

DSPowerlink

Interfacing Network Adapter with Ethernet Powerlink (EPL)

Rev.2.2
August 20, 2009

DSP Control Group, Inc.

EPL Powerlink

Why Ethernet Powerlink (EPL)

ETHERNET Powerlink (EPL) is a deterministic real-time protocol for
standard Ethernet. EPL expands Ethernet with a mixed polling and time-slicing
mechanism. That brings:

∗ guaranteed transfer of time-critical data in very short isochronous
cycles with configurable response time

∗ time-synchronization of all nodes in the network with a very high
precision of sub-microseconds

∗ transmission of less time-critical data in a reserved asynchronous
channel

DSPCG implementations reach cycle-times of 200µs and a time-precision (jitter)
of less than 1µs.

This communication profile meets timing demands typical for high-performance
automation and motion applications without changing basic principles of the Fast
Ethernet Standard IEEE 802.3; it also extends it towards Real Time Ethernet
(RTE).

EPL is a cyclic communications network. The diagram below represents one
EPL cycle.

Ethernet Powertlink

 2

Asynchronous

Period

Preq.
to

CN1

Presp.
from
CN1SoC

Preq.
to

CN2

Preq.
to

CN3

Preq.
to

CNn

Idle Period

EPL Cycle

Start of Cycle Isochronous
Period

Asynchronous
Period

Presp.
from
CN2

Presp.
from
CN3

Presp.
from
CNn

Figure 1: An EPL cycle consists of three segments

To avoid collisions and to make maximum use of the bandwidth, data exchange
between the devices is time slot-based. One device on the EPL network takes on
the function of the Managing Node, which controls the communication, defines
the clock pulse for synchronization of all nodes, and assigns the right of
transmission to the individual devices. The Controlled Nodes only transmit when
requested to by the manager. An EPL cycle is divided into three periods (Fig. 1):

∗ Start of Cycle (SOC): Here the manager transmits a "Start of Cycle"
frame (SoC) as a broadcast message to all controllers. All devices in the
EPL network synchronize on the SoC.

∗ Isochronous Period: Cyclic data exchange takes place in this time
period. According to a preset (configurable) schedule, the manager
transmits a Poll Request frame (PReq) sequentially to each controller.
The addressed controller responds with a Poll Response frame (PRes).
All nodes involved with these data can receive them, whereby a real
producer (or consumer) communication between the nodes is achieved
similar to CAN.

∗ Asynchronous Period: This time interval is available for
asynchronous, non-time-critical data exchange. The Master Node grants
access to one of the Controlled Nodes based on a priority which the
request contains.

The application interface of EPL is based on the mechanisms defined in the
CANopen communication profile DS301 of CAN in Automation. This opens up

EPL Powerlink

a wide range of readily available and usable device and application profiles for
EPL.

The reference model for EPL is similar to the communication mechanisms and
elements of CANopen. Supported elements include PDO (Process Data Objects,
which transmit cyclic real-time data such as I/O and encoder feedback), SDO
(Service Data Objects, which are transmitted during the Asynchronous period of
EPL), object dictionaries, and network management. Also, the SDO protocol can
be implemented via UDP/IP and therefore using standard IP messages. This
enables direct access to the object dictionaries of EPL devices by devices and
applications outside the EPL system via special EPL routers.

As a result of its impressive features, EPL is suitable for implementing
applications with hard real-time requirements in the range of microseconds.

Ethernet Powertlink

 4

Hardware Description

Figure 2: DSPowerlink Board Layout

Figure 2 illustrates the DSPowerlink card. DSPowerlink interfaces any member
of the Mx4 controller family to an EPL network, as well as to a regular Ethernet
connection on a personal computer. The LEDs D1 through D6 allow the user to
observe signal activity on either side of the network. J1 and J2 are RJ45
Ethernet connectors. J1 connects DSPowerlink to an EPL network, while J2
allows an ordinary PC to download a DSPL program to the card’s memory. In
fact, simultaneous with the EPL cycle, a PC can issue real time commands
(RTC) to the Mx4 controller.

DSPowerlink

 EPL Standard Ethernet

EPL Powerlink

Four DIP switches determine the MAC address the card will use on the EPL
network. The MAC address is determined as follows:

node sw1 sw2 sw3 sw4 MAC address DSPNET Node

 MN 0(off) 0 0 0 00:CA:FE:F0:0D:00 0
 CN 0 0 0 1 00:CA:FE:F0:0D:01 1
 CN 0 0 1 0 00:CA:FE:F0:0D:02 2
 CN 0 0 1 1 00:CA:FE:F0:0D:03 3

 MN 0 1 0 0 00:CA:FE:F0:0D:04 4
 CN 0 1 0 1 00:CA:FE:F0:0D:05 5
 CN 0 1 1 0 00:CA:FE:F0:0D:06 6
 CN 0 1 1 1 00:CA:FE:F0:0D:07 7

Note that no two devices on an EPL network can share a MAC address. Also
note that the EPL standard requires one node to be set to the first entry in the
table above, to configure it as the Managing Node. In a single motion control
card application, a DSPowerlink card will serve as Managing Node. Above,
switch setting illustrates a system with two Managing Nodes each with a unique
DSPNet address setting.

A Simple, Single-DSPowerlink Network

Figure 3 illustrates the topology of a simple system inclusive of a single
DSPowerlink card and associated Mx4 controller, and one bank of remote I/O.
As noted earlier, the Managing Node (DSPowerlink) must be programmed at
address 0 (all switches are set to off). The remote I/O modules (e.g. B&R X20
BC0083) can be set to any non-zero address and, finally, the Ethernet connector
of the DSPowerlink card may be connected to the Ethernet terminal of an
ordinary PC.

Ethernet Powertlink

 6

R E M O T E I / O

E P L

E T H E R N E T

' 631 (7�0 1

Figure 3: A system inclusive of one DSPowerlink and a remote I/O

Using Multiple DSPowerlink Cards in an EPL Network

Figure 4: Using DSPowerlink cards as both Controlled and Managing Nodes

Generic PC

e.g., B&R
X20BC0083
with DI, DO etc.

Generic PC

DSPowerlink (MN)

DSPowerlink (MN)

DSPowerlink (CN)

DSPowerlink (CN)

EPL Powerlink

Figure 4 illustrates the use of several DSPowerlink cards in an EPL network,
along with a remote I/O unit. Clearly, only one DSPowerlink card can be the
Managing Node, while all others must be the Controlled Nodes. It is noteworthy
that this by no means will impose a constraint on the functionality of any Mx4
controller. Thus, from the application point of view all Mx4 boards are alike and
they all share the same remote I/O unit.

Figure 5: Using DSPowerlink in a daisy-chained configuration

Figure 5 illustrates the use of several DSPowerlink cards in a daisy chained
network operation. A daisy-chained network configuration requires a different
flash firmware version.

General Hardware Considerations

Two points should be kept in mind when assembling an EPL network:

First, Ethernet cables come in two varieties: straight-through and crossover.
DSPowerlink cards work with either type of cable, but some routers work with
only one kind or the other. If you use a router in your network, be sure to use the
type of cable specified in your router documentation.

Second, if all nodes on the network do not power up within a couple of seconds
of each other, make sure that the Managing Node powers up after all of the other
nodes. Otherwise the network may not initialize properly.

Software Description

DSPowerlink (MN)

DSPowerlink (CN)

DSPowerlink (CN)

e.g., B&R
X20BC0083 with DI, DO etc.

Ethernet Powertlink

 8

Users of DSPowerlink with an Mx4 controller can use one of two different
software interfaces to control the Mx4 from a host PC. The first is via DSP
Control Group's Mx4Pro software environment, which permits the user to write,
compile, and download DSPL programs for an Mx4 controller; and view DSPL
program operation on the Mx4 controller by monitoring DSPL variables in real
time.

The second method is to use C routines and Windows 2000/XP drivers provided
by DSP Control Group to create your own Windows applications to
communicate with and control each Mx4 Controller.

Installing Mx4Pro (applicable only to star connected firmware
version)

To install Mx4Pro, simply run Mx4Pro5302\setup.exe from the installation CD.
The installation process will prompt you for the directory to install to on your
hard drive.

You will need to install the latest version of Mx4Pro’s DSPL compiler to
accommodate all of DSPowerlink’s features. Copy the file DSPLCO32.EXE
from the root directory of the installation CD to the directory into which you
have installed Mx4Pro. When asked whether you want to overwrite the existing
file in the Mx4Pro directory, click OK.

To install the DSPowerlink driver for Windows,

1. Select Network and Dial-up Connections from Windows Control Panel
2. Select the Networking tab
3. Click the Install... button
4. From the component list, select Protocol
5. Click the Add... button
6. Click the Have Disk... button (these are instructions for Win XP. For Win

2K these instructions are slightly different see: Readme.txt)
7. Browse to the Drivers\Win2000_Drivers directory on the installation CD if

you are installing under Windows 2000, or Drivers\WinXP_Drivers if you are
installing under Windows XP

8. Select the DSPNet protocol
9. Windows may prompt for a .sys file; this can be found in the

Drivers\Win2000_Drivers or Drivers\WinXP_Drivers directory selected in
step 7. above.

10. NOTE: The DSPNet protocol will NOT appear in the list of network
protocols. This is normal.

EPL Powerlink

After installing the protocol, all you need to do is connect an Ethernet cable from
the host PC to any DSPowerlink card. A connection will be established
automatically when you run Mx4Pro.

Installing a Simple C-Language Project

Multiple C-language projects are included on the installation CD to demonstrate
interfacing to a DSPowerlink card from a user's application. The projects are
designed to run from a DOS command-line window under Windows 2000 or
Windows XP, and are simple command-line applications which permit the user
to access dual-port RAM (DPR) on the Mx4 controller on which the
DSPowerlink card is installed, and to download various types of data tables. It is
assumed that the user is familiar with DOS command-line operations.

Interfacing to a DSPowerlink card from C requires first that WinPcap, an open-
source freeware Ethernet interface, be installed on your computer. A version of
WinPcap in included on the installation CD in the root directory. Run the
executable WinPcap_4_0.exe to install WinPcap to your computer. The same
version of WinPcap works for both Windows 2000 and Windows XP.

Two sample projects generated using Microsoft Visual C++ 6.0, are included on
the CD, and each project comes in two versions. One version has its interface
routines compiled into a DLL; the other has the routines included as source files
which you can view and modify.

The projects are included as compressed zip files on the installation CD. Simply
decompress whichever version you want into a directory on your hard drive, and
modify or run the project as desired. The project DPR provides a simple
interface to DPR on an Mx4 controller. Run the executable DPR.EXE, located
in the Debug subdirectory of the project, without any command-line parameters
to see an information screen describing program operation.

For more information about understanding DPR, see the user manual for your
Mx4 controller.

The project DWNLD permits the user to download DSPL code and various cam
and cubic spline tables to the Mx4 controller. Run the executable DWNLD.EXE,
located in the Debug subdirectory of the project, without any command-line
parameters to see an information screen describing program operation.

For more information about DSPL and the various tables supported by your
Mx4, see the user manual for your Mx4 controller.

Ethernet Powertlink

 10

EPL Powerlink

Glossary

Process Data

The data exchanged during the isochronous phase are known as Process Data
Objects (PDO) and are device and application dependent. You choose what data
you wish to exchange at ‘design time’. Examples would be control and status
information, speed, position, torque demand for a drive, digital and analogue I/O
information, or perhaps absolute position from an EPL encoder.

Multiplexing to Optimize Bandwidth

Each of the time slots can actually be multiplexed amongst a number of
Controlled Nodes, which then effectively operate at a lower cycle rate. This
allows some devices to operate at an optimum fast cyclic rate, while lower
priority devices operate at lower bandwidth. This provides a great deal of design
flexibility for system configuration and optimization.

Asynchronous Period

The remaining cycle time is allocated for asynchronous, or non-real-time,
communications. The Managing Node will grant access to this period to one of
the Controlled Nodes based on a request and prioritization scheme. Messages are
standard IP messages, so communication with the outside world for maintenance
or production monitoring and control can take place.

Service Data

During the asynchronous period, devices can request or respond with Service
Data Object (SDO) messages, which can contain any information which is
generally not time critical. This can be for control purposes such as gain
changes, or configuration and maintenance purposes from outside the EPL
network.

Ethernet Powertlink

 12

Internet and Network Connection

EPL uses standard Ethernet infrastructure and physics, Hubs, CAT5e STP
cabling, PHYs and MACs. EPL gateways (routers) provide a means of
networking an EPL system to higher-level IT network infrastructure with
integrated firewall and NAT services your IT specialists will be familiar with.

EPL Security

EPL is designed to operate as a protected network segment. Connection to other
networks is done via an EPL router/gateway. An EPL router/gateway is similar
to traditional routers, but with the behavior of an EPL device on one side and the
behavior of a standard Ethernet router on the other side. These routers act as a
mediator and also a security barrier between the open and non-deterministic
Ethernet, and the deterministic EPL network. EPL routers integrate firewall
technologies, which prevent unauthorized access, thereby maintaining network
security and keeping hackers out.

EPL Powerlink

EPL_INP1_REG, EPL_INP2_REG
IDENTIFIER

IDENTIFIER Real-time status of EPL inputs 0 to 31

USAGE DSPL (PLC, Motion)

DESCRIPTION

These input bit registers may be assigned to DSPL variables, or they
may be used in conjunction with logical bitwise operators as part of the
following conditional expressions in the DSPL language: IF, WHILE
and WAIT_UNTIL.

EPL_INP1_REG

 A 16-bit value coding the status of EPL inputs (0 to 15).
 A bit set to 1 indicates the corresponding EPL input is in

an active state.

EPL_INP2_REG

 A 16-bit value coding the status of EPL inputs (16 to 31).
 A bit set to 1 indicates the corresponding EPL input is in

an active state.

Ethernet Powertlink

 14

EPL_INP1_REG, EPL_INP2_REG cont.

EXAMPLE

 The following DSPL segment holds the program until the EPL
input 31 is on:
wait_until(EPL_INP2_REG & 0x8000)

∗ The following DSPL program segment increments var2 whenever
EPL input 1 is on:
var1 = 1
while (var1 == 1)

 if (EPL_INP1_REG & 0x0001)

 var2=var2+1

 endif

wend

∗ The following DSPL program segment assigns the contents of

EPL_INP1_REG to var42:

var42 = EPL_INP1_REG

EPL Powerlink

EPL_OUTP_ON

FUNCTION Sets EPL Outputs to 'On' State

EXECUTION 200 microseconds

SYNTAX

 [Mx4 Octavia and Mx4 and Mx42 family]
EPL_OUTP_ON (outp1,outp2)

USAGE DSPL (PLC, Motion)

ARGUMENTS

outp1 A 16-bit value coding the EPL outputs (0 to 15)
to be set to ON. A bit set to 1 sets the correspondingEPL
digital output to 1. A bit set to zero leaves the
corresponding EPL digital output unchanged.

outp2 A 16-bit value coding the EPL outputs (16 to 31)

to be set to ON. A bit set to 1 sets the corresponding EPL
digital output to 1. A bit set to zero leaves the
corresponding EPL digital output unchanged.

A complete bank of 32 digital outputs is sent cyclically to all nodes via
the EPL network.

DESCRIPTION

This command sets the corresponding EPL digital output to an “ON”
state.

SEE ALSO EPL_OUTP_OFF, OUTP_ON, OUTP_OFF

APPLICATION

This command can be used for a general purpose logical output
operation.

Ethernet Powertlink

 16

EPL_OUTP_ON cont.

EXAMPLE

∗ The following DSPL command turns on EPL outputs 2,3 and 31:
EPL_OUTP_ON (0x000C, 0x8000)

∗ Also, the following DSPL program segment toggles all 32 EPL

outputs on and off every 0.5 seconds.

var1 = 1
while (var1 == 1)

epl_outp_on(0xFFFF, 0xFFFF)
delay (2500)
epl_outp_off(0xFFFF, 0xFFFF)
delay(2500)

wend

EPL Powerlink

EPL_OUTP_OFF

FUNCTION Sets the EPL Outputs to 'Off' State

EXECUTION 200 microseconds

SYNTAX

 [Mx4 Octavia and Mx4 and Mx42 family]
EPL_OUTP_OFF (outp1,outp2)

USAGE DSPL (PLC, Motion)

ARGUMENTS

outp1 A 16-bit value coding the EPL outputs (0 to 15)
to be set to OFF. A bit set to 1 sets the corresponding
EPL digital output to 0. A bit set to zero leaves the
corresponding EPL digital output unchanged.

outp2 A 16-bit value coding the EPL outputs (16 to 31)

to be set to OFF. A bit set to 1 sets the corresponding
EPL digital output to 0. A bit set to zero leaves the
corresponding EPL digital output unchanged.

A complete bank of 32 digital outputs is sent cyclically to all nodes via
the EPL network.

Ethernet Powertlink

 18

DESCRIPTION

This command sets the corresponding EPL digital output to an “OFF”
state.

SEE ALSO EPL_OUTP_ON, OUTP_ON, OUTP_OFF

APPLICATION

This command can be used for a general purpose logical output
operation.

EPL Powerlink

EPL_OUTP_OFF cont.

EXAMPLE

∗ The following DSPL command turns off EPL outputs 1,2 and 30:
EPL_OUTP_OFF (0x0006, 0x4000)

∗ Also, the following DSPL program segment toggles all 32 EPL

outputs on and off every 0.5 seconds.

var1 = 1
while (var1 == 1)
 epl_outp_on(0xFFFF, 0xFFFF)
 delay (2500)
 epl_outp_off(0xFFFF, 0xFFFF)
delay(2500)
wend

DSPL Command Set

8-50

EPL_NODE1_WRITE,
EPL_NODE2_WRITE,
EPL_NODE3_WRITE

FUNCTION Write data at a given offset to a controlled node

EXECUTION 200 microseconds

 SYNTAX

 [Mx4 Octavia and Mx4 and Mx42 family]

 EPL_NODE1_WRITE(offset, data)

EPL_NODE2_WRITE(offset, data)

EPL_NODE3_WRITE(offset, data)

USAGE DSPL (PLC, Motion)

ARGUMENTS

offset A DSPL variable or constant in the range 0-3,
referring to which of four words of the controlled
EPL device that is to be written to.

data 16 bits of device-specific data.

DSPL Command Set

DSPL Programmer’s Guide v6.0 8-51

EPL_NODE1_WRITE,
EPL_NODE2_WRITE,
EPL_NODE3_WRITE … continued

DESCRIPTION

This command will write two of the available eight bytes for a given
controlled node.

SEE ALSO EPL_NODEx_IN0, EPL_NODEx_IN1

APPLICATION

 This command can be used for device-specific logical output
operations, as the significance of ‘data’ will depend upon the controlled
device. Also, the numbers “1”, “2”, and “3” that refer to the specific
controlled node are relative to the master. Therefore, if the master is
node 4 then EPL_NODE1_WRITE will be writing to node 5. If the master
is node 8, then EPL_NODE1_WRITE will be writing to node 9, etc.

EXAMPLE

 The following DSPL program can be used for turning
a Baldor EPL motor. In this example the Baldor
motor is node 2.

plc_program:
 run_m_program (my_first)
end

my_first:
 var1 = 1;

 epl_node2_write(0x0, 0x0000);
 epl_node2_write(0x1, 0x0000);
 epl_node2_write(0x2, 0x0000);
 epl_node2_write(0x3, 0x0000);

 epl_node1_write(0x0, 0x0000);
 epl_node1_write(0x1, 0x0000);
 epl_node1_write(0x2, 0x0000);
 epl_node1_write(0x3, 0x0000);

; Condense into 16-bit writes.

DSPL Command Set

8-52

EPL_NODE1_WRITE,
EPL_NODE2_WRITE,
EPL_NODE3_WRITE … continued

 epl_node2_write(0x0, 0x0000);
 epl_node2_write(0x1, 0x0000);
 epl_node2_write(0x2, 0x0000);
 epl_node2_write(0x3, 0x0000);
 delay(100);

 epl_node2_write(0x0, 0x0080);
 delay(500);
 epl_node2_write(0x0, 0x0000);
 delay(500);
 epl_node2_write(0x1, 0x0001);
 delay(500);

 epl_node2_write(0x0, 0x0046);
 delay(500);
 epl_node2_write(0x0, 0x0047);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(500);

 while(var1 == 1)
 epl_node2_write(0x2, 0x09c4);
 epl_node2_write(0x3, 0x0000);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0xf63b);
 epl_node2_write(0x3, 0xffff);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0x1388);
 epl_node2_write(0x3, 0x0000);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0xec77);
 epl_node2_write(0x3, 0xffff);

 epl_node2_write(0x0, 0x005F);
 delay(500);

DSPL Command Set

DSPL Programmer’s Guide v6.0 8-53

EPL_NODE1_WRITE,
EPL_NODE2_WRITE,
EPL_NODE3_WRITE … continued

 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0x2710);
 epl_node2_write(0x3, 0x0000);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0xD8EF);
 epl_node2_write(0x3, 0xffff);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0x4e20);
 epl_node2_write(0x3, 0x0000);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);

 epl_node2_write(0x2, 0xb1DF);
 epl_node2_write(0x3, 0xffff);

 epl_node2_write(0x0, 0x005F);
 delay(500);
 epl_node2_write(0x0, 0x004F);
 delay(2000);
 wend

end

DSPL Command Set

8-54

EPL_NODE1_IN0, EPL_NODE1_IN1,
EPL_NODE2_IN0, EPL_NODE2_IN1,
EPL_NODE3_IN0, EPL_NODE3_IN1

FUNCTION Real-time status of a controlled node’s 16 bit input words

EXECUTION 200 microseconds

USAGE DSPL (PLC, Motion)

 DESCRIPTION Each of these variables will reflect one of the 16 bit words
associated with a given controlled node. The meaning of the
returned data is specific to the type of controlled node that the
data is coming from.

These values may be assigned to DSPL variables, or they may
be used in conjunction with logical bitwise operators as part of
the following conditional expressions in the DSPL language:
IF, WHILE, and WAIT_UNTIL.

EPL_NODEx_IN0 A 16-bit value coding the

status of a controlled
node’s inputs 0-15.

EPL_NODEx_IN1 A 16-bit value coding the

status of a controlled
node’s inputs 16-31.

Also, the numbers “1”, “2”, and “3” that refer to the specific
controlled node are relative to the master. Therefore, if the
master is node 4 then EPL_NODE1_WRITE will be writing to
node 5. If the master is node 8, then EPL_NODE1_WRITE
will be writing to node 9, etc.

SEE ALSO EPL_NODEx_WRITE

DSPL Command Set

DSPL Programmer’s Guide v6.0 8-55

EPL_NODE1_IN0, EPL_NODE1_IN1,
EPL_NODE2_IN0, EPL_NODE2_IN1,
EPL_NODE3_IN0, EPL_NODE3_IN1 … continued

EXAMPLE
 The following DSPL segment holds the program

while waiting for controlled node 3’s low 16 input
bits to be a certain value:

 wait_until(EPL_NODE3_IN0 & 0x0001)

 The following DSPL segment assigns the contents of

controlled node 2’s input:

var2low = EPL_NODE2_IN0
var2high = EPL_NODE2_IN1

The following DSPL program can blink the lights on
a PLC in an EPL network when the PLC is node 1:

plc_program:

run_m_program (my_first)
end

my_first:
var1 = 1;

 epl_node1_write(0x00, 0x0001);

while(var1 == 1)
 var2 = epl_node1_in0;
 var3 = epl_node1_in1;
 var4 = var2 & 128;

 if(var2 & 32)
 var10 = 1;
 else
 var10 = 0;
 endif;

 if(var2 & 64)
 var11 = 2;
 else
 var11 = 0;
 endif;

 if(var2 & 16)

DSPL Command Set

8-56

EPL_NODE1_IN0, EPL_NODE1_IN1,
EPL_NODE2_IN0, EPL_NODE2_IN1,
EPL_NODE3_IN0, EPL_NODE3_IN1 … continued

var12 = 4;

 else
 var12 = 0;
 endif;

 if(var2 & 128)
 var13 = 8;
 else
 var13 = 0;
 endif;

 var14 = var10 + var11;
 var14 = var14 + var12;
 var14 = var14 + var13;

 epl_node1_write(0, var14);
wend;
end

