of creating data buffer for a 4-byte IP address and 6-byte MAC address, and writing
them to dual port RAM can be seen in the example C code provided.

Dual-Port Ram Organization

As mentioned before, there are two buffers in the dual-port RAM for communication between
your program application and the DSPROFINET IRT Controller — the Command and
SINAMICS feedback buffers. The Command ring buffer will be for data that your application
will use to control the motor. This data will be written by your application and sent to the
amplifier. The SINAMICS feedback ring buffer will be for data that the drive produces and
sends back to the DSPROFINET IRT Controller. Your application can read this data to “close
the position loop”. Each ring buffer will have 16 entries, thus supporting 16 cycles.

Command Ring Buffer — Data to the Amplifier:
This ring buffer will begin at memory offset 0x800. Each slot (or Cycle Data Block) in

this buffer will be 128 bytes, which is large enough to accommodate data for up to 4
motors.

DSProfinet Manual DSP Control Group, Inc. 23

SINAMICS Feedback Ring Buffer — Data from the Amplifier:

This ring buffer will begin at memory offset 0x1000. Each slot in this buffer will be 256
bytes, which is large enough to accommodate data from up to 4 motors.

Sample Application Program 1
This example will illustrate what would need to be done to control two motors with one cu320
unit with two motors.

First, since there is one cu320 and two motors, the DSPROFINET IRT Controller will require 4 +
18 + 18 = 40 bytes of data per cycle. We’ll assume the data is stored in a variable called rtc
and that your application has populated it with values:

unsi gned char rtc[40];
rtcf[O] 0x00;
rtcl[1] 0x59;

rtc[39] = Ox10;

The next step is to determine which address in dual-port RAM to write to next. Your application
will need to keep track of which slot (CDB index) to write to next:

int wite_slot = 0;
Let’s assume we should write at slot x, where 0<=x<=15. The calculation is as follows:

unsi gned long slot_addr;//address to wite to next
sl ot _addr = 0x800 + x * 128;

Where 0x800 is the base of the Command ring buffer and 128 is the size of one slot in this ring
buffer.

Now your application must decide if it should write. (It might not be able to if it has gotten far
enough ahead of the DSPROFINET IRT Controller such that it would start overwriting data that
hasn’t been read yet. Or, as in the DOS program example provided, your application may
decide to only write a new cycle after the previous cycle has been read.) The DSPROFINET IRT
Controller will update its location in the buffer each time it does a read. It will read first and then
update - for example, it will read slot O and then update it's pointer to slot 1, indicating that the
data has been taken from slot 0. Your application program can now write to slotO again
(assuming that it has already written slots 1,2,3, ..., 15 and therefore was waiting on slot O to
come open) or slot 1 (if it is just trying to stay one step ahead of the DSPROFINET IRT
controller).

data = byte_peek(dpr_off, 0x100);

while ((int)data '= wite_slot) {
data = byte_ peek(dpr_off, 0x100);

DSProfinet Manual DSP Control Group, Inc. 24

}

The condition in the while loop means that the DSPROFINET IRT Controller has not read the
data in the slot before wri t e_sl ot. Where wri t e_sl ot isthe CDB that your application is
ready to write to next. Once it reads the data, it will update 0x100 with the number of the next
slot.

Sample Application Program 2
In addition to controlling the motor only, let's assume you wish to read back the actual position
or velocity (or both) from the motor. For this we will use the second ring buffer.

For this buffer, the DSPROFINET IRT Controller performs a write first, and then your application
can read.

Let’s assume you have a cu320 amplifier controlling 2 motors. There will be 4 bytes of data
coming back for the cu320 and 18 bytes of data coming back for each motor.

unsi gned char rtc[40]; /14 + 2*¥18 = 40

Address 0x104 in dual-port RAM will be the index of the slot that the DSPROFINET IRT
controller will write to next. Therefore, your application can read the latest data by going to the
previous slot;

int read _slot = O;
data = byte_peek(dpr_off, 0x104);
if ((int)data == 0)
read_sl ot = 15;
el se
read_slot = (int)data — 1;

// Each slot is size 0x100. The base is at 0x1000.

Now you can use epeek() or one of it's variants (see pci _I ow. ¢ in section 9) to
extract the data yourself, or you can use the functions provided, such as

get _actual posl() or get_actual speed() to retrieve individual fields.

DSProfinet Manual DSP Control Group, Inc. 25

9 C Program Examples

The following C files are included in the DSPROFINET CD:

1.

2.

1.

pci _| ow. c that contains functions for PCI access to the DSPROFINET IRT controller
and;

pci _usr. c that contains a main application for controlling motors with the
DSPROFINET IRT controller - it makes use of the functions in pci _I ow. c to do things
such as read from and write to the dual-port RAM. We now discuss the main points of
each of the two files.

pci_low.c — PCl accessto DSPROFINET IRT controller’sdp RAM

The two most important operations to perform over the PCI bus are reading the dual-port RAM
and writing to it. The functions epeek() and epoke() perform these tasks. Other “wrapper”
functions, such as epeek_wr apper () and byt e_peek() have been provided for
illustration purposes, but these functions rely on epeek() itself.

1.1 Functionsfor reading data from the dual-port RAM

The following three functions can be used to read data from dual-port RAM. Note that
the PCI bus is 32 bits, whereas the dual-port RAM of the DSPROFINET IRT controller is
16 bits. This means that every time 16 bits are read, 32 bits will be returned to the host
PC application. The extra 16 bits will all be zeros. The function epeek() will leave
the zeros in place

epeek()

The function epeek() will take in an address, a storage buffer, and the number of 16-
bit words desired. Starting from the address provided, it will read in the number of
words asked for and store them in the provided storage buffer, along with the extra
padding of 16 bits of zeros for every 16 bit word read. Therefore the buffer provided
must be twice as large as the number of words asked for.

epeek_wr apper ()

The function epeek_wr apper (), like epeek(), will take in an address, a storage
buffer, and the number of 16-bit words desired. Starting from the address provided, it
will read in the number of words asked for and store them in the provided storage
buffer. It makes use of the epeek() function to get the data, hence storage must also
be twice as large as the number of words asked for. The extra feature of

epeek_wr apper is that it illustrates how to compact the data to the front of the buffer.

DSProfinet Manual DSP Control Group, Inc. 26

byt e_peek()

The function byt e_peek() will take in the address for the beginning of dual-port RAM
and the byte number from that address that is desired. This byte will then be returned.
This function can be regarded as a wrapper function of epeek () for just getting an
individual byte from dual-port RAM. It will mask off everything else and simply return 1
byte.

1.2 Functions for writing data to dual-port RAM

epoke()

The function epoke() will take in an address to write to, a buffer of data to write and,
the number of words to write. It will then write the specified number of words from the
buffer to the provided address.

1.3 Other PCI functions are:

read_config()

This function will take in a register number. It will read a word at that register from the
PCI configuration space. This is how to get information about the PCI device, such as
manufacturer information or the physical address of the dual-port RAM.

write_config()
This function will take in a word of data and a register number in the PCI configuration
space. It will write the given word to the register.

seek_devi ce()
This function will locate the PCI device with manufacturer ID 10b5h and function ID
5201h (the DSPROFINET IRT controller). It will return the device number.

. pci_usr.c — Controlling multiple motors via PCl based DSProfinet
IRT controller

mai n()

The first task of mai n() is to get the address of the dual-port RAM from the perspective
of the PCI. Next, configuration information such as which type of control unit (cu310 or
cu320) is online, the control unit’s IP address, the control unit's MAC address and, the
number of motors to be controlled need to be written to the dual-port RAM. Also,

mai n() clears the flags and then lets the DSProfinet IRT controller to know the
configuration information is present.

The configuration information will be in dual-port RAM as follows:

DSProfinet Manual DSP Control Group, Inc. 27

Control Unit Selection

0x200 0x01 if only one cu310 onling, 0x00 otherwise

0x201 0x00

0x202 0x01 if first of two cu310s is online, 0x00 otherwise
0x203 0x00

0x204 0x01 if second of two cu310s is online, 0x00 otherwise
0x205 0x00

0x206 0x01 if cu320 is online, 0x00 otherwise

0x207 0x00

Control Unit’s IP address

0x208 0Oxc0 (192 for example)
0x209 0Oxa8 (168 for example)
0x20a 0x01 (1 for example)
0x20b Oxch (203 for example)
Control Unit's MAC address
0x210 0x08 (for example)
0x211 0x00 (for example)
0x212 0x06 (for example)
0x213 0x93 (for example)
0x214 Oxac (for example)
0x215 Oxec (for example)

How many motors the control unit will be responsible for
| 0x21c | 0x02 (for example) |

After providing this information in dual-port RAM, the PC program needs to let the
DSProfinet IRT controller know that it is present. First, clear the flag at 0x110 in dual-port

RAM:
0x110 0x00
Ox111 0x00

Now write the characters “config” to dual-port RAM, starting at 0x112:

0x112 0x63
0x113 0x6f
0x114 0x6e
0x115 0x66
0x116 0x69
0x117 0x67

After that, mai n() will simply need to write and read data to and from the dual-port
RAM. User needs to at least insert one Cycle Data Block (CDB) in advance of an IRT
connection.

t wo_not or _poi nts()
This function will generate the points to control the motion of two motors.

It is assume that the STARTER project you use with this example has appropriately
configured a cu320 for two motors on a v2.1 Profinet firmware.

DSProfinet Manual DSP Control Group, Inc. 28

t hree_not or _poi nts()
This function will generate the points to control the motion of three motors.

It is assume that the STARTER project you use with this example has appropriately
configured a cu320 for three motors on a v2.1 Profinet firmware.

f our _not or _poi nt s()
This function will generate the points to control the motion of four motors.

It is assume that the STARTER project you use with this example has appropriately
configured a cu320 for four motors on a v2.1 Profinet firmware.

get _cu_stw()
This function will retrieve the 2-byte control unit status word field.

get i _digital ()
This function will retrieve the 2-byte digital input control word field.

get _stwl()
This will retrieve the 2-byte status word 1 field for a given motor (1-4).

get _actual _speed()
This will retrieve the 32-bit actual speed field for a given motor (1-4).

get _stw2()
This will retrieve the 2-byte status word 2 field for a given motor (1-4).

get _gl stw()
This will retrieve the 2-byte encoder 1 status word field for a given motor (1-4).

get _actual posl()
This function will retrieve the 4-byte encoder 1 actual position value 1 field for a given
motor (1-4).

get _actual _pos2()

This function will retrieve the 4-byte encoder 1 actual position value 2 field for a given
motor (1-4).

DSProfinet Manual DSP Control Group, Inc.

PCI_LOW.C Listing

AR E R R R R AR R RS R R R EE R R EE LR

* This file contains the inplenmentation of |ower-Ilevel routines for
* accessing dual -port RAM on the DSProfinet |IRT controller
**/
#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#i ncl ude<dos. h>
#i ncl ude<nat h. h>

AR AR R R R SRR R AR R R A SRR R EEE R R EE R LR R

*

The followi ng interrupt descriptions are copied fromRalf Brown's
PC interrupt list, available at http://ww.cs.cnu.edu/~ralf/files.htn.

The Borland C function int86() is used to execute these interrupts.
Most DOS C conpil ers have an equival ent function, although syntax
wi || probably differ sonewhat.

Functions epeek() and epoke() utilize the follow ng standard PC
systeminterrupt. Essentially, peripherals on the PCl bus are
mapped i nto extended nenory, so this is all we need to access them
once we know the addresses at which they are | ocated.

-------- B- 1587« <= == m e e
INT 15 - SYSTEM - COPY EXTENDED MEMORY
AH = 87h

CX = nunber of words to copy (nax 8000h)
ES: SI -> gl obal descriptor table (see #00499)
Return: CF set on error

CF clear if successful

AH = status (see #00498)

Notes: copy is done in protected node with interrupts disabled by
the default BIOS handl er; nany 386 nenory nanagers perform
the copy with interrupts enabled on the PS/2 30-286 &
"Tortuga" this function does not use the port 92h for A20
control, but instead uses the keyboard controller (8042).
Reportedly this nay cause the systemto crash when access
to the 8042 is disabled in password server node (see al so
PORT 0064h, #P0398) this function is inconpatible with the
OS/ 2 conpatibility box

SeeAl so: AH=88h, AH=89h, | NT 1F/ AH=90h

(Tabl e 00498)
Val ues for extended-nmenory copy status:

00h source copied into destination
01h parity error

02h interrupt error

03h address line 20 gating failed
80h invalid command (PC, PCr)

86h unsupported function (XT, PS30)

Format of gl obal descriptor table:

O fset Si ze Descri ption (Tabl e 00499)
00h 16 BYTEs zeros (used by BI 0S)
10h WORD source segnent length in bytes (2*CX-1 or greater)
12h 3 BYTEs 24-bit linear source address, low byte first
15h BYTE source segnent access rights (93h)
16h WORD (286) zero
(386+) extended access rights and high byte of source
addr ess
18h WORD destination segnent length in bytes (2*CX-1 or greater)
1Ah 3 BYTEs 24-bit linear destination address, |ow byte first
1Dh BYTE destination segnent access rights (93h)
1Eh WORD (286) zero

I T T T . T T T T I T T R R R I I

(386+) extended access rights and high byte of destin.

DSProfinet Manual DSP Control Group, Inc. 30

addr ess
20h 16 BYTEs zeros (used by BIOS to build CS and SS descriptors)

Function read_config() uses the following interrupt to read the config
space for the PCl device specified by registers BH and BL

-------- X-1ABL109------mmmmmm i
INT 1A - PCl BIGS v2.0c+ - READ CONFI GURATI ON WORD
B109h
bus nunber
devi ce/ function nunber (bits 7-3 device, bits 2-0 function)
regi ster nunber (0000h-00FFh, nust be nmultiple of 2) (see #00878)
Return: CF clear if successfu
CX = word read
CF set on error
AH = status (00h, 87h) (see #00729)
EAX, EBX, ECX, and EDX may be nodified
all other flags (except |IF) may be nodified
Notes: this function nay require up to 1024 byte of stack; it will not
enable interrupts if they were disabl ed before making the cal
the meani ngs of BL and BH on entry were exchanged between the
initial drafts of the specification and final inplenentation

us]
—
o nun

for register 00h if the PCl function nunber is nonzero

Function wite_config() uses the following interrupt to wite the config
space for the PCl device specified by registers BH and BL

-------- X-1AB10GC - ------mmmmmmmm e e

INT 1A - PCl BICS v2.0c+ - WRI TE CONFI GURATI ON WORD
AX
BH
BL

B10Ch
bus nunber
devi ce/ function nunber (bits 7-3 device, bits 2-0 function)
Dl regi ster nunber (multiple of 2 |less than 0100h)
CX = word to wite
Return: CF clear if successfu
CF set on error
AH = status (00h, 87h) (see #00729)
EAX, EBX, ECX, and EDX may be nodified
all other flags (except |IF) may be nodified
Notes: this function nay require up to 1024 byte of stack; it will not
enable interrupts if they were disabl ed before making the cal
the meani ngs of BL and BH on entry were exchanged between the
initial drafts of the specification and final inplenentation

LR R R R E R R R R R R R R R R R LY

*
*
*
*
*
*
*
*
*
*
*
*
* BUG the Award BI OS 4. 51PG (dated 05/24/96) incorrectly returns FFFFh
*
*
*
*
*
*
*
*
*
*
*

/1 The base address for dual-port RAM fromthe PCl's perspective
extern unsigned | ong dpr_off;

/**

* epeek()

* Read num words of data at address peek_add into the buffer pointed
* to by peek_data
**/
voi d epeek(unsigned | ong peek_add, unsigned int *peek_data
unsi gned | ong num wor ds)
{

//union REGS is defined in dos.h. For every register on an
/18086 conpati bl e processor, this union has a correspondi ng
/lentry. The function int86 expects two structures like this
//one containing the values to load into all of the processor's
/lregisters before launching an interrupt (inregs), and one in
//which to store the values of the registers after the interrupt

DSProfinet Manual DSP Control Group, Inc. 31

/lhas conpleted (outregs), for the user to review
uni on REGS inregs, outregs;

/1 The gl obal descriptor table from Table 00499 in interrupt
//description above.
char gdt[48];

/1 The address (in 32-bit format) at which we wish to store the
//data which we will read fromthe PC device.
unsi gned | ong add_dat a;

/I Figure address of user-supplied data buffer. W need to

//convert fromthe 8086's 20-bit segnent:offset format to

/la regular 32-bit offset.

add_data = FP_SEQ peek_data); //Load the segnent into add_data

//Shift the segnent up four bits to convert it to an offset,
//and add the address offset.
add_data = (add_data << 4) + FP_OFF(peek_data);

/1 Figure nunber of BYTES to read back from nenory.
numwords *= 2;

/1 Set up gl obal descriptor table (see Table 0499 in interrupt
//description above).

gdt[0x10] = numwords;

gdt[Ox11] = numwords >> 8§;

gdt[O0x12] = peek_add;

gdt[0x13] = peek_add >> 8;

gdt[Ox14] = peek_add >> 16;

gdt[Ox15] = 0x93;

gdt[O0x16] = (numwords >> 16) & OxOf;
gdt[O0x17] = peek_add >> 24;

gdt[O0x18] = num words;

gdt[O0x19] = numwords >> 8§;

gdt[Oxla] = add_data;

gdt[Ox1lb] = add_data >> 8;

gdt[Oxlc] = add_data >> 16;

gdt[Ox1d] = 0x93;

gdt[Oxle] = (numwords >> 16) & OxOf;
gdt[Ox1f] = add_data >> 24;

/1Set up interrupt.
inregs. h.ah = 0x87; /llnterrupt function: nove bl ock.
inregs.x.cx = numwords / 2; //No. of words to copy.

/1 Store offset of global descriptor table into segnent ES
/lin register Sl.
inregs.x.si = FP_OFF(&gdt[0]);

/1 Note that segnment register ES is set by default to the segnent
/1in which our gdt is located, so we do not need to set it.

// Execute interrupt.
int86(0x15, & nregs, &outregs);
}

/***

* epeek_wrapper ()

@ar am addr The offset into dpr.
@ar am dat a Storage for what is found at offset 'addr'.
@ar am num chars The nunber of bytes to get.

This function is used to illustrate the handling of data coming
back when you request two or nore bytes fromdual -port RAM For
every 2 legitimate bytes that PCl returns to us, there will be 2
bytes of Ox00 imedi ately followi ng. Hence if you requested 4

R N

DSProfinet Manual DSP Control Group, Inc.

bytes, it would cone back like this

Byt e
Byt e
Byt e
Byt e
Byt e
Byt e
Byt e

Thi s

byt e0
byt el
0x00
0x00
byt e2
byt e3
0x00
0x00

NogohRwNMRO

function will rectify the data so it is presented to the

caller as the caller woul d expect:

Byt e
Byt e
Byt e
Byt e

*
*
*
*
*
*
*
*
*
* Byte
*
*
*
*
*
*
*
*
*

0: byteO
1: bytel
2: byte2
3: byte3

LR R R R EE LR R R R R R R R Ry

voi d epeek_w apper (unsi gned | ong addr, unsigned char * data, int numchars)

{

}

int i

/1 Even t hough epeek expects the nunber of words, we can safely
/lpass it the nunmber of chars. This is because for every word
//that it finds, it brings along a word of 0x0000 paddi ng, which
//we will discard.

epeek(dpr _off + addr*2, (unsigned int *)data, numchars)

/1 Now hal f of what cane back is the padding with zeros, so
/llets renpove those. The pattern is this
//1ndexes 0,1, 4,5, 8,9, etc. have the legitimate data and
//the other indexes have 0x00
for (i=0; i < numchars; i+=2) {

data[i] = data[i*2]

data[i + 1] = data[(i*2) + 1];

AR AR R R R AR R AR RS R R R EEE R EE R R R LR R

* epoke()
*

* Wite numwords of data to address poke_add fromthe buffer pointed
* to by poke_data

LR R R R LR R R R R Ry

voi d epoke(unsi gned | ong poke_add, unsigned int *poke_data

{

unsi gned | ong num wor ds)

/lunion REGS is defined in dos.h. For every register on an
/18086 compati bl e processor, this union has a correspondi ng
/lentry. The function int86 expects two structures like this
//one containing the values to load into all of the processor's
/lregisters before |aunching an interrupt (inregs), and

//one in which to store the values of the registers after

//the interrupt has conpleted (outregs), for the user to review
uni on REGS inregs, outregs

/1 The gl obal descriptor table from Table 00499 in interrupt
//description above
char gdt[48];

/1 The address (in 32-bit format) fromwhich we will read the
//data which we will wite to the PCl device
unsi gned | ong add_dat a

/I Figure address of user-supplied data buffer. W need to
//convert fromthe 8086's 20-bit segnent:offset format to
/la regular 32-bit offset

DSProfinet Manual DSP Control Group, Inc.

33

add_data = FP_SEQ poke_data); //Load the segnent into add_data.

/1Shift the segment up four bits to convert it to an offset,
//and add the address offset.
add_data = (add_data << 4) + FP_OFF(poke_data);

/1 Figure nunber of BYTES to copy into nenory.
numwords *= 2;

/1 Set up global descriptor table (see Table 0499 in interrupt
// description above).

gdt[0x10] = num words;

gdt[O0x11] = numwords >> 8;

gdt[O0x12] = add_data;

gdt[O0x13] = add_data >> 8;

gdt[Ox14] = add_data >> 16;

gdt[O0x15] = 0x93;

gdt[O0x16] = (numwords >> 16) & OxOf;
gdt[O0x17] = add_data >> 24;

gdt[0x18] = num words;

gdt[0x19] = numwords >> 8;

gdt[Oxla] = poke_add;

gdt[Ox1lb] = poke_add >> 8;

gdt[Oxlc] = poke_add >> 16;

gdt[Ox1d] = 0x93;

gdt[Oxle] = (numwords >> 16) & OxOf;
gdt[Ox1f] = poke_add >> 24;

/1Set up interrupt.
i nregs. h.ah = 0x87; //1nterrupt function: nove bl ock.
inregs.x.cx = numwords / 2; // No. of words to copy.

/1 Store offset of global descriptor table into segnent ES
/lin register Sl.
inregs.x.si = FP_OFF(&gdt[0]);

/I Note that segment register ES is set by default to the segnent
//in which our gdt is located, so we do not need to set it.

/] Execute interrupt.
int86(0x15, & nregs, &outregs);
}

AR AR R R RS E R AR RS E R EE R R R R R

* read_config()
*

* Read a word at register reg_nunber fromthe PCl configuration space
* for the unit specified by inregs.h.bl.

LR R R RS E R R R R EEEY]

unsi gned int read_config(unsigned int reg_nunber, unsigned char device)

{

uni on REGS inregs, outregs;

inregs. h.ah = 0Oxbil; I/l nterrupt function: Read configuration word.
inregs. h.al = 0x09;
i nregs. h. bh = 0x00; //Bus nunber; nay be 0 or 1, depending on your notherboard.
inregs. h.bl = device; //Device nunber; generally, each PCl slot gets its own
devi ce nunber.
inregs.x.di = reg_nunber; //Register nunber; PCl devices have a variety of

regi sters we can read.
int86(Oxla, & nregs, &outregs);

return(outregs.x.cx);

}

IEEEE AR R R RS EE AR RS R R EEE R R R EE LR

* wite_config()

*

* Wite the word (data) to register reg_nunber in the PC

DSProfinet Manual DSP Control Group, Inc. 34

* configuration space for the unit specified by inregs.h.bl.

**/

unsigned int wite_config(unsigned int reg_nunber, unsigned int data,

unsi gned char device)

{
uni on REGS inregs, outregs;
inregs. h.ah = 0Oxb1l; /llnterrupt function: Wite configuration word.
inregs. h.al = 0xOc;
i nregs. h. bh = 0x00; /1 Bus nunber; nay be 0 or 1, depending on your notherboard.
inregs. h.bl = device; //Device nunber; generally, each PCl slot gets its own
devi ce nunber.
inregs.x.di = reg_nunber; //Register nunber; PCl devices have a variety of

registers we can wite.

}

inregs.x.cx = data; //Data to wite.

// Execute interrupt.
int86(Oxla, & nregs, &outregs);

return(outregs.x.cflag);

AR AR R R RS E R R R R R EE R R EE R R

* seek_device()

*

*

*

Finds the PCl device with manufacturer |ID 10b5h and function ID
5201h. Returns the device nunber.

LR R EEEE LR R R R R R EEEY]

unsi gned char seek_device(void)

{

}

unsi gned char devi ce;
uni on REGS inregs, outregs;

for(device = 0x00; device < Oxff &% (read_config(O, device) != 0x10B5
|| read_config(2, device) != 0x5201); device += 0x01);

return(device);

AR AR E R R EE AR R RS R R EE R R R EE R R R

*

*
*
*
*
*
*

byt e_peek()

@ar am DPR_of f The begi nni ng of DPR

@ar am byt e_num The nunber of the byte in DPR that
shoul d be returned. For exanple, 5
means the fifth byte fromthe
begi nni ng.

* A wrapper function to handle getting an individual byte from DPR
**/

unsi gned char byte_peek(unsigned | ong DPR of f, unsigned |ong byte_nun) {

unsigned long datal 1];

if (byte_num % 2) {
epeek(DPR off + (((byte_num- 1)/2) * 4), (unsigned int *) data, 1);
return (data[0] >> 8) & Oxff;

el se {
epeek(DPR_of f + ((byte_num 2) * 4), (unsigned int *) data, 1);
return (dataf0]) & Oxff;

DSProfinet Manual DSP Control Group, Inc.

35

PClI_USR.C Program Listing

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#i ncl ude<dos. h>

#i ncl ude<mat h. h>

//pci_low c contains the inplenentation of |ower-level PC functions
#i ncl ude "pci _| ow. c"

/] The base address for dual-port RAM fromthe PCl's perspective
unsi gned | ong dpr_off;

/1 The buffer for one cycle's points. 4 + 18 + 18 = 40 is enough if
//there are just two notors, add 18 bytes for each additional notor
unsi gned char rtc[76]; //4 notors

/1 W& need to keep track of which slot we wite to next.
int wite_slot = 0;

/W need to keep track of which slot to read from The DSProfinet IRT
//controller will place the data coming fromthe cu320 in one of the 16
//slots (256 bytes each, starting at 0x1000) in dual -port RAM

int read_slot =0

/1Just so we can see XERR changi ng
int xerr_inc =1

/1 As part of the devel opnent process, it helps to only run for a
[/ certain nunber of cycles
int numrun_cycles = 10000

/1 The buffer for the PCl to use. It will be the rtc[] buffer

//with every 16-bit word padded with zeros to nake them 32 bits

/1 This is because the PCl bus will read out 32 bits at a tine, but

/lonly 16 of those go to the 16-bit dual -port RAM The other 16

//which will now be zeros, will be |ost

unsi gned char pci _buf[152] = { //twice as large as rtc[]
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

}s

/1 The buffer holding the control unit's MAC address. As with pci_buf[],

/levery two bytes will be padded with 0x0000 so that when PCl takes 32 bits

//the 16 that are lost are the 0x0000 bits. The nmac address that | am using

/lhere is 0x08 0x00 Ox06 0x93 Oxac Oxec

unsi gned char mac_addr[12] = { //twice as |large as the needed 6 bytes
0x08, 0x00, 0x00, 0x00, 0x06, 0x93, 0x00, 0x00, Oxac, Oxec, 0x00, 0x00

b

/1 The buffer holding the control unit's |IP address
/1192.168. 1. 203
unsi gned char ip_addr[8] = {
0xc0, Oxa8, 0x00, 0x00, 0x01, Oxch, 0x00, 0x00
s

/1 The buffer holding infornation on which type of control unit is online

DSProfinet Manual DSP Control Group, Inc. 36

// Each of 0x200, 0x202, 0x204, 0x206 can be 0 or 1, depending on your
I/ configuration:

/1 0x200 = 0x00; //standal one cu310

/1 0x201 = 0x00;

11 0x202 = 0x00; //daisy-chain head cu310

11 0x203 = 0x00;

/1 0x204 = 0x00; //daisy-chain tail cu310

/1 0x205 = 0x00;

11 0x206 = 0x01; //cu320 - 0x01l neans this is online
11 0x207 = 0x00;

unsi gned char cu_sel ection[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00
H

/1 The buffer holding informati on on how many notors the control unit wll
/1 be responsible for. This can be 0x02, 0x03, or 0x04.
unsi gned char num notors[4] = {
0x02, 0x00, 0x00, 0x00
s

/1A buffer holding all zeros, used for clearing specific addresses.
unsi gned char clear_buf[4] = {

0x00, 0x00, 0x00, 0x00
¥

/1 The buffer holding the string "config". Witing this to 0x112 will let
//the DSProfinet IRT controller know that configuration info is present.
//This will allowit to start making an | RT connecti on.
unsi gned char cfg_ready_buf[12] = {

0x63, Ox6f, 0x00, 0x00, Ox6e, 0x66, 0x00, 0x00, Ox69, 0x67, 0x00, 0x00
h

/] Generates the points to nove two notors.
voi d two_not or _poi nts(void);

/] Generates the points to nove three notors.
voi d three_notor_poi nts(void);

/] Generates the points to nove four notors.
voi d four_notor_points(void);

/1 Functions for retrieving individual fields fromthe data sent by the
//control unit (cu320) to the DSProfinet IRT controller. get_cu_stw) and
//get_i _digital () return data about the control unit itself and hence take
/Ino parameters. The remaining functions return data about a notor and
//therefore take in the notor nunber as a paraneter. The data starts at
//of fset 0x1000 in dual -port RAM

unsi gned int get_cu_stw(void); /12 bytes, control unit status word
unsigned int get_i_digital (void); /12 bytes, digital input control word

unsi gned int get_stwl(int); /12 bytes, status word 1

unsi gned | ong get_actual _speed(int); //4 bytes, actual speed

unsi gned int get_stw2(int); /12 bytes, status word 2

unsigned int get_gl stw(int); /12 bytes, encoder 1 status word

unsi gned | ong get _actual _posi(int); /14 bytes, actual pos. value 1

unsi gned | ong get_actual _pos2(int); /14 bytes, actual pos. value 2

voi d mai n()
{
unsi gned int data;
unsi gned char b_dat a;
unsi gned char devi ce;
unsi gned char input; //What the user typed in
int i=0;
unsi gned |ong nml_actual _posl = 0, n2_actual _posl =
unsi gned | ong ml_actual _speed = 0, nR_actual _speed
unsi gned | ong ml_dat as[5000], n®_dat as[5000];
int index = 0;
FILE * fp;

0;
= O’

DSProfinet Manual DSP Control Group, Inc.

clrscr();

/1 Seek the PCl ethernet device on the PCl bus and display its
/] devi ce nunber .

printf("DEVICE: 9%4xh\n", seek_device());

devi ce = seek_device();

/] Get back manufacturer/device info fromthe PCl ethernet device.

printf("device = 9%94xh, Board |ID:. 9%04x %04x 9%04x 904xh\n", devi ce,
read_config(0, device), read_config(2, device),
read_config(4, device), read_config(6, device));

/1 CGet the address of dual-port RAMin PCl space. The |ow nibble
/lis config stuff that should be stripped out if it's nonzero.
dpr _off = read_config(Oxla, device) * 65536 +

read_config(0x18, device);

LEEEEEEEEE bbb bbb
/1 The first thing that needs to be done is to set the
//configuration in dual-port RAM

FEEEEEEEEE b bbb bbb

//Wite the control unit selection information to dpr, starting
//at address 0x200.
epoke(dpr _off + (0x200*2), (unsigned int *)cu_selection, 8);

//Wite the | P address, starting at 0x208 in dpr.
epoke(dpr_off + (0x208*2), (unsigned int *)ip_addr, 4);

//Wite the MAC address, starting at 0x210 in dpr.
epoke(dpr_of f + (0x210*2), (unsigned int *)mac_addr, 6);

//Wite the nunber of motors to control to dpr.
epoke(dpr_of f + (0x21c*2), (unsigned int *)numnmotors, 2);

//1n addition, we need to clear any flags that the DSProfinet |IRT
//controller sets for us. |If the controller was restarted (but not
//repowered) the flag indicating a valid | RT connection nay still
//be set. We clear this, and as the board cones up it will set it
/| agai n.

epoke(dpr _off + (0x110*2), (unsigned int *)clear_buf, 2);

//Let the DSProfinet IRT controller know that configuration info
/lis present. This will allowit to start making an | RT connecti on.
epoke(dpr _off + (0x112*2), (unsigned int *)cfg_ready_buf, 6);

printf("\nPress 's' to start: ");
scanf ("%", & nput);

//\We have to wite the first cycle's data in advance of the

/1 DSProfinet IRT controller getting a connection, so data is
//there by the time DSProfinet gets to IRT. After that we will
//wait on the DSProfinet |IRT controller before doing subsequent
//wites. The follow ng operations are comrented in great
//detail in the while | oop bel ow

t wo_not or _poi nts(); // CGenerate the points for two notors.
for (i=0; i< 80; i+=4) {

pci _buf[i] =rtcl[i/2];

pci _buf[i+1] =rtc[i/l2 + 1];

}

epoke(dpr _off + (0x800*2), (unsigned int *)pci_buf, 40);
wite_slot = 1;

printf("The first cycle's points are ready.\n");

//Before we can do cyclic data exchange with the notor, the
/1 DSProfinet IRT controller must have a connection with the
//control wunit.

b_data = byte_peek(dpr_off, 0x110);

while (b_data != 0x01)

DSProfinet Manual DSP Control Group, Inc.

b_data = byte_peek(dpr_off, 0x110);
printf ("I RT connection with control unit is ready!\n");

/11 RT Application. Instead of having a 1nms interrupt on this
//end and trying to synchronize it with the DSProfinet |RT
/lcontroller's interrupt, we can key off of when the DSProfinet
/11 RT control |l er does something. For instance, we need to wite
//points to the buffer at 0x800. | can wite one cycle's worth
//of points there, wait until the DSProfinet IRT controller
//reads them and sets 0x100. (0x100 changing is ny proof that
//the DSProfinet IRT controller read data.) Then | can wite
//again, etc.

while (1) {
while (numrun_cycles) {
NN NN

//Fill inm internal buffer, i.e generate one cycle's
//points (and store themin rtc[]) that | will send
/llater.

NNy
two_not or _poi nts();

/1 The PCl bus will take 32 bits at a tine, but only
/116 of those will nake it to dual -port RAM (since
/lit's a 16-bit RAM. Therefore we need to pad
//every 16-bit word with 16 bits of zeros so that

//the zeros will be what gets lost. In this case,
[/ pci_buf[] was initialized with 0x00s and so we
/ljust need to fill in the data we want, |eaving
//gaps of zeros every 16 bits. So it will Iook
/1like this:

/1

[/ pci _buf[0] =rtc[0]

/1pci_buf[1] =rtc[1]

/1 pci_buf[2] = 0x00

/] pci _buf[3] = 0x00

/1

/1 pci _buf[4] =rtc[2]

/I pci _buf[5] =rtc[3]

/] pci _buf[6] = 0x00

/] pci _buf[7] = 0x00

...

...

/...

/Il pci_buf[76] = rtc[38]

[lpci_buf[77] = rtc[39]

/1 pci_buf[78] = 0x00

[l pci_buf[79] = 0x00

for (i=0; i< 80; i+=4) {
pci _buf[i] =rtcl[i/2];
pci _buf[i+1] =rtc[i/2 + 1];

}

TEEEEEEEEE i rrrrrrrd

//Wait for an indication that the DSProfinet IRT

//controller has read the previous data we sent to it.

/1 The value at 0x100 will be the nunber of the slot that

//the DSProfinet IRT controller will read from next,

//which is the one we want to wite to now.

TEEEEEEEEE i rrrrrrrrrrrrd

b_data = byte_peek(dpr_off, 0x100);

while ((int)b_data != wite_slot) {
/1 The DSProfinet IRT controller hasn't read the
//last data yet. So we keep checking. Once the
/1 DSProfinet IRT controller HAS read it, we will
//wite new data (knowing that it'll be a
//mllisecond or so before the new data gets
//read). Basically, when the DSProfinet |IRT
//controller sets Ox100 it is telling us what

DSProfinet Manual DSP Control Group, Inc.

39

}

//slot it will read during the next cycle.
b_data = byte_peek(dpr_off, 0x100);
}

TEEEEEEEEE i rrrrrrrrrrrd
/I Now the DSProfinet IRT controller has read the |ast
//set of points we gave it. Wite the next points. The
//base of the slots that the Profinet |IRT board reads
//fromto get data for the drive is at offset 0x800.
/1 Each slot is 128 bytes.
TEEEEEEEEE i rrrrrrrd
epoke(dpr _off + (0x800 + wite_slot*128)*2, (unsigned int *)pci_buf,
write_slot++;
if (wite_slot == 16)

wite_slot = 0;

TEEEEEEEEE i rrrrrrrrrrrd
/1 Get what the control unit sent. By reading offset
/10x104 we can find where the DSProfinet IRT controller
//will wite to next; therefore, we read fromthe
/Il previous slot to get the nost current data.
TEEETEEEE i rrrrrrrrrrrrd
b_data = byte_peek(dpr_off, 0x104);
if ((int)b_data == 0)

read_sl ot = 15;
el se

read_slot = (int)b_data - 1;

/1 Get the data...

ml_actual _posl = get_actual _pos1(1l); //for motor 1

n2_actual _posl = get_actual _pos1(2); //for motor 2

ml_act ual _speed = get_actual _speed(1);

m2_act ual _speed = get_actual _speed(2);

//Use the data as necessary...| will store it and

//later print to a file for verification purposes.

if (index < 5000) {
nml_dat as[i ndex]
n2_dat as[i ndex]
i ndex++;

ml_act ual _speed;
n2_act ual _speed;

num run_cycl es--;

}

//Being as | amable to stay one step ahead of the DSProfinet
/1N RT controller, | haven't been updating 0x102. But now,
/1if | set it to slot O, eventually the DSProfinet |RT
//controller will notice, assume that it caught up to ne,
//assune that the data at slot O hasn't been updated (in other
//words, that the data at slot 0 is 16 cycles old) and wll
//send the previous cycle's data.

epoke(dpr _off + (0x102*2), (unsigned int *)clear_buf, 2);

fp = fopen("notorl.txt", "w');
for (index=0; index < 5000; index++)
[lfprintf(fp, "O0x%8Ix\n", nil_datas[index]);
fprintf(fp, "%u\n", nl_datas[index]);
fclose(fp);

fp = fopen("nmotor2.txt", "w');

for (index=0; index < 5000; index++)
fprintf(fp, "%u\n", nR_datas[index]);

fclose(fp);

/***

* two_not or _points()

DSProfinet Manual DSP Control Group, Inc.

40);

40

*

* This will generate the points to nove two notors. The
* data can be placed in one slot of the buffer in dual-port RAM

**/
voi d two_not or _poi nts(voi d)

{

unsi gned | ong xerr = 0;

// TELEGRAM 390. Note that the DSProfinet |IRT controller wll
//overwite the first byte, so just send 0x00.

rtc[0] = 0x00;
rtc[1] = 0x59;
rtc[2] = Oxal,;
rtc[3] = 0xb2;

TEEEEEEEEE i rrrrrrrd
/!l First Telegram5 - this is for notorl

TEEEEEEEE i rrrrrrrrrrrrd
//Control Word 1

rtc[4] = 0x04;

rtc[5] = Ox7f;

/] Speed Set poi nt

rtc[6] = 0x00;

rtc[7] = Oxff;//0x00;
rtc[8] = Oxff;//0x00;
rtc[9] = Oxff;//0x00;

/1 Control Word 2
//Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.

rtc[10] = 0x00;
rtc[11] = 0x00;
/1 GL_STW
rtc[12] = 0x00;
rtc[13] = 0xO00;
/1 XERR

xerr = 10000 + xerr_inc;

Xerr_inc++;

if (xerr_inc == 10000)
xerr_inc= 0;

rtc[14] = (xerr >> 24) & 0x000000ff;
rtc[15] = (xerr >> 16) & 0x000000ff;
rtc[16] = (xerr >> 8) & 0x000000ff;
rtc[17] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[18] = 0x00;

rtc[19] = 0xO00;

rtc[20] = 0x00;//0x27,

rtc[21] = 0x00;//0x10;

TEEEEEEEEE i rrrrrrrrrrrd
/1l Second Telegram5 - this is for notor2

TEEEEEEEEEr i rrrrrrr
//Control Word 1

rtcl22] 0x04;

rtcl 23] Ox7f;

/] Speed Set poi nt

rtc[24] = 0x01;//0x00;
rtc[25] = Oxff;//0x00;
rtc[26] = Oxff;//0x00;
rtc[27] = Oxff;//0x00;

/1 Control Wrd 2
// Note that the DSProfinet IRT controller will overwite

DSProfinet Manual DSP Control Group, Inc.

}

//the first byte of this word, so just send 0x00.
rtc[28] = 0xO00;
rtcl29] 0x00;

/1 GL_STW
rtc[30] = 0xO00;
rtc[31] = 0x00;

/1 XERR
xerr = 30000;
rtc[32] = (xerr >> 24) & 0x000000ff;

rtc[33] = (xerr >> 16) & 0x000000ff;
rtc[34] = (xerr >> 8) & 0x000000ff;
rtc[35] = (xerr) & 0x000000ff;

/I KPC Gai ns

rtc[36] = 0xO00;

rtc[37] = 0x00;

rtc[38] = 0x00;//0x27;

rtc[39] = 0x00;//0x10;

AR AR R R R E R R RS R E R EEEEEEEEEE R EEEEEEEEEE R

* three_notor_points()

* This will generate the points to nove three notors. The data can
* be placed in one slot of the buffer in dual-port RAM

LR R R R RS R R R R R R EEEY]

voi d three_not or_poi nts(voi d)

{

unsi gned | ong xerr = 0;

/1 TELEGRAM 390. Note that the DSProfinet IRT controller will
//overwite the first byte, so just send 0x00.

rtc[0] = 0xO00;
rtc[1] = 0x59;
rtc[2] = Oxal,;
rtc[3] = 0xb2;

PEEETEEEEE bbb nrnd
/!l First Telegram5 - this is for notorl

[EEEEEEEEE bbb nrrd
//Control Word 1

rtc[4] = 0x04;

rtc[5] = Ox7f;

/| Speed Set poi nt

rtc[6] = 0x00;

rtc[7] = Oxff;//0x00;
rtc[8] = Oxff;//0x00;
rtc[9] = Oxff;//0x00;

/1 Control Word 2
// Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.

rtc[10] = 0xO00;
rtc[11] = 0x00;
/1 GL_STW

rtc[12] = 0xO00;
rtc[13] = 0x00;

/1 XERR
xerr = 10000 + xerr_inc;
Xerr_inc++;
if (xerr_inc == 10000)
xerr_inc= 0;
rtc[14] = (xerr >> 24) & 0x000000ff;
rtc[15] = (xerr >> 16) & 0x000000ff;

DSProfinet Manual DSP Control Group, Inc.

42

rtcl16] (xerr >> 8) & 0x000000ff;

rtc[17] (xerr) & 0x000000ff;
/I KPC Gai ns

rtc[18] = 0xO00;

rtc[19] = 0xO00;

rtc[20] = 0x00;//0x27;

rtc[21] = 0x00;//0x10;

[EEEEEEEEE bbb nrnd
/'l Second Telegram5 - this is for notor2

PEEETEEEEEEE bbb nnnd
//Control Word 1

rtc[22] = 0x04;

rtc[23] Oox7f;

/| Speed Set poi nt

rtc[24] = 0x01;//0x00;
rtc[25] = Oxff;//0x00;
rtc[26] = Oxff;//0x00;
rtc[27] = Oxff;//0x00;

/1 Control Word 2

// Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.
rtc[28] = 0x00;

rtcl29] 0x00;

/1 GlL_STW

rtc[30] = 0xO00;

rtc[31] = 0xO00;

/1 XERR

xerr = 30000;

rtc[32] = (xerr >> 24) & 0x000000ff;
rtc[33] = (xerr >> 16) & 0x000000ff;
rtc[34] = (xerr >> 8) & 0x000000ff;
rtc[35] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[36] = 0x00;

rtc[37] = 0xO00;

rtc[38] = 0x00;//0x27,

rtc[39] = 0x00;//0x10;

TEEEEEEEEE i rrrrrrrrrrrrd
/1 Third Telegram5 - this is for notor3

TEEEEEEEEE i rrrrrd
//Control Word 1

rtc[40] = 0x04;

rtcl41] Ox7f;
/] Speed Set poi nt
rtc[42] = 0x00;
rtc[43] = Oxff;
rtc[44] = Oxff;
rtc[45] = Oxff;

/1 Control Wrd 2

//Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.
rtc[46] = 0x00;

rtcl47] 0x00;

/1 GL_STW
rtc[48] = 0x00;
rtc[49] = 0x00;

/1 XERR

DSProfinet Manual DSP Control Group, Inc.

43

}

xerr = 40000;
rtc[50] = (xerr >> 24) & 0x000000ff;

rtc[51] = (xerr >> 16) & 0x000000ff;
rtc[52] = (xerr >> 8) & 0x000000ff;
rtc[53] = (xerr) & 0x000000ff;

/I KPC Gai ns

rtc[54] = 0x00;

rtc[55] = 0xO00;

rtc[56] = 0x27,

rtc[57] = 0x10;

/***

*

*

*

*

f our _not or _poi nts()

This will generate the points to nove four nmotors. The data can be
pl aced in one slot of the buffer in dual-port RAM

LR R R R R R R R R R EEEY]

voi d four_notor_poi nts(void)

{

unsi gned | ong xerr = 0;

// TELEGRAM 390. Note that the DSProfinet |IRT controller wll
//overwite the first byte, so just send 0x00.

rtc[0] = 0xO00;
rtc[1] = 0x59;
rtc[2] = Oxal,;
rtc[3] = Oxb2;

[EEEEEEEE i nrng
/1l First Telegram5 - this is for notorl

FEEETEEEEEEE bbb innnd
//Control Word 1

rtc[4] = 0x04;
rtc[5] = Ox7f;
/| Speed Set poi nt
rtc[6] = 0xO00;
rtc[7] = Oxff;
rtc[8] = Oxff;
rtc[9] = Oxff;

/1 Control Word 2
// Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.

rtc[10] = 0xO00;
rtc[11] = 0x00;
/1 GL_STW
rtc[12] = 0xO00;
rtc[13] = 0x00;
/1 XERR

xerr = 10000 + xerr_inc;

Xerr _inc++;

if (xerr_inc == 10000)
xerr_inc= 0;

rtc[14] = (xerr >> 24) & 0x000000ff;
rtc[15] = (xerr >> 16) & 0x000000ff;
rtc[16] = (xerr >> 8) & 0x000000ff;
rtc[17] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[18] = 0x00;

rtc[19] = 0x00;

rtc[20] = 0x27,

rtc[21] = 0x10;

DSProfinet Manual DSP Control Group, Inc.

44

TEEETEEEE i rrrrrrrrrrrrd
/1l Second Telegram5 - this is for notor2

THEEEEEEEE i rrrrrd
/1 Control Word 1

rtc[22] = 0x04;
rtc[23] = Ox7f;
/] Speed Set poi nt
rtc[24] = 0x00;
rtc[25] = 0xO00;
rtc[26] = 0x00;
rtc[27] = 0x00;

/1 Control Wrd 2
// Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.

rtc[28] = 0x00;

rtc[29] = 0xO00;

/1 GlL_STW

rtc[30] = 0xO00;

rtc[31] = 0xO00;

/| XERR

xerr = 30000;

rtc[32] = (xerr >> 24) & 0x000000ff;
rtc[33] = (xerr >> 16) & 0x000000ff;
rtc[34] = (xerr >> 8) & 0x000000ff;
rtc[35] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[36] = 0x00;

rtc[37] = 0x00;

rtc[38] = 0x27,

rtc[39] = 0x10;

TEEEEEEEEE i rrrrr
/1 Third Telegram5 - this is for notor3

TEEETEEEE i rrrrrrrrrrrrd
/1 Control Word 1

rtc[40] = 0x04;
rtc[41] = Ox7f;
/] Speed Set poi nt
rtc[42] = 0x00;
rtc[43] = 0x00;
rtc[44] = 0x00;
rtc[45] = 0x00;

/1 Control Word 2

//Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.
rtc[46] = 0x00;

rtc[47] 0x00;

/1 GL_STW
rtc[48] = 0x00;
rtc[49] = 0x00;

/1 XERR
xerr = 15000;
rtc[50] = (xerr >> 24) & 0x000000ff;

rtc[51] = (xerr >> 16) & 0x000000ff;
rtc[52] = (xerr >> 8) & 0x000000ff;
rtc[53] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[54] = 0x00;

rtc[55] = 0x00;

DSProfinet Manual DSP Control Group, Inc.

45

}

rtc[56]
rtc[57]

0x27;
0x10;

TEEEEEEEEE i rrrrrd
/1l Fourth Telegram5 - this is for notor4

TEEETEEEEE i rrrrrrrrrrrd
/1 Control Word 1

rtc[58] = 0x04;
rtc[59] = Ox7f;
/] Speed Set poi nt
rtc[60] = 0x00;
rtc[61] = Oxff;
rtc[62] = Oxff;
rtc[63] = Oxff;

/1 Control Wrd 2
//Note that the DSProfinet IRT controller will overwite
//the first byte of this word, so just send 0x00.

rtc[64] = 0x00;
rtc[65] = 0xO00;
/1 GlL_STW
rtc[66] = 0xO00;
rtc[67] = 0x00;
/1 XERR

xerr = 25000;
rtc[68] = (xerr >> 24) & 0x000000ff;

rtc[69] = (xerr >> 16) & 0x000000ff;
rtc[70] = (xerr >> 8) & 0x000000ff;
rtc[71] = (xerr) & 0x000000ff;

/1 KPC Gai ns

rtc[72] = 0xO00;

rtc[73] = 0x00;

rtc[74] = 0x27;

rtc[75] = 0x10;

AR AR R R R AR E R AR R RS R R EE R R R R R R

*

*
*
*
*
*
*
*
*

get _cu_stw()
@eturn cu_stw 2-byte control unit status word field

Retrieve the control unit status word field fromthe data sent by
the control unit to the DSProfinet |IRT controller.

The data starts at the beginning of the CDB (slot).

LA R R R R EE LR R R R R R R R R R R LY

unsi gned int get_cu_stw()

{

}

unsigned int cu_stw = O;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16

//bits that get returned there will be 16 bits of 0x000 paddi ng,

//'hence you nust create storage for twi ce as nmany chars.
unsi gned char data[4]; //we only wany 2 chars.

epeek_wr apper (0x1000 + read_sl ot*256, data, 2);
cu_stw = ((unsigned |long)data[0] << 8) + data[1];

return cu_stw;

IEEE AR E R R EE AR R RS E R R R R R R R R R

* get_i_digital()

DSProfinet Manual

*

* @eturn i _digital 2-byte digital input control word field

DSP Control Group, Inc.

46

*
*
*
*
*
*

Retrieve the digital input control word field fromthe data sent
by the control unit to the DSProfinet IRT controller.

The data starts 2 bytes into the CDB (slot).

***/

unsigned int get_i_digital ()

{

}
/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

unsigned int i_digital = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
/1 hence you nust create storage for twice as nmany chars.

unsi gned char data[4]; //we only wany 2 chars.

epeek_wr apper (0x1000 + read_slot*256 + 2, data, 2);
i_digital = ((unsigned long)data[0] << 8) + data[1];

return i _digital;

khkhkhkhkhkhkhkhkhhkhhkhkhhhhkhkhkhkhhhkhhhhhhhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*%x

get _stwil()

@aram notor_num \Wich notor to retrieve for
@eturn statusl 2-byte status word 1 field

Retrieve the status word 1 field fromthe data sent by the control
unit to the DSProfinet IRT controller. The offset of where this
data is in relation to the other data is as follows:

For motorl, the data starts at the 4th byte

For motor2, the data starts at the (4+18)th byte

For motor3, the data starts at the (4+18+18)th byte
For nmotor4, the data starts at the (4+18+18+18)th byte

LR R R R R E R E R R R R R R R R Ry

unsigned int get_stwl(int notor_num

{

}
/*

*

R N

unsi gned int statusl = O;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
//'hence you nust create storage for twi ce as nmany chars.

unsi gned char data[4]; //we only wany 2 chars.

offset = 4 + (notor_num- 1)*18;

epeek_wr apper (0x1000 + read_slot*256 + offset, data, 2);
statusl = ((unsigned long)data[0] << 8) + data[l];

return statusi;
IR R SR RS EE S E R E SRS S SRR SRS R R R E RS RS RE R R REERE R RS EEREEREREEREEEEEEEESEESEEESES
get _actual _speed()

@aram notor_num \Wich notor to retrieve for
@eturn speed 4-byte actual speed

Retrieve the 32-bit actual speed field fromthe data sent by the
control unit to the DSProfinet IRT controller. The offset of where
this data is in relation to the other data is as follows:

For motorl, the data starts at the 6th byte

DSProfinet Manual DSP Control Group, Inc. 47

*

*

*

*

For motor2, the data starts at the (6+18)th byte
For nmotor3, the data starts at the (6+18+18)th byte
For nmotor4, the data starts at the (6+18+18+18)th byte

LR R R R R EE LR R R R R R R R R LY

unsi gned | ong get_actual _speed(int notor_num

{

}
/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

unsi gned | ong speed = O;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
/' hence you nust create storage for twi ce as nmany chars.

unsi gned char data[8]; //we only wany 4 chars.

offset = 6 + (notor_num- 1)*18;

epeek_wr apper (0x1000 + read_sl ot*256 + offset, data, 4);
speed = ((unsigned |ong)data[0] << 24) +

((unsigned long)data[1l] << 16) +

((unsigned long)data[2] << 8) +

dat a[3] ;

return speed,

khkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhkhkhkhhhhhhhkhhhhkhhkhkhkhhkhhkkkkxkk*x*%x

get _stw2()

@aram notor_num \Wich notor to retrieve for
@eturn status2 2-byte status word 2 field

Retrieve the status word 2 field fromthe data sent by the control
unit to the DSProfinet IRT controller. The offset of where this
data is in relation to the other data is as follows:

For nmotorl, the data starts at the 10th byte

For nmotor2, the data starts at the (10+18)th byte

For motor3, the data starts at the (10+18+18)th byte
For nmotor4, the data starts at the (10+18+18+18)th byte

LR R R R R E R R R R R R R R R Ry

unsi gned int get_stw2(int notor_num

{

}
/*

*

unsi gned int status2 = 0;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
//hence you nust create storage for twi ce as nmany chars.

unsi gned char data[4]; //we only wany 2 chars.

of fset = 10 + (notor_num - 1)*18;

epeek_wr apper (0x1000 + read_slot*256 + offset, data, 2);
status2 = ((unsigned long)data[0] << 8) + data[l];

return status2;

khkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhhhhhhhhhhkhkhkhkhkhkhhkhhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkkkkkkkkkx*x*%x

get _gl_stw()

DSProfinet Manual DSP Control Group, Inc.

48

*
*
*
*
*
*
*
*
*
*
*
*

@aram notor_num \Wiich notor to retrieve for
@eturn glstw 2-byte encoder 1 status word field

Retrieve the encoder 1 status word field fromthe data sent by the
control unit to the DSProfinet IRT controller. The offset of where
this data is in relation to the other data is as follows:

For motorl, the data starts at the 12th byte

For motor2, the data starts at the (12+18)th byte

For motor3, the data starts at the (12+18+18)th byte
For nmotor4, the data starts at the (12+18+18+18)th byte

LR R R R R E R R R R R R R R R R Ry

unsigned int get_gl stw(int notor_num

{

}
/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

unsi gned int glstw = 0;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
/Ibits that get returned there will be 16 bits of 0x000 paddi ng,
//'hence you nust create storage for twi ce as nmany chars.

unsi gned char data[4]; //we only wany 2 chars.

of fset = 12 + (notor_num - 1)*18;

epeek_wr apper (0x1000 + read_slot*256 + offset, data, 2);
glstw = ((unsigned long)data[0] << 8) + data[1];

return glstw

khkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhhhhhkhhkhkhkhkhkhkhhkhhkhhkkkkkk*x*%x

get _actual _posi1()

@aram notor_num Wiich notor to retrieve for
@eturn positionl 4-byte encoder 1 actual position value 1 field

Retrieve the encoder 1 actual position value 1 field fromthe data
sent by the control unit to the DSProfinet IRT controller. The

of fset of where this data is in relation to the other data is as
fol |l ows:

For nmotorl, the data starts at the 14th byte

For nmotor2, the data starts at the (14+18)th byte

For motor3, the data starts at the (14+18+18)th byte
For nmotor4, the data starts at the (14+18+18+18)th byte

LR R R R R E R R R R R R R R R R LRy

unsi gned | ong get_actual _pos1(int notor_num

{

unsi gned | ong positionl = 0;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
//'hence you nust create storage for twi ce as nmany chars.

unsi gned char data[8]; //we only wany 4 chars.

of fset = 14 + (notor_num - 1)*18;
epeek_wr apper (0x1000 + read_slot*256 + offset, data, 4);

/1 The first byte comi ng back (out of the 4 bytes) is the nost
//significant one.

DSProfinet Manual DSP Control Group, Inc.

49

}
/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

positionl = ((unsigned |long)data[0] << 24) +
((unsigned | ong)data[1l] << 16) +
((unsigned long)data[2] << 8) +
dat a[3] ;

return positioni,;

khkhkhkhkhkhkhkhkhhkhkhkhkhkhhhkhhkhkhhhhhhhhhhhhkhkhkhkhhkhhkhhkhhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk*x*%x

get _actual _pos2()

@aram notor_num \Wich notor to retrieve for
@eturn position2 4-byte encoder 1 actual position value 2 field

Retrieve the encoder 1 actual position value 2 field fromthe data
sent by the control unit to the DSProfinet IRT controller. The

of fset of where this data is in relation to the other data is as
follows:

For nmotorl, the data starts at the 18th byte

For motor2, the data starts at the (18+18)th byte

For motor3, the data starts at the (18+18+18)th byte
For nmotor4, the data starts at the (18+18+18+18)th byte

LA R R R R EE LR R R R R R R R R Ry

unsi gned | ong get _actual _pos2(int notor_num

{

unsi gned | ong position2 = 0;

/1 The offset into the read_slot. So if we are reading CDB
/13 (the 4th slot in the buffer) then this is how far into
//the slot to go to get the data.

int offset = 0;

/1Since we have a 16-bit RAM but a 32-bit PCl, for every 16
//bits that get returned there will be 16 bits of 0x000 paddi ng,
//'hence you nust create storage for twice as nmany chars.

unsi gned char data[8]; //we only wany 4 chars.

of fset = 18 + (notor_num - 1)*18;
epeek_wr apper (0x1000 + read_slot*256 + offset, data, 4);
position2 = ((unsigned |ong)data[0] << 24) +

((unsigned long)data[1l] << 16) +

((unsigned long)data[2] << 8) +

dat af 3] ;

return position2;

DSProfinet Manual DSP Control Group, Inc.

50

