DSPEtherCAT User's Guide i1

EtherCAT Motion Controller & Yaskawa Sigma 7

DSPEtherCAT — Master EtherCAT Motion Controller ~ DSP Control Group, Inc.

CONTENTS

1 Introducing DSPEtherCAT

DSPEtherCAT Timing CYCIE ...uuvveeeeiiiiiireeeee e 1-2
NEtWOIrK DEIAYuvvvveeiiiiiiiiiieeee e 1-3

2 EtherCAT Principle of Operation

Data EXChaNEE ..ccooueiiiiiiieeccece ettt 2-2
Timing and Synchronization........cccceeevviieeeiniiee e 2-3
Transfer Mechanism in EtherCATcoovvviieiiviiieeiiieeeceieeen 2-3
Telegram ProCesSiNg ...ccceeeevcveeeiriiieeecsieeee e e e s e 2-3
Distributed ClOCK.......ccoviiiieieiiiiee et 2-4
CANopen Over ETherCAToovviviieeeeieeee e 2-5

3 DSPEtherCAT Master Communication

DSPEtherCAT (CoE) Communications Settingsccccveeeevennnns 3-1
Normal Device Recognition Process at Startup.......cccceceeeeeennens 3-1
Device Configuration on Servo Drivescccceeevuvveeeeeeeeinnnnnns 3-1
D10 I 1V =T o] o1 =43 3-2

4 DSPEtherCAT and Drives’ Inner-Workings

Synchronous and Asynchronous Motionscccccceeeviiveeennns 4-1
ACYCIIC MOTION. ..ottt 4-2
Cyclic Update Rateuvvviviiiieieiieee et 4-3
Process Requirementsc.ceceeeeiiiiiiiiiiiiiiiiiieieneneneeeeeeeeeeeeeeeee 4-3

5 DSPEtherCAT Instruction Set

DSPEtherCAT Network TOpologyccccvvvveeeeeeiiiicirieeeee e 5-1
Installing Mx4pro Development Software.......ccccovvvveeeeeeeeinnnnns 5-2
Installing C Language Project.......cccoecvuvveeeieeeieiciinreeeeeeeeeeennne 5-3
DSPEtherCAT Configuration Filecccovvveeeeiiiiiiiiiiieeeeee e, 5-5
ETHERCAT INP1 REG, ETHERCAT INP2 REG....cccevvvvuceeeeeeens 5-8
ETHERCAT _OUTP_ON c.uniieeeeeeeceeee et 5-10

ETHERCAT_OUTP_OFF ..cooiiiiiiiiiiiiiiiritnec e 5-12

DSPEtherCAT
DSPEtherCAT Motion Controller & Yaskawa Sigma 7 v1.1

This documentation may not be copied, photocopied, reproduced, translated, modified, or reduced to any
electronic medium or machine-readable form, in whole or in part, without the prior written consent of DSP
Control Group, Inc.

© Copyright 2016-2017
DSP Control Group, Inc.
4445 W 77" Street
Minneapolis, MN 55435
Phone: (952) 831-9556
FAX: (952) 831-4697
All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every effort to provide accurate, useful
information.

Use of this product in an electro mechanical system could result in a mechanical motion that could cause harm.
DSP Control Group, Inc. is not responsible for any accident resulting from misuse of its products.

DSPL, Mx4, Acc4, Vx4++, and Vx8++ are trademarks of DSP Control Group, Inc.
Other brand names and product names are trademarks of their respective holders.

DSPCG makes no warranty or condition, either expressed or implied, including but not limited to any implied
warranties of merchantability and fitness for a particular purpose, regarding the licensed materials.

1 Introducing DSPEtherCAT

DSPEtherCAT is a high-speed, high-precision motion controller
that uses real-time industrial EtherCAT protocol and supports
both the line and star topologies. DSPEtherCAT is offered in three

platforms of

e PCl-based DSP motion control hardware,

e Stand-alone DSP motion controller and,

e Soft Motion controller (meaning,using a
real-time operating system, commands are
generated inside the PC by the user program.)

EtherCAT. ™ =

Ethernet TCP/IP etc. By = I

- @ T P

5 g— |
L)

DSPEtherCAT Master Motion Controller and Network Manager

DSPEtherCAT v1.1 1-1

Introduction to DSPEtherCAT

1-2

DSPEtherCAT Timing Cycle

With EtherCAT there is only one packet per cycle; each slave's
data is in a specified part of that packet. Since Ethernet allows for
a maximum packet size of 1518 bytes, subtracting the 18 bytes for
Ethernet overhead leaves 1500 bytes for EtherCAT to work with
(also there will be 14 bytes of EtherCAT header, leaving 1486
bytes for data). This lends itself to optimal bandwidth utilization.
When you incorporate the 32 bytes of overhead per packet, one
large packet is certainly more optimal than many small packets.

14 Bylea 2 Bytas 44-1408 Bytes 4 Bytas

Firgt EtherCAT Datagram Sacond o nth EtharCAT Datagram
10 Bytes Maximum 1486 Bytas *Bytas
Datagram Header Data WC

B Bit B Bit 16 Bit 16 Bit 11 Bit

Crmd Indax Paosition

Addrass Dffsat

Logical Address

Ethernet frame structure/ EtherCAT Datagram used by
DSPEtherCAT

EtherCAT protocol has a unique feature that distinguishes it from
other industrial networking protocols. With EtherCAT there is

DSPEtherCAT v1.1

Introduction to DSPEtherCAT

only one packet per cycle; each slave's data is in a specified part
of that packet.

Other protocols require one packet per slave, with each slave also
sending one packet back to the master. Hence when there are
many slaves, EtherCAT's approach does not put much of a load on
the master's CPU. This can allow for faster cycle times.

Network Delay

The EtherCAT packet leaves the master and then traverses the
network. The delay introduced by processing (forwarding) at each
slave is bounded by approximately 500 nanoseconds. (The reason
that the delay from each slave is so low is because of special
hardware that each EtherCAT slave must have. This hardware
allows for data to be read or written while the packet passes
through the slave.) Taking into account the PHY delay and cable
delay, the addition of a slave can add 1 microsecond of delay into
the system.

The EtherCAT protocol is a real-time industrial Ethernet protocol.
As a matter of fact, it was one of the first, and is supported well
and widely used. Most people are now familiar with the term
"Ethernet". Because this technology has been so developed and
tested, it now presents itself as a solution for industrial
networking as well. The components, such as Ethernet cabling
and PHY interfaces, are well-tested and widely available. These
components are used in an EtherCAT solution.

2 EtherCAT Principle of Operation

DSPEtherCAT v1.1

The EtherCAT protocol transfers data directly within a standard
Ethernet frame without changing its structure. When the master
controller and slaved drives are on the same network, the
EtherCAT protocol merely replaces the Internet Protocol (IP) in
the Ethernet frame.

TCP/UDP TCP/UDP
Header

Ethernet Ethernet Data
Header (up to 1498 bytes)

EtherCAT

Ml PDO Data

Ethernet Frame Structure With EtherCAT

Data is communicated between a master and drives in the form
of Process Data Objects (PDOs). Each PDO has an address to one
particular drive/IO device or multiple slaves, and this “data and
address” combination (plus the Working Counter for validation)
makes up an EtherCAT telegram. One Ethernet frame can
contain multiple telegrams.

2-1

EtherCAT Principle of Operation

2-2

Data Exchange

With most real-time protocols, the master controller sends a data
packet and must wait for the Process Data to be interpreted and
copied at every slave node. However, this method of determinism
may be difficult to sustain because the master controller must add
and manage a relatively long processing time and jitter per slave.

EtherCAT overcomes this limitation by processing each frame on
the fly. For example, suppose the Ethernet frame is a moving
train, and the EtherCAT telegrams are train cars. The bits of PDO
data are people in the cars who can get off or get in at the
appropriate slaves. The whole “train” passes through all the slave
drives/IOs without stopping, and the end slaves end sit back
through all the slaves again.

Master Slave

[
|l=l

In the same way, when device 1 encounters the Ethernet packet
sent by the master, it automatically begins streaming the packet
to device 2, while reading and writing to the packet with only a
few nanoseconds of delay. Because the packet continues passing
from slave to slave, it could be present in multiple drive slaves at
the same time.

What does this mean practically? Consider having 5 slave devices,
and different data is sent to each slave. For non-EtherCAT
implementations, this may mean sending 5 different packets. For
EtherCAT, one long packet that touches all slaves is sent, and
thepacket contains 5 devices’ worth of data. However, if all the
slaves need to receive the same data, one short packet is sent,
and the slaves all look at the same part of the packet as it is
streaming through, which optimizes the data transfer speed and

DSPEtherCAT v1.1

EtherCAT Principle of Operation

bandwidth.

Timing and Synchronization

Another factor in achieving deterministic networks is the master
controller’s responsibility to synchronize all slave devices with the
same time using distributed clocks. One of the slave devices must
contain the master clock that synchronizes the other slave
devices’ clocks. Accurate synchronization is particularly important
when widely distributed processes requires simultaneous actions
such as coordinated motion between motion axes.

Transfer Mechanism in EtherCAT

Seen from Ethernet view, a EtherCAT bus is a single Ethernet
participant. This participant receives and sends Ethernet
telegrams. Inside this Ethernet participant there are many
EtherCAT® slave devices, which process data on the fly.

The telegrams are only delayed for a micro seconds by each slave.
Each telegram is processed by all the slaves until it arrives at the
last slave in the line. The processed telegram is sent back from the
last slave to the first slave, which relays it back to

the master controller.

Telegram Processing

As was explained earlier, the telegrams are processed on the fly.
During forwarding the telegram to the next device, the slaves
interpret the EtherCAT commands and read its input data. Output
data for the master or for another slave is also inserted in that
same telegram.

EtherCAT Principle of Operation

The processing of telegrams is performed by the slave hardware.
Thus, the processing speed of an eventually connected processor
does not influence the processing.

Several EtherCAT Process Data Units (PDU) can be embedded
in one EtherCAT® telegram. Each can address one or more
slaves.

An EtherCAT PDU consists of

e Header
e Data Area
e Working Counter

The Working Counter is incremented by each slave which is
addressed by this PDU and which has successfully carried out the
command embedded in the header of the PDU. The Master-
Communication-Module compares the received Working
Counter with the expected value (No. of slaves).

There are two types of EtherCAT® telegrams: with and without
UDP/IP. Telegrams without UDP/IP can only be used in an
Ethernet subnet. Telegrams with UDP/IP allow IP routing and
perform communication over router.

Distributed Clock

Highly accurate synchronization between the slaves is required if
distributed slaves are used to carry out actions simultaneously.
One of those applications for example is the control of several
servo drive axes, which must perform coordinated motion.
EtherCAT uses synchronization according to IEEE 1588. This
method performs synchronization that is robust to
communication disturbances. This synchronization mechanism
eliminates:

EtherCAT Principle of Operation

o different start-up times

e delay times between the slave with the master
clock and all other slaves

e drift in the local clocks.

CANopen over EtherCAT (CoE)

The CANopen protocol is preferably used for transferring
configuration parameters to the slaves. It can also be used for the
transmission of Process Data. Instead of a standard CANopen
protocol, which can only transfer 9 bytes of user data, CoE
transfers a maximum of 1478 bytes. Therefore, the CoE protocol
can be used to transfer process data with variable length.

DSPEtherCAT v1.1

3 DSPEtherCAT Master Communication

DSPEtherCAT v1.1

DSPEtherCAT (CoE) Communications Settings

In a DSPEtherCAT, servo drive secondary addresses (set on the
amplifier’s front panel) can be used in order to identify slave
devices on the network.

i [
BE

OO

Setting the address on servo drive : Upper four bits Lower four bits of EtherCAT secondary
address

Normal Device Recognition Process at Startup
When communication is started, the DSPEtherCAT master uses
auto-increment addressing to detect the slaves. The Identity
objects read from the slaves are compared with the master
configuration information - set in advance with an EtherCAT
Servo Drive configuration tool. Therefore, the slaves must be
connected in the network in the same manner as they appear in
the DSPEtherCAT master configuration.

Device Configuration on Servo Drives

The master uses auto-increment addressing to read the station
addreses set by their address switches. It then compares the
detected station addresses with the master configuration to get
the topology that was set as the network topology.

3-1

DSPEtherCAT Master Commuication

3-2

Example: Yaskawa SERVOPACK Station Alias Register (0x0012)

The value of the register can be read as follows:
Configured station alias = (S1 set value) x 16 + (S2 set value)

PDO Mappings

This section is informative only to more advanced developers who use
Yaskawa SGDV EtherCAT as their slave drives. The process data that is
used in process data communications is defined in the PDO mappings.
PDO mappings are definitions of the applications objects that are sent
with PDOs. The PDO mapping tables are in indexes 1600h to 1603h for
the RxPDOs and indexes 1A00h to 1A03h for the TxPDOs in the object

dictionary.

The following figure shows an example of PDO mappings.

Object Dictionary

@
3 Inclex Subincex Object Contents
i O ADD 1 OxBTTT OxTT 8
é 01 AD0 2 Ox8UUU OxUU 8
< | O0x1A00 3 TRV Y 18
| PDOJength: 32 bits___{___
|
OxBTTT OxTT Object A :
§ OxEULU | OxUU Object B |
O eV (o Chject ©
5| OxEYYY | oxvy Chjsct D
% 77z | oz Object E
£

In addition to the above PDO mappings, PDOs have to be assigned
to the Sync Managers to exchange EtherCAT process data.The
Sync Manager PDO assignment objects (1C12h and 1C13h)
establish the relationship between these PDOs and the Sync

Managers.

DSPEtherCAT Master Communication

The following figure shows an example of a Sync Manager and the
PDO mappings.

Object Dictionary
Objsct Dictionary

[glel=4 Subindex Object Contents

0x1C13 1 1 ACO
0x1C13 2 1 A

Syne Manager Entity z

Syne Manager PDO
Assignment objects

]
01400 PDO_1 }
O ACT PDO_2 |
oAz PDO_3
01403 POO_4

Mapping
objects

Setting Procedure for PDO Mappings

DSPEtherCAT v1.1

4 DSPEtherCAT and Drives’ Inner-Workings

Before reading this sections there are a few abbreviations you
need to know.

e CoE CANopen over EtherCAT - Profile for motion
control

e DC Distributed Clocks - Synchronization
mechanism

e ESC EtherCAT Slave Controller - Interface
between EtherCAT bus and slave application

Synchronous & Asynchronous Motions
There are two timing modes in any EtherCAT motion control.

e Cyclic Synchronous Motion, CoE, in which points on
a coordinated trajectory are transmitted each
communication cycle

e Acyclic motion (asynchronous motion), in which
the trajectory is transmitted as one command in
one communication cycle.

Cyclic Synchronous motion
Synchronization is required to support cyclic motion.
Cyclic motion support is necessary if realtime interaction with

slaves is necessary.

Examples:

e Coordinated motion — synchronizing position of

DSPEtherCAT v1.1 4-1

DSPEtherCAT & Dirives’ Inner-Workings

4-2

multiple axes
e Example: x-y-z milling machine cutting a cyllinder
e Time-critical events to occur based on another
event — for instance an input signal or set an
output when motor passes a specific position.

Cyclic motion support allows operation in every most servo drive
motion modes:

e Profile modes (Position, Velocity, Torque)

e Cyclic modes (Position, Velocity, Torque)

e Interpolated Position mode — Mode 1 & Mode 2
e Homing mode

Distributed Clock (DC) is the synchronization mechanism for an
EtherCAT network in tightly coordinated or interpolated motions.

Acyclic motion

Synchronization is not required to perform acyclic motion.
Acyclic motion support is limited to operation in the following
modes:

e Profile modes (Position, Velocity, Torque)
e Interpolated Position mode — Mode 2 (Yaskawa)
e Homing mode

Distributed Clocks do not need to be implemented on the
DSPEtherCAT master for acyclic motion support.

The Yaskawa Drive is set to “Free-Run”, by setting ESC register
0x980 = 0x0000.

In this mode, the cycle during which the drive samples physical
inputs and sets physical outputs is not synchronized with the
network communication cycle.

DSPEtherCAT v1.1

DSPEtherCAT and Drives’ Inner-Workings

Cyclic Update Rate

The network’s cyclic update rate is defined as the frequency of
the DSPEtherCAT master transmitting process data to the slaves.
The cycle time or communication cycle can be determined from
the cyclic update rate.

Example: A network’s cyclic update rate of 1 kHz has a cycle time
of 1 ms, and a communication cycle of 1 ms.

The following factors affect the selection of a cyclic update rate
that meets application requirements:

e Application requirements

e Example: Closing the position loop in the master.

e Cycle time of other devices on the network and
features the master supports.

Example: Yaskawa drive operates at cycle times that are a
multiple of 125 us (and up to 4 ms maximum), and another slave
that operates at cycle times that are a multiple of 100 us, the
DSPEtherCAT master may need to set a lowest common multiple
of the two devices (in this case, 500 us).

Process Requirements
The process requirements dictate the required DSPEtherCAT
network cycle time. Consider the following requirements:

° The rate at which the DSPEtherCAT master equires
input process data from the slave (e.g. for data
logging).

° Whether or not the master is required to react

based on the process data from the drive (e.g. if
the master must close a position or velocity control
loop through the network).

DSPEtherCAT & Dirives’ Inner-Workings

4-4

e When possible, make a system that avoids closing control
loops through the network and instead fully utilizes the
processing power available on the drive slave (e.g., by
using interpolated position or CSP) you can minimize the
need for network bandwidth:

e EtherCAT network bandwidth is used more efficiently,
allowing a reduced network update to be used

e EtherCat network and processing demands on the
DSPEtherCAT master are reduced, allowing lower
performance hardware to be used without sacrificing
system performance

Example: In CoE Cyclic Synchronous Position mode, the
DSPEtherCAT master transmits a new position value to the drive
each communication cycle. The position values are calculated by
the DSPEtherCAT from a pre-determined path (such as in CNC
contouring motions or a coordinated packaging application). The
next position values are not dependent on the feedback position
values from the drive. Velocity is not transmitted by the master
DSPEtherCAT in this mode, because the velocity is calculated as
the position delta over time (the communication cycle being the
time). The tuning algorithms in the drive amplifier may be used
so that the position of the motor matches closely to the position
values transmitted by the DSPEtherCAT. In this application, the
master is not required to react based on process data from the
slave. The slave drive is closing the position loop. An acceptable
cycle time may be 2 ms in this example.

DSPEtherCAT Instruction Set

5 DSPEtherCAT Instruction Set

In @ master motion control card application, either DSPEtherCAT
PClI or its stand-alone version will serve as the Master EtherCAT
Controller.

DSPEtherCAT Network Network Topology

The figure below illustrates the topology of a simple system
inclusive of a single DSPEtherCAT unit and associated drive slave
units. The remote 1/O modules can be set to any non-zero address
and, finally, the Ethernet connector of the DSPEtherCAT card may
be connected to the Ethernet terminal of an ordinary PC.

Users of DSPEtherCAT can use an Mx4pro development software

DSPEtherCAT v1.1 1

DSPEtherCAT Instruction Set

on their PC. The Mx4Pro software environment permits the user
to write, compile, and download DSPL programs for an
DSPEtherCAT controller; and view DSPL program operation on the
controller by monitoring DSPL variables on PC in real time.

The second method is to use C routines and Windows XP/Win 7
drivers provided by DSP Control Group to create your own
Windows applications to communicate with and control a
DSPEtherCAT Controller.

Installing Mx4Pro Development Software

To install Mx4Pro, simply run Mx4Pro5304\setup.exe from the
installation CD. The installation process will prompt you for the
directory to install to on your hard drive.

You will need to install the latest version of Mx4Pro’s DSPL
compiler to accommodate all of DSPowerlink’s features. Copy the
file DSPLCO32.EXE from the root directory of the installation CD to
the directory into which you have installed Mx4Pro. When asked
whether you want to overwrite the existing file in the Mx4Pro
directory, click OK.

To install the DSPowerlink driver for Windows,

1 Select Network and Dial-up Connections from Windows
Control Panel

Select the Networking tab

Click the Install... button

From the component list, select Protocol

Click the Add... button

Click the Have Disk... button (these are instructions for
Win XP. For Win 2K these instructions are slightly different.

Uk WN

DSPEtherCAT v1.1

DSPEtherCAT Instruction Set

7 Browse to the Drivers on the installation CD if you are
installing under Windows 7, or Drivers\WinXP_Drivers if
you are installing under Windows XP.

8 Select the DSPNet protocol

9 Windows may prompt for a .sys file; this can be found in
the Drivers\Win7 or Drivers\WinXP_Drivers
directory selected in step 7. above.

10 NOTE: The DSPNet protocol will NOT appear in the list of
network protocols. This is normal.

After installing the protocol, all you need to do is connect an
Ethernet cable from the host PC to any DSPowerlink card. A
connection will be established automatically when you run
Mx4Pro.

Installing a C-Language Project

Multiple C-language projects are included on the installation CD
to demonstrate interfacing to a DSPowerlink card from a user's
application. The projects are designed to run from a DOS
command-line window under Windows 7 or Windows XP, and are
simple command-line applications which permit the user to access
dual-port RAM (DPR) on the Mx4 controller on which the
DSPowerlink card is installed, and to download various types of
data tables. It is assumed that the user is familiar with DOS
command-line operations.

Interfacing to a DSPowerlink card from C requires first that
WinPcap, an open-source freeware Ethernet interface, be
installed on your computer. A version of WinPcap in included on
the installation CD in the root directory. Run the executable
WinPcap_4_0.exe to install WinPcap to your computer. The same
version of WinPcap works for both Windows 7 and Windows XP.

Two sample projects generated using Microsoft Visual C++ 6.0,

DSPEtherCAT Instruction Set

are included on the CD, and each project comes in two versions.
One version has its interface routines compiled into a DLL; the
other has the routines included as source files which you can view
and modify.

The projects are included as compressed zip files on the
installation CD. Simply decompress whichever version you want
into a directory on your hard drive, and modify or run the project
as desired. The project DPR provides a simple interface to DPR on
an Mx4 controller. Run the executable DPR.EXE, located in the
Debug subdirectory of the project, without any command-line
parameters to see an information screen describing program
operation.

For more information about understanding DPR, see the user
manual for Mx4 controller.

The project DWNLD permits the user to download DSPL code and
various cam and cubic spline tables to the Mx4 controller. Run the
executable DWNLD.EXE, located in the Debug subdirectory of the
project, without any command-line parameters to see an
information screen describing program operation.

For more information about DSPL and the various tables
supported by your Mx4, see the user manual for your Mx4
controller.

DSPEtherCAT v1.1

DSPEtherCAT Instruction Set

DSPEtherCAT Configuratin File

The DSPEtherCAT .cfg file must be downloaded to the
DSPEtherCAT flash memory, before the drives are powered up for
the first time. This file includes the following values:

Drive Number Value = x (wherex=1,2,3,..8)
Drive’s Front Panel Address Value = (swl) + 16 x (sw2)
Motion Control Mode Value = x (wherex=1,2,3,..6)

Each mode is to be supplied with its respective parameters:
Mode 1: Profile Position Mode

Target position,
software position limit,
profile velocity,

max profile velocity,
profile acceleration,
profile deceleration,
quick stop deceleration.

@™o o0 T

Mode 2: Interpolated Position Mode

software position limit,
quick stop deceleration,
k. profile deceleration

h. Interpolated time period,
i
J

Mode 3: Cyclic Synchronous Position Mode

i) Torque offset,
ii) velocity offset,
iii) target position,

DSPEtherCAT Instruction Set

iii) software position limit,
iv) quick stop deceleration,
v) profile deceleration,

vi) interpolation time period

Mode 4: Homing Mode

vii) Homing Speed,

viii) Homing Method,

ix) Homing Acceleration,
X) Homing Offset

Mode 5: Profile Velocity Mode

xi) Target velocity,

xii) max profile velocity,
xiii) profile acceleration,
xiv) profile deceleration,
xv) quick stop deceleration

Mode 6: Cyclic Synchronous Velocity Mode

xvi) Torque offset,

xvii) velocity offset,

xviii) target velocity,

xix) quick stop deceleration,
XX) profile deceleration

Synchronization Mode

For an EtherCAT (CoE) operation, the synchronization mode can
be changed by setting the Synchronous Control Register (ESC
register 0x980 & 0x981). The two possible modes to consider are:

DSPEtherCAT Instruction Set

Free Running Mode

In this mode local cycle is independent from the
communication cycle and master cycle. (DSPEtherCAT sets
ESC register 0x980 to 0x0000)

Distributed Clock Mode

In this mode, the Yaskawa servo pack is synchronized with
DSPEtherCAT on the SyncO event. (DSPEtherCAT sets ESC
register 0x980 to 0x0300)

DSPEtherCAT v1.1 7

DSPEtherCAT Instruction Set

ETHERCAT_INP1_REG, ETHERCAT_INP2_REG

IDENTIFIER Real-time status of ETHERCAT inputs O to 31
USAGE DSPL (PLC, Motion)
DESCRIPTION

These input bit registers may be assigned to DSPL variables, or they
may be used in conjunction with logical bitwise operators as part of the
following conditional expressions in the DSPL language: IF, WHILE
and WAIT_UNTIL.

ETHERCAT_INP1_REG

A 16-bit value coding the status of ETHERCAT inputs (0
to 15). A bit set to 1 indicates the
corresponding ETHERCAT input is in an active state.

ETHERCAT_INP2_REG

A 16-bit value coding the status of ETHERCAT inputs
(16 to 31).

A bit set to 1 indicates the corresponding
ETHERCAT input is in an active state.

DSPEtherCAT Instruction Set

ETHERCAT_INP1_REG, ETHERCAT_INP2_REG
cont.

EXAMPLE

The following DSPL segment holds the program until the
ETHERCAT input 31 is on:

wait_until (ETHERCAT_INP2_REG & 0x8000)

The following DSPL program segment increments var2 whenever
ETHERCAT input 1 is on:

varl =
while (varl == 1
)

if
(ETHERCAT_INP1_REG
& 0x0001)
var2=var2+1

endif
wend

The following DSPL program segment assigns the contents of
ETHERCAT_INP1_REG to var42:

var42 = ETHERCAT_INP1_REG

DSPEtherCAT v1.1 9

DSPEtherCAT Instruction Set

ETHERCAT_OUTP_ON

FUNCTION

SYNTAX

Sets ETHERCAT Outputs to 'On' State

ETHERCAT_OUTP_ON (outpl,outp2)

USAGE DSPL (PLC, Motion)
ARGUMENTS

outpl

outp2

A 16-bit value coding the ETHERCAT outputs (0 to 15) to
be set to ON. A bit set to 1 sets the
correspondingETHERCAT digital output to 1. A bit set to
zero leaves the corresponding ETHERCAT digital output
unchanged.

A 16-bit value coding the ETHERCAT outputs (16 to 31) to
be set to ON. A bit set to 1 sets the corresponding
ETHERCAT digital output to 1. A bit set to zero leaves
the corresponding ETHERCAT digital output unchanged.

A complete bank of 32 digital outputs is sent cyclically to all nodes via the
ETHERCAT network.

DESCRIPTION
This command sets the corresponding ETHERCAT digital output to an “ON”

state.

SEE ALSO ETHERCAT_OUTP_OFF, OUTP_ON, OUTP_OFF

APPLICATION
This command can be used for a general purpose logical output operation.

10

DSPEtherCAT v1.1

DSPEtherCAT Instruction Set

ETHERCAT_OUTP_ON cont.

EXAMPLE
The following DSPL command turns on ETHERCAT outputs 2,3
and 31:

ETHERCAT_OUTP_ON (0x000C, 0x8000)

Also, the following DSPL program segment toggles all 32
ETHERCAT outputs on and off every 0.5 seconds.

varl = 1

while (varl == 1)
ETHERCAT_outp_on(OxFFFF, OXFFFF)
delay (2500)
ETHERCAT_outp_off(OXFFFF, OXFFFF)
delay(2500)

wend

11

DSPEtherCAT Instruction Set

ETHERCAT_OUTP_OFF

FUNCTION Sets the ETHERCAT Outputs to 'Off" State

SYNTAX

[Mx4 Octavia and Mx4 and Mx42 family]

ETHERCAT_OUTP_OFF (outpl,outp2)

USAGE DSPL (PLC, Motion)

outp2

ARGUMENTS outp1 A 16-bit value

coding the ETHERCAT outputs (0
to 15) to be set to OFF. A bit set to
1 sets the corresponding
ETHERCAT digital output to 0. A
bit set to zero leaves the
corresponding ETHERCAT digital
output unchanged.

A 16-bit value coding the ETHERCAT outputs (16
to 31) to be set to OFF. A bit set to 1 sets the
corresponding ETHERCAT digital output to 0. A
bit set to zero leaves the corresponding
ETHERCAT digital output unchanged.

A complete bank of 32 digital outputs is sent cyclically to all nodes via
the ETHERCAT network.

12

DESCRIPTION

This command sets the corresponding
ETHERCAT digital output to an “OFF”
state.

SEE ALSO ETHERCAT_OUTP_ON, OUTP_ON,
OUTP_OFF

APPLICATION

This command can be used for a
general purpose logical output

DSPEtherCAT Instruction Set

operation.

DSPEtherCAT v1.1 13

DSPEtherCAT Instruction Set

ETHERCAT_OUTP_OFF cont.

EXAMPLE

14

The following DSPL command turns off ETHERCAT outputs 1,2
and 30:

ETHERCAT_OUTP_OFF (0x0006, 0x4000)

Also, the following DSPL program segment toggles all 32
ETHERCAT outputs on and off every 0.5 seconds

varl = 1

while (varl == 1)
ETHERCAT outp_on(OxFFFF, OxFFFF)
delay (2500)
ETHERCAT outp_off(OxFFFF, OxFFFF)

delay(2500)
wend

